Non-Cancellation of Electroweak Logarithms in High-Energy Scattering

Sascha Turczyk

Work in collaboration with A. Manohar, B. Shotwell and Ch. Bauer

[arXiv:1409.1918]

ERC workshop
Schloss Waldthausen, October 13th 2014
Example of $pp(\text{later} \ gg) \rightarrow t\bar{t}$

- **Introduction**
- **Application to** $gg \rightarrow t\bar{t}, b\bar{b}$
- **Motivation**
 - Electroweak Corrections and SCET

Current Status

- Analysis extends to high energies
- $\sigma(t\bar{t})$: NNLO QCD, NNLL soft gluon resummation: top++2.0
 - [Baernreuther, Cacciari, Czakon, Fiedler, Mangano, Mitov, Nason; Beneke, Falgari, Klein, Schwinn]
- No clear sign of New Physics (yet?)
 - Electroweak effects become important for precision predictions

Data

- CMS
 - 19.5 fb$^{-1} \ (8 \ TeV)$
 - $5 \times (1.75 \ TeV)$

- ATLAS
 - $\sqrt{s} = 8 \ TeV, 20.3 \ fb^{-1}$
 - $2 \ jets \ 2 \ b\text{-tags}$

[hep-ex/1406.7830]

[hep-ex/1410.4103]
Appearance of Sudakov Logs

Example of e^+e^- quarks (→ KLN Theorem)

- Regularize individual contributions
- Virtual corrections are IR divergent $\propto \log^2 \frac{M^2}{s} + 3 \log \frac{M^2}{s}$
- Real emission is IR divergent $\propto -(\log^2 \frac{M^2}{s} + 3 \log \frac{M^2}{s})$
 - Fully inclusive rate is not IR sensitive: $1 + \frac{\alpha_s}{\pi}$
 - Applying phase-space cuts, Sudakov logs may survive

Sudakov Logs for Electroweak Corrections [Ciafalon et.al., Kuhn et.al., Denner et.al.]

- Presence of Sudakov double logs $\alpha_W \log^2 s/M^2$ regularized by M_W, Z
- Arise from collinear and soft infrared divergences
- Known to survive for
 1. Phase-space cuts [Bell, Kuhn, Rittinger]
 2. Non $SU(2)$-Singlet initial state [Ciafaloni, Comelli]
- Here: Restrict specific gauge boson emission
Appearance of Sudakov Logs

Example of e^+e^- quarks (→ KLN Theorem)

- Regularize individual contributions
- Virtual corrections are IR divergent $\propto \log^2 \frac{M^2}{s} + 3 \log \frac{M^2}{s}$
- Real emission is IR divergent $\propto -(\log^2 \frac{M^2}{s} + 3 \log \frac{M^2}{s})$
 ⇒ Fully inclusive rate is not IR sensitive: $1 + \frac{\alpha_s}{\pi}$
 ⇒ Applying phase-space cuts, Sudakov logs may survive

Sudakov Logs for Electroweak Corrections [Ciafaloni et.al., Kuhn et.al., Denner et.al.]

- Presence of Sudakov double logs $\alpha_W \log^2 s/M^2$ regularized by M_W, Z
- Arise from collinear and soft infrared divergences
- Known to survive for
 1. Phase-space cuts [Bell, Kuhn, Rittinger]
 2. Non SU(2)-Singlet initial state [Ciafaloni, Comelli]
- Here: Restrict specific gauge boson emission
Appearance of Sudakov Logs

Example of e^+e^- quarks (\rightarrow KLN Theorem)

- Regularize individual contributions
- Virtual corrections are IR divergent $\propto \log^2 \frac{M^2}{s} + 3 \log \frac{M^2}{s}$
- Real emission is IR divergent $\propto -(\log^2 \frac{M^2}{s} + 3 \log \frac{M^2}{s})$
 - Fully inclusive rate is not IR sensitive: $1 + \alpha_s/\pi$
 - Applying phase-space cuts, Sudakov logs may survive

Sudakov Logs for Electroweak Corrections [Ciafalon et.al., Kuhn et.al., Denner et.al.]

- Presence of Sudakov double logs $\alpha_W \log^2 s/M^2$ regularized by M_W,Z
- Arise from collinear and soft infrared divergences
- Known to survive for
 1. Phase-space cuts [Bell, Kuhn, Rittinger]
 2. Non $SU(2)$-Singlet initial state [Ciafaloni, Comelli]
- Here: Restrict specific gauge boson emission
Simplifying Assumptions

Consider gauge singlet current $J \rightarrow q\bar{q}$

$$\sigma_T = \frac{\alpha_W}{2\pi} (G_R - G_V) \hat{\sigma}_0 \left\{ \ln^2 \frac{M_W^2}{s} + 3 \ln \frac{M_W^2}{s} + \ldots \right\}$$

1. Fully inclusive rate
2. Any fermion, no gauge boson
3. 1 fermion, and gauge bosons
4. 1 fermion, no gauge bosons
5. 2 fermions, and gauge bosons
6. 2 fermions, and no gauge bosons
7. Any fermion, specific gauge boson

<table>
<thead>
<tr>
<th>Case</th>
<th>G_R</th>
<th>G_V</th>
<th>$G_R - G_V$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC_F</td>
<td>NC_F</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>NC_F</td>
<td>$-NC_F$</td>
</tr>
<tr>
<td>3</td>
<td>C_F</td>
<td>C_F</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C_F</td>
<td>C_F</td>
<td>$-C_F$</td>
</tr>
<tr>
<td>5</td>
<td>$C_F\delta_{ij} \frac{1}{2} - \frac{1}{2N}\delta_{ij}$</td>
<td>$C_F\delta_{ij} \frac{1}{2} - \frac{N}{2}\delta_{ij}$</td>
<td>$-C_F\delta_{ij}$</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>$C_F\delta_{ij}$</td>
<td>$-C_F\delta_{ij}$</td>
</tr>
<tr>
<td>7</td>
<td>$\frac{1}{2}$</td>
<td>NC_F</td>
<td>$1 - \frac{N^2}{2}$</td>
</tr>
</tbody>
</table>

Relevant for EW Corrections
Simplifying Assumptions

- Consider gauge singlet current $J \to q\bar{q}$

$$\sigma_T = \frac{\alpha_W}{2\pi} (G_R - G_V) \hat{\sigma}_0 \left\{ \ln^2 \frac{M_W^2}{s} + 3 \ln \frac{M_W^2}{s} + \ldots \right\}$$

1. Fully inclusive rate
2. Any fermion, no gauge boson
3. 1 fermion, and gauge bosons
4. 1 fermion, no gauge bosons
5. 2 fermions, and gauge bosons
6. 2 fermions, and no gauge bosons
7. Any fermion, specific gauge boson

<table>
<thead>
<tr>
<th>Case</th>
<th>G_R</th>
<th>G_V</th>
<th>$G_R - G_V$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC_F</td>
<td>NC_F</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>NC_F</td>
<td>$-NC_F$</td>
</tr>
<tr>
<td>3</td>
<td>C_F</td>
<td>C_F</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>C_F</td>
<td>$-C_F$</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{1}{2} - \frac{1}{2N} \delta_{ij}$</td>
<td>$C_F \delta_{ij}$</td>
<td>$\frac{1}{2} - \frac{N}{2} \delta_{ij}$</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>$C_F \delta_{ij}$</td>
<td>$-C_F \delta_{ij}$</td>
</tr>
<tr>
<td>7</td>
<td>$\frac{1}{2}$</td>
<td>NC_F</td>
<td>$1 - \frac{N^2}{2}$</td>
</tr>
</tbody>
</table>

Relevant for EW Corrections
Necessity for Resummation

- \(\frac{\alpha_{\text{EW}}}{4\pi \sin^2 \theta_W} \log^2 s/M_W^2 \sim 0.15 \) for \(\sqrt{s} = 4 \text{ TeV} \)
- Power corrections are less important than logarithmic ones

⇒ We have advantages to use an EFT approach: SCET

- Amplitude expansion structure
 - Fixed order: Row
 - Resummation: Column

- Exponentiated Amplitude
 - Natural EFT result
 - Non-trivial relation

\[
A = \begin{pmatrix}
1 \\
\alpha L^2 \\
\alpha^2 L^4 \\
\alpha^3 L^6 \\
\vdots
\end{pmatrix}
\quad \log A = \begin{pmatrix}
\alpha L^2 \\
\alpha^2 L^3 \\
\alpha^3 L^4 \\
\vdots
\end{pmatrix}
\]

- Leading Log (LL) Regime: \(L \sim \frac{1}{\alpha} \)
- Leading Log squared (LL^2) Regime: \(L \sim \frac{1}{\sqrt{\alpha}} \)
Necessity for Resummation

- \(\frac{\alpha_{\text{EW}}}{4\pi \sin^2 \theta_W} \log^2 \frac{s}{M_W^2} \sim 0.15 \) for \(\sqrt{s} = 4 \) TeV
- Power corrections are less important than logarithmic ones

⇒ We have advantages to use an EFT approach: SCET

- Amplitude expansion structure
- Fixed order: Row
- Resummation: Column

\[
A = \begin{pmatrix}
1 \\
\alpha L^2 & \alpha L & \alpha \\
\alpha^2 L^4 & \alpha^2 L^3 & \alpha^2 L & \alpha^2 \\
\alpha^3 L^6 & \ldots & \ldots \\
\vdots
\end{pmatrix}
\]

\[
\log A = \begin{pmatrix}
\alpha L^2 & \alpha L & \alpha \\
\alpha^2 L^3 & \alpha^2 L^2 & \alpha^2 L & \alpha^2 \\
\alpha^3 L^4 & \alpha^3 L^3 & \alpha^3 L^2 & \alpha^3 L & \alpha^3 \\
\alpha^4 L^5 & \ldots & \ldots \\
\vdots
\end{pmatrix}
\]

- Leading Log (LL) Regime: \(L \sim \frac{1}{\alpha} \)
- Leading Log squared (LL^2) Regime: \(L \sim \frac{1}{\sqrt{\alpha}} \)
Comparing Fixed Order vs EFT

Legend

- Red: Real radiation
- Blue: Virtual corrections
- Black: Sum of contributions
- Solid: Full result
- Dashed: EFT result
Scales of the Problem

- **Needed:** High-Scale matching C
- **No large logs!**
- **Known analytic results**
 1. Collinear running γ in $\text{SCET}_{\text{EW},\gamma}$ for all fields within the SM
 2. Soft running γ in $\text{SCET}_{\text{EW},\gamma}$ for all field representations within the SM
 3. Soft matching D at weak scale \Rightarrow symmetry breaking effects
 4. Collinear matching D at weak scale \Rightarrow Corrections are available analytically for an arbitrary process (up to high scale matching)

[Chiu, Fuhrer, Kelley, Manohar, 0909.0012[hep-ph]]
The Wilson Coefficient

Matrices for EW Corrections in SCET

\[\mathcal{M}_{\text{low}} = \exp \left[\int_{\mu}^{M_z} \frac{d\mu}{\mu} R^{\text{soft+col}}_{U(1)_{EM}} \right] \]

\[\mathcal{M}_{\text{col}} = \exp \left[M_{U(1)_{EM}}^{\text{col}} \otimes SU(2)_W \right] \exp \left[\int_{M_z}^{\sqrt{s}} \frac{d\mu}{\mu} R^{\text{col}}_{U(1)_{EM}} \otimes SU(2)_W \right] \]

\[\mathcal{M}_{\text{soft}} = \exp \left[\int_{M_z}^{\sqrt{s}} \frac{d\mu}{\mu} R^{\text{soft}}_{U(1)_{EM}} \right] M_{SU(2)}^{\text{break}} \exp \left[\int_{M_z}^{\sqrt{s}} \frac{d\mu}{\mu} R^{\text{soft}}_{SU(2)_{W}} \right] \]

- \(R \) is running matrix (anomalous dimension)
- \(M \) is a matching matrix

Wilson Coefficients

\[C_{\text{low}} = \mathcal{M}_{\text{low}} \mathcal{M}_{\text{col}} \mathcal{M}_{\text{soft}} \]

\[C_{\text{high}} = M_{SU(3)}^T \]
The Wilson Coefficient

Matrices for EW Corrections in SCET [Chiu, Fuhrer, Kelley, Manohar, Hoang, Golf]

\[
\mathcal{M}_{\text{low}} = \exp \left[\int_{\mu}^{M_z} \frac{d\mu}{\mu} R_{U(1)_{EM}}^{\text{soft+col}} \right]
\]

\[
\mathcal{M}_{\text{col}} = \exp \left[M_{U(1)_{Y} \otimes SU(2)_{W}}^{\text{col}} \right] \exp \left[\int_{M_z}^{\sqrt{s}} \frac{d\mu}{\mu} R_{U(1)_{Y} \otimes SU(2)_{W}}^{\text{col}} \right]
\]

\[
\mathcal{M}_{\text{soft}} = \exp \left[\int_{M_z}^{\sqrt{s}} \frac{d\mu}{\mu} R_{U(1)_{Y}}^{\text{soft}} \right] \mathcal{M}_{SU(2)}^{\text{break}} \exp \left[\int_{M_z}^{\sqrt{s}} \frac{d\mu}{\mu} R_{SU(2)_{W}}^{\text{soft}} \right]
\]

- \(R\) is running matrix (anomalous dimension)
- \(M\) is a matching matrix

\[
\mathcal{C}_{\text{low}} = \mathcal{M}_{\text{low}} \mathcal{M}_{\text{col}} \mathcal{M}_{\text{soft}} \mathcal{C}_{\text{high}} \mathcal{M}_{SU(3)}^{T}
\]
Goals

- Numerical estimate for $t\bar{t}$ production
 - Effect for final state gauge bosons larger $C_F \rightarrow C_A$
 - Enhancement by phase-space cuts and non-singlet initial states

- Consider three scenarios for the top
 1. $q = u, d$
 2. $q = t, b$ with $m_b=100 \text{ GeV}$ and $m_t = 173 \text{ GeV}$
 3. $q = t, b$ with $m_b=4.7 \text{ GeV}$ and $m_t = 173 \text{ GeV}$.

Simplifications

- Partonic level
- Unbroken $SU(2)$ theory
- Singlet initial state $\Rightarrow gg \rightarrow t\bar{t}$
- No Decay, shower or hadronization effects

- To avoid t-channel singularity demand
 1. $|\eta| < 1.3$ for highest transverse momentum particle
 2. $|\eta| < 5$ for second highest transverse momentum particle
Goals

⇒ Numerical estimate for $t\bar{t}$ production
 - Effect for final state gauge bosons larger $C_F \rightarrow C_A$
 - Enhancement by phase-space cuts and non-singlet initial states

Consider three scenarios for the top

1. $q = u, d$
2. $q = t, b$ with $m_b=100$ GeV and $m_t = 173$ GeV
3. $q = t, b$ with $m_b=4.7$ GeV and $m_t = 173$ GeV.

Simplifications

- Partonic level
- Unbroken $SU(2)$ theory
- Singlet initial state ⇒ $gg \rightarrow t\bar{t}$
- No Decay, shower or hadronization effects

To avoid t-channel singularity demand

1. $|\eta| < 1, 3$ for highest transverse momentum particle
2. $|\eta| < 5$ for second highest transverse momentum particle
Goals

⇒ Numerical estimate for $t\bar{t}$ production
 - Effect for final state gauge bosons larger $C_F \rightarrow C_A$
 - Enhancement by phase-space cuts and non-singlet initial states

- Consider three scenarios for the top
 1. $q = u, d$
 2. $q = t, b$ with $m_b=100$ GeV and $m_t = 173$ GeV
 3. $q = t, b$ with $m_b=4.7$ GeV and $m_t = 173$ GeV.

Simplifications

- Partonic level
- Unbroken $SU(2)$ theory
- Singlet initial state $\Rightarrow gg \rightarrow t\bar{t}$
- No Decay, shower or hadronization effects
- To avoid t-channel singularity demand
 1. $|\eta| < 1, 3$ for highest transverse momentum particle
 2. $|\eta| < 5$ for second highest transverse momentum particle
Virtual and Real Corrections

Virtual Corrections

- We use the results obtained in SCET
- Expand out to order α_W to demonstrate cancellation

\[
\sigma_V(gg \rightarrow t\bar{t}) = \sigma_{0,t} \{v_W + 3v_t + v_b\}
\]
\[
\sigma_V(gg \rightarrow b\bar{b}) = \sigma_{0,b} \{v_W + v_t + 3v_b\}
\]

\[
v_W = \frac{C_F \alpha_W}{4\pi} \left[-L^2 + 3L\right], \quad v_t = -\frac{y_t^2}{32\pi^2}L, \quad v_b = -\frac{y_b^2}{32\pi^2}L
\]

Real Radiation

- To our considered order: Tree Level process
- We use MadGraph5_aMC@NLO for calculating this numerically
Subtlety for Decaying Top

- Usually done: Narrow width approximation

\[
\frac{1}{p^2 - m_t^2 + i\epsilon} \rightarrow \frac{1}{p^2 - m_t^2 + i m_t \Gamma_t}
\]

- Equivalent to sum all imaginary part of

\[
\begin{align*}
W & \quad t & & t & & b & & t \\
\rightarrow & & & & & & + \ldots
\end{align*}
\]

- Same as one cut of the $J \rightarrow t\bar{t}$ example
- Cuts cannot be treated separately
- Not gauge invariant
- Mixes different orders in α_W: Γ_t is $\mathcal{O}(\alpha_W m_t)$
- If $t \rightarrow Wb$ is kinematically allowed: $\mathcal{O}(\alpha_W)$ piece is wrong
Subtlety for Decaying Top

- Usually done: Narrow width approximation

\[\frac{1}{p^2 - m_t^2 + i\epsilon} \rightarrow \frac{1}{p^2 - m_t^2 + im_t\Gamma_t} \]

- Equivalent to sum all imaginary part of

- Same as one cut of the $J \rightarrow t\bar{t}$ example

 ⇒ Cuts cannot be treated separately
 ⇒ Not gauge invariant
 ⇒ Mixes different orders in α_W: Γ_t is $\mathcal{O}(\alpha_W m_t)$
 ⇒ If $t \rightarrow Wb$ is kinematically allowed: $\mathcal{O}(\alpha_W)$ piece is wrong
Subtlety for Decaying Top

- Usually done: Narrow width approximation

\[\frac{1}{p^2 - m_t^2 + i\epsilon} \rightarrow \frac{1}{p^2 - m_t^2 + im_t \Gamma_t} \]

- Equivalent to sum all imaginary part of

\[\text{W} + t + t + b + t + \ldots \]

- Same as one cut of the \(J \rightarrow t\bar{t} \) example

\[\Rightarrow \text{Cuts cannot be treated separately} \]

\[\Rightarrow \text{Not gauge invariant} \]

\[\Rightarrow \text{Mixes different orders in } \alpha_W: \Gamma_t \text{ is } \mathcal{O}(\alpha_W m_t) \]

- If \(t \rightarrow Wb \) is kinematically allowed: \(\mathcal{O}(\alpha_W) \) piece is wrong
Subtlety for Decaying Top

- Usually done: Narrow width approximation

\[\frac{1}{p^2 - m_t^2 + i\epsilon} \rightarrow \frac{1}{p^2 - m_t^2 + im_t\Gamma_t} \]

- Equivalent to sum all imaginary part of

- Same as one cut of the \(J \rightarrow t\bar{t} \) example

⇒ Cuts cannot be treated separately

⇒ Not gauge invariant

⇒ Mixes different orders in \(\alpha_W \): \(\Gamma_t \) is \(\mathcal{O}(\alpha_W m_t) \)

- If \(t \rightarrow Wb \) is kinematically allowed: \(\mathcal{O}(\alpha_W) \) piece is wrong
Subtlety for Decaying Top

- Usually done: Narrow width approximation

\[
\frac{1}{p^2 - m_t^2 + i\epsilon} \rightarrow \frac{1}{p^2 - m_t^2 + im_t\Gamma_t}
\]

- Equivalent to sum all imaginary part of

\[
\begin{array}{c}
\text{W} \\
\rightarrow \\
\text{t} \\
\text{t} \\
\text{b} \\
\text{t} \\
\rightarrow \\
\text{t} \\
\end{array}
\]

- Same as one cut of the \(J \rightarrow t\bar{t} \) example

⇒ Cuts cannot be treated separately
⇒ Not gauge invariant
⇒ Mixes different orders in \(\alpha_W \): \(\Gamma_t \) is \(\mathcal{O}(\alpha_W m_t) \)

- If \(t \rightarrow Wb \) is kinematically allowed: \(\mathcal{O}(\alpha_W) \) piece is wrong
Practical Solution

![Graph](https://via.placeholder.com/150)

\[\sqrt{s} = 0.5 \text{ TeV} \]

Divide into resonant \((A)\) and non-resonant \((A')\) region

\[
I = \int_{m_t^2 - \Delta}^{m_t^2 + \Delta} dm_{bW}^2 \frac{f(m_{bW}^2)}{(m_{bW}^2 - m_t^2)^2 + \epsilon^2}
\]

\(\epsilon\) regulator from \(i\epsilon\) prescription

- Need to subtract singular piece in region \(A\) by expanding

\[
f(m_{bW}^2) = f_0 + (m_{bW}^2 - m_t^2)f_1 + (m_{bW}^2 - m_t^2)^2 f_2 + \ldots
\]

\[
I = \frac{i}{\epsilon} f_0 + 2\Delta f_2 + \ldots
\]

- Size is suppressed by \(\Delta\)

\(\Rightarrow\) Practically ignoring the region \(A\) is a good approximation
Divide into resonant (A) and non-resonant (A') region

$$I = \int_{m_t^2 - \Delta}^{m_t^2 + \Delta} dm_{bW}^2 \frac{f(m_{bW}^2)}{(m_{bW}^2 - m_t^2)^2 + \epsilon^2}$$

ϵ regulator from $i\epsilon$ prescription

Need to subtract singular piece in region A by expanding

$$f(m_{bW}^2) = f_0 + (m_{bW}^2 - m_t^2)f_1 + (m_{bW}^2 - m_t^2)^2f_2 + \ldots$$

$$I = \frac{\pi}{\epsilon}f_0 + 2\Delta f_2 + \ldots$$

Size is suppressed by Δ

\Rightarrow Practically ignoring the region A is a good approximation
Divide into resonant (A) and non-resonant (A') region

\[I = \int_{m_t^2 - \Delta}^{m_t^2 + \Delta} dm_{bW}^2 \frac{f(m_{bW}^2)}{(m_{bW}^2 - m_t^2)^2 + \epsilon^2} \]

\(\epsilon \) regulator from \(i\epsilon \) prescription

Need to subtract singular piece in region A by expanding

\[f(m_{bW}^2) = f_0 + (m_{bW}^2 - m_t^2)f_1 + (m_{bW}^2 - m_t^2)^2f_2 + \ldots \]

\[I = \frac{\pi}{\epsilon} f_0 + 2\Delta f_2 + \ldots \]

Size is suppressed by \(\Delta \)

⇒ Practically ignoring the region A is a good approximation

\(\sqrt{s} = 0.5 \text{ TeV} \)
Results for Massless Quarks

- Tree level: \(gg \rightarrow u\bar{u} \) and \(gg \rightarrow d\bar{d} \)
- Real radiation: \(gg \rightarrow u\bar{u}Z, \) \(gg \rightarrow d\bar{d}Z, \) \(gg \rightarrow u\bar{d}W^- \) and \(gg \rightarrow d\bar{u}W^+ \)
- \(SU(2) \): \(\sigma(u\bar{u}) = \sigma(d\bar{d}), \) \(\sigma(u\bar{d}W^-) = \sigma(d\bar{u}W^+) = 2\sigma(u\bar{u}Z) = 2\sigma(d\bar{d}Z) \)
- Cancellation \(3\sigma(u\bar{d}W) + 2\nu_W\sigma(u\bar{u}) \rightarrow 0 \)
- No full cancellation for experimental observables!
Introduction
Application to $gg \rightarrow t\bar{t}, b\bar{b}$

Results for Massive and Stable Top: Remarks

- Use equivalence theorem for longitudinal polarization of W
 \[
 \sigma(t\bar{b}W^-) \rightarrow \sigma(u\bar{d}W^-) + 2(y_t^2 + y_b^2)\sigma_S \\
 \sigma(t\bar{t}Z) \rightarrow \frac{1}{2}\sigma(u\bar{d}W^-) + 2y_t^2\sigma_S \\
 \sigma(b\bar{b}Z) \rightarrow \frac{1}{2}\sigma(u\bar{d}W^-) + 2y_b^2\sigma_S \\
 \sigma(t\bar{t}H) \rightarrow 2y_t^2\sigma_S, \quad \sigma(b\bar{b}H) \rightarrow 2y_b^2\sigma_S \\
 \sigma_V(t\bar{t}) \rightarrow (\nu_W + 3\nu_t + \nu_b)\sigma(u\bar{u}) \\
 \sigma_V(b\bar{b}) \rightarrow (\nu_W + \nu_t + 3\nu_b)\sigma(u\bar{u})
 \]

- Total real radiation
 \[
 \sigma_R = 2\sigma(t\bar{b}W^-) + \sigma(t\bar{t}Z) + \sigma(b\bar{b}Z) + \sigma(t\bar{t}H) + \sigma(b\bar{b}H) \\
 \rightarrow 3\sigma(u\bar{d}W^-) + 8(y_t^2 + y_b^2)\sigma_S
 \]

- Total virtual correction
 \[
 \sigma_V = \sigma_V(t\bar{t}) + \sigma_V(b\bar{b}) = (2\nu_W + 4\nu_t + 4\nu_b)\sigma(u\bar{u})
 \]
Numerical Result for Massive and Stable Top

- $\nu_{t,b}$ linear in Log
- Gauge and Higgs part cancel separately

$$8(y_t^2 + y_b^2)\sigma_S + (4\nu_t + 4\nu_b)\sigma(\bar{u}\bar{u}) \to 0.$$

- No full cancellation for experimental observables!
Numerical Results for Physical Top Quark Case

- Same as before, Yukawa coupling for bottom much smaller
- Used $t\bar{t}$ tag for MadGraph5_aMC@NLO
 ⇒ Excludes a region of width $15\Gamma_t$ around the on-shell t-quark
- No full cancellation for experimental observables!
Summary

- Electroweak corrections for $gg \rightarrow t\bar{t}$
- Virtual corrections are around -10% for $E_{cm} \sim 2$ GeV
- If part of real radiation can be excluded, there are large electroweak radiative corrections
- Importance grows with energy and become measurable at LHC energies

Comments

- Corrections for $q\bar{q} \rightarrow t\bar{t}$ expected to be twice as large
- Explored minimal effect
- Total corrections to NLL can be written as a product $R_{QCD}R_{EW}$
 \Rightarrow EW can be included by reweighting QCD result
 \Rightarrow Inclusion of EW corrections possible with SCET approach
 \Rightarrow Full study with proton PDF, shower, exp. cuts, ... necessary
Summary

- Electroweak corrections for $gg \rightarrow t\bar{t}$
- Virtual corrections are around -10% for $E_{cm} \sim 2$ GeV
- If part of real radiation can be excluded, there are large electroweak radiative corrections
- Importance grows with energy and become measurable at LHC energies

Comments

- Corrections for $q\bar{q} \rightarrow t\bar{t}$ expected to be twice as large
- Explored minimal effect
- Total corrections to NLL can be written as a product $R_{QCD}R_{EW}$
 \Rightarrow EW can be included by reweighting QCD result
 \Rightarrow Inclusion of EW corrections possible with SCET approach
 \Rightarrow Full study with proton PDF, shower, exp. cuts, ... necessary
Backup Slides
SCET Operators

- \(g(p_1) + g(p_2) \rightarrow q(p_3) + \bar{q}(p_4) \)
 - \(O_1 = \bar{q}_4 q_3 A_2^A A_1^A \)
 - \(O_2 = d^{ABC} \bar{q}_4 T^C q_3 A_2^A A_1^B \)
 - \(O_3 = i f^{ABC} \bar{q}_4 T^C q_3 A_2^A A_1^B \).

- High Scale Matching contains EW and QCD corrections

Running in SCET

- First run down to Electroweak scale
- Then integrate out gauge bosons \(\Rightarrow \) low scale matching
 \(\Rightarrow \) Breaks up \(SU(2) \) doubletts into individual fields

\[
\mathcal{M} = \exp \left[D_C(\mu_l, L_M, \bar{n} \cdot p) \right] d_S(\mu_l, L_M) \\
\times P \exp \left[\int_{\mu_h}^{\mu_l} \frac{d\mu}{\mu} \gamma(\mu, \bar{n} \cdot p) \right] C(\mu_h, L_Q)
\]
Anomalous Dimension Matrices

\[\gamma(\mu, \vec{n} \cdot p) = \gamma_C(\mu, \vec{n} \cdot p) + \gamma_S(\mu) \]

- Soft matrix: \(\hat{=} \) interactions between particles

\[\gamma_S(\mu) = - \sum_{(rs, i)} \frac{\alpha_i(\mu)}{\pi} T_r^{(i)} \cdot T_s^{(i)} \ln \frac{-n_r \cdot n_s + i0^+}{2} \]

- Colinear Part: Knows about species (Diagonal!)

\[\gamma_C(\mu, \vec{n} \cdot p) = \sum_r \left[A_r(\mu) \ln \frac{2E_r}{\mu} + B_r(\mu) \right] \]

- \(A_r(\mu) \) and \(B_r(\mu) \) have a perturbative expansion in \(\alpha_i(\mu) \)
Idea of SCET

Ansatz

- Describing **energetic** particles with multiple scales
 1. Scattering process $\mathcal{O}(Q^2)$
 2. Collinear component
 3. Soft component
 4. Systematic power-counting $\lambda \ll 1$
- Propagating around light-cone: $p^2 \ll Q^2$
 \Rightarrow Factorization of perturbative and non-perturbative effects

Kinematics

- Light-cone vectors $n^\mu = (1, n)$ and $\bar{n}^\mu = (1, -n)$
 \Rightarrow Collinear field: $p^- = \bar{n} \cdot p \sim Q$, $p^+ = n \cdot p \sim \lambda^2 Q$, $p_\perp \sim \lambda Q$
- Ultrasoft field: All components scale as $\lambda^2 Q$
Idea of SCET

Ansatz

- Describing **energetic** particles with multiple scales
 1. Scattering process $O(Q^2)$
 2. Collinear component
 3. Soft component
 4. Systematic power-counting $\lambda \ll 1$
- Propagating around light-cone: $p^2 \ll Q^2$
 ⇒ Factorization of perturbative and non-perturbative effects

Kinematics

- Light-cone vectors $\mathbf{n}^\mu = (1, \mathbf{n})$ and $\bar{\mathbf{n}}^\mu = (1, -\mathbf{n})$
 ⇒ Collinear field: $p^- = \bar{\mathbf{n}} \cdot p \sim Q$, $p^+ = \mathbf{n} \cdot p \sim \lambda^2 Q$, $p_\perp \sim \lambda Q$
- Ultrasoft field: All components scale as $\lambda^2 Q$
High-Scale Operator in Full SM

Full Standard Model
- Respect full \(SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \) gauge symmetry
- All masses set to zero
⇒ Infrared divergencies

Matching onto SCET\(_{\text{ew}}\)
- Describing fields with collinear Wilson lines
 \[
 \bar{Q} \Gamma Q \rightarrow \exp C(\mu) [\bar{\xi}_{n,p_1} \mathcal{W}_n] \Gamma [\mathcal{W}_{\bar{n}}^\dagger \xi_{\bar{n},p_2}]
 \]
- Ultraviolett match onto infrared ones from full theory
High-Scale Operator in Full SM

Full Standard Model

- Respect full $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$ gauge symmetry
- All masses set to zero
 \Rightarrow Infrared divergencies

Matching onto SCET$_{ew}$

- Describing fields with collinear Wilson lines
 \[
 \bar{Q} \Gamma Q \rightarrow \exp C(\mu)[\xi_{n,p_1} W_n] \Gamma[\bar{W}_{\bar{n}}^\dagger \xi_{\bar{n},p_2}]
 \]
 - Ultraviolett match onto infrared ones from full theory
High-Scale Operator in Full SM

Full Standard Model

- Respect full $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$ gauge symmetry
- All masses set to zero
⇒ Infrared divergencies

Matching onto SCET_{ew}

- Describing fields with collinear Wilson lines
 \[\bar{Q} \Gamma Q \rightarrow \exp C(\mu)[\xi_{n,p_1} W_n] \Gamma[W_{\bar{n}}^\dagger \xi_{\bar{n},p_2}] \]
- Ultraviolett match onto infrared ones from full theory
Simplified Problem

- $1 \rightarrow 1$ process problem
- Simple coordinates
- n and \bar{n} are orthogonal

$$\log F_E(Q^2, \mu) = C(\mu=Q) + \int_Q^{M_Z} \frac{d\mu}{\mu} \gamma_1(\mu) + D_{Z,W}(\mu=M_Z) + \int_{M_Z}^{\mu} \frac{d\mu}{\mu} \gamma_2(\mu)$$

Extension to More Particles

- r particles \Rightarrow Set of n_i, $i = 1, \ldots, r$
- $n_i \cdot n_j \neq 0$ if $i \neq j$
- Two types of corrections
 1. Field dependent corrections
 2. Corrections between different fields
Sudakov Logarithm

Simplified Problem

- 1 → 1 process problem
- Simple coordinates
- \(n \) and \(\bar{n} \) are orthogonal

\[
\log F_E(Q^2, \mu) = C(\mu=Q) + \int_Q^{M_Z} \frac{d\mu}{\mu} \gamma_1(\mu) + D_{Z,W}(\mu=M_Z) + \int_{M_Z}^{\mu} \frac{d\mu}{\mu} \gamma_2(\mu)
\]

Extension to More Particles

- \(r \) particles ⇒ Set of \(n_i \) \(i = 1, \ldots, r \)
- \(n_i \cdot n_j \neq 0 \) if \(i \neq j \)
- Two types of corrections
 1. Field dependent corrections
 2. Corrections between different fields
Comment about Regulator for divergencies

- **Analytic regulator:**
 \[\frac{1}{p_i^2 - m^2} \rightarrow \frac{1}{(p_i^2 - m^2)^{1+\delta_i}} \]

 \[\Rightarrow \text{Breaks color Ward identity} \]

- **Use } \Delta \text{ regulator:**
 \[\frac{1}{p_i^2 - m^2} \rightarrow \frac{1}{p_i^2 - m^2 - \Delta_i} \]

 \[\Rightarrow \text{Preserves gauge-invariant Wilson line} \]

- **Soft function obeys Casimir scaling and linear in } n_i \cdot n_j \]

 \[\Rightarrow \text{Write soft-function as sum over all two-particle pairs} \]
Comment about Regulator for divergencies

- **Analytic regulator:**
 \[\frac{1}{p_i^2 - m^2} \rightarrow \frac{1}{(p_i^2 - m^2)^{1+\delta_i}} \]
 \(\Rightarrow \) Breaks color Ward identity

- **Use \(\Delta \) regulator:**
 \[\frac{1}{p_i^2 - m^2} \rightarrow \frac{1}{p_i^2 - m^2 - \Delta_i} \]
 \(\Rightarrow \) Preserves gauge-invariant Wilson line

- Soft function obeys Casimir scaling and linear in \(n_i \cdot n_j \)
 \(\Rightarrow \) Write soft-function as sum over all two-particle pairs
Factorization into Soft and Collinear

Comment about Regulator for divergencies

- **Analytic regulator:** \[\frac{1}{p_i^2 - m^2} \rightarrow \frac{1}{(p_i^2 - m^2)^{1+\delta_i}} \]
 - Breaks color Ward identity
- **Use \(\Delta \) regulator:** \[\frac{1}{p_i^2 - m^2} \rightarrow \frac{1}{p_i^2 - m^2 - \Delta_i} \]
 - Preserves gauge-invariant Wilson line
 - **Soft function obeys Casimir scaling and linear in** \(n_i \cdot n_j \)
 - Write soft-function as sum over all two-particle pairs
Soft Corrections

Definition

- **Universal soft function** $U_S(n_i, n_j) = \log \frac{-\mathbf{n}_i \cdot \mathbf{n}_j - i 0^+}{2}$
- **Anomalous dimension** $\gamma_s = \Gamma(\alpha(\mu)) \left[-\sum_{\langle ij \rangle} \mathbf{T}_i \mathbf{T}_j U_S(n_i, n_j) \right]$
- **Low-scale matching** $D_s = J(\alpha(\mu), L_m) \left[-\sum_{\langle ij \rangle} \mathbf{T}_i \mathbf{T}_j U_S(n_i, n_j) \right]$
 1. **Cusp anomalous dimension** $\Gamma(\alpha(\mu)) = \frac{\alpha(\mu)}{4\pi} 4$
 2. **Matching** $J(\alpha(\mu), L_m) = \frac{\alpha(\mu)}{4\pi} 2 \log \frac{M^2}{\mu^2}$

Comments

- Contains all information about kinematics of process
- Assumes Casimir scaling (gauge singlett operator)
 \Rightarrow 3-Loop Cusp anomalous dimension is used
Collinear Corrections

Definition

- Regulator choice: n_i Wilson line interactions only with i particle
 - Particle dependent corrections
 - Sum over all particles

Comments

- Anomalous dimension contains cusp and non-cusp part
 - Cusp: 3-loop K factor
 - Non-cusp: 2 loop K factor
- Matching contains wave-function renormalization
- Matching contains $Z - \gamma$ mixing
- Additional matching in $SU(3)_C$, because top is integrated out
- All functions listed in [0909.0947]
Collinear Corrections

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulator choice: n_i Wilson line interactions only with i particle</td>
</tr>
<tr>
<td>\Rightarrow Particle dependent corrections</td>
</tr>
<tr>
<td>\Rightarrow Sum over all particles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anomalous dimension contains cusp and non-cusp part</td>
</tr>
<tr>
<td>\bullet Cusp: 3-loop K factor</td>
</tr>
<tr>
<td>\bullet Non-cusp: 2 loop K factor</td>
</tr>
<tr>
<td>Matching contains wave-function renormalization</td>
</tr>
<tr>
<td>Matching contains $Z - \gamma$ mixing</td>
</tr>
<tr>
<td>Additional matching in $SU(3)_C$, because top is integrated out</td>
</tr>
<tr>
<td>All functions listed in [0909.0947]</td>
</tr>
</tbody>
</table>
Breaking of the Electroweak Symmetry

Standard Model

- Scalar field (Higgs) obtains vacuum expectation value (VEV)
- Couples to other fields
- VEV breaks symmetry spontaneously

\[\text{SU}(3)_C \otimes \text{SU}(2)_L \otimes \text{U}(1)_Y \rightarrow \text{SU}(3)_C \otimes \text{U}(1)_{\text{em}} \]

Consequences

- Mixing of fields:
 \[Z = \cos \theta_W W^3 - \sin \theta_W B \]
 \[A = \sin \theta_W W^3 + \cos \theta_W B \]
- Mass splitting \(M_W \neq M_Z \)
- Goldston Boson \(\equiv \) Longitudinal polarization
- Top Yukawa coupling non-negligible
Breaking of the Electroweak Symmetry

Standard Model
- Scalar field (Higgs) obtains vacuum expectation value (VEV)
- Couples to other fields
⇒ VEV breaks symmetry spontaneously
\[SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \rightarrow SU(3)_C \otimes U(1)_{em} \]

Consequences
- Mixing of fields:
 \[Z = \cos \theta_W W^3 - \sin \theta_W B \]
 \[A = \sin \theta_W W^3 + \cos \theta_W B \]
- Mass splitting \(M_W \neq M_Z \)
- Goldston Boson ≡ Longitudinal polarization
- Top Yukawa coupling non-negligable
Effect of Symmetry Breaking

- Operator basis is extended: \((M_{\text{break} SU(2)}^{\text{break}})_{ij}\) non-square matching matrix
- Gauge structure is changed \(SU(2)_L \otimes U(1)_Y \rightarrow U(1)_{\text{em}}\)
 \(\Rightarrow\) EW symmetry breaking described by soft matrix

Matching at 1-Loop

\[
R_{S,W}^{(1)} = \frac{\alpha_W}{4\pi} 2 \log M_W^2 \mu^2 \left[R^{(0)} O_{SU(2)} + \sum_{\langle ij \rangle} T_{3,i} T_{3,j} U_S(n_i, n_j) \right]
\]

\[
R_{S,Z}^{(1)} = \frac{\alpha_Z}{4\pi} 2 \log M_W^2 \mu^2 \left[- \sum_{\langle ij \rangle} T_{Z,i} T_{Z,j} U_S(n_i, n_j) \right]
\]

\[
M_{SU(2)}^{\text{break}} = R^{(0)} + R_{S,W}^{(1)} + R_{S,Z}^{(1)}
\]
Effect of Symmetry Breaking

- Operator basis is extended: \((M_{SU(2)}^{\text{break}})_{ij}\) non-square matching matrix
- Gauge structure is changed \(SU(2)_L \otimes U(1)_Y \rightarrow U(1)_{\text{em}}\)
 \(\Rightarrow\) EW symmetry breaking described by soft matrix

Matching at 1-Loop

\[
R^{(1)}_{S,W} = \frac{\alpha_W}{4\pi} 2 \log M^2_W \mu^2 \left[R^{(0)} O_{SU(2)} + \sum_{\langle ij \rangle} T^{3,i} T^{3,j} U_S(n_i, n_j) \right]
\]
\[
R^{(1)}_{S,Z} = \frac{\alpha_Z}{4\pi} 2 \log M^2_W \mu^2 \left[- \sum_{\langle ij \rangle} T^{Z,i} T^{Z,j} U_S(n_i, n_j) \right]
\]
\[
M_{SU(2)}^{\text{break}} = R^{(0)} + R^{(1)}_{S,W} + R^{(1)}_{S,Z}
\]