Status of old & new physics in $b \rightarrow s$ transitions

Presented by David M. Straub

Junior Research Group "New Physics" Excellence Cluster Universe, Munich

Tensions in $b \rightarrow s$ transitions, November 2014

Decay	obs.	q ² bin	SM pred.	measurem	ent	pull
$\bar{B}^0\to \bar{K}^{*0}\mu^+\mu^-$	10 ⁷ dBR/dg ²	[16, 19.25]	$\textbf{0.47} \pm \textbf{0.05}$	0.31 ± 0.07	CDF	+1.9
$\bar{B}^0\to \bar{K}^{*0}\mu^+\mu^-$	A _{FB}	[2, 4.3]	-0.04 ± 0.03	-0.20 ± 0.08	LHCb	+1.9
$\bar{B}^0\to\bar{K}^{*0}\mu^+\mu^-$	F_L	[2, 4.3]	0.79 ± 0.03	$\textbf{0.26} \pm \textbf{0.19}$	ATLAS	+2.7
$\bar{B}^0\to\bar{K}^{*0}\mu^+\mu^-$	S_5	[2, 4.3]	-0.16 ± 0.03	$\textbf{0.12}\pm\textbf{0.14}$	LHCb	-2.0
$\bar{\rm B}^-\to \bar{\rm K}^{*-}\mu^+\mu^-$	10 ⁷ dBR/dg ²	[4,6]	0.50 ± 0.08	$\textbf{0.26} \pm \textbf{0.10}$	LHCb	+1.9
$\bar{\rm B}^-\to \bar{\rm K}^{*-}\mu^+\mu^-$	$10^7 \frac{dBR}{dq^2}$	[15, 19]	0.59 ± 0.06	$\textbf{0.40} \pm \textbf{0.08}$	LHCb	+1.8
$ar{B}^0 ightarrow ar{K}^0 \mu^+ \mu^-$	10 ⁸ dBR/dq ²	[0.1,2]	2.71 ± 0.53	1.26 ± 0.56	LHCb	+1.9
$ar{B}^0 ightarrow ar{K}^0 \mu^+ \mu^-$	10 ⁸	[16, 23]	$\textbf{0.93} \pm \textbf{0.10}$	0.37 ± 0.22	CDF	+2.3
$B_s o \phi \mu^+ \mu^-$	$10^7 \frac{dBR}{dq^2}$	[1,6]	$\textbf{0.39}\pm\textbf{0.06}$	0.23 ± 0.05	LHCb	+2.0

 \Rightarrow QCD or New Physics or ...?

[Altmannshofer, DS]

David Straub (Universe Cluster)

2

Strategy

- 1. Use state of the art for SM predictions
- 2. Parametrize remaining uncertainties in a conservative way
- 3. Compare to all available data. If there are tensions:
 - Investigate which source of theoretical uncertainty could have been underestimated
 - Investigate whether new physics could account for the effect

Outline

- 1 Theory uncertainties
 - Form factors
 - Hadronic effects
- 2 SM vs. data
- 3 NP vs. data
 - Model-independent analysis
 - Violation of lepton flavour universality
 - Implications for $b \to s \nu \bar{\nu}$
- 4 Conclusions

Based on:

- W. Altmannshofer, DS [arXiv:1411.SOON]
- A. Bharucha, DS, R. Zwicky [arXiv:1411.SOON]

Theory callenges in ${\it B} ightarrow {\it K}^{(*)} \mu^+ \mu^-$

 $\mathcal{L} = \mathcal{L}_{QED+QCD} - \mathcal{C}_{7} \left[\bar{s} \sigma^{\mu\nu} P_{R} b \right] F_{\mu\nu} - \mathcal{C}_{2} \left[\bar{s} \gamma^{\nu} P_{L} c \right] \left[\bar{c} \gamma^{\mu} P_{L} b \right] + \cdots$

- 1. Precise determination of Form Factors (LCSRs, LQCD, ...)
- 2. Computation of the hadronic contribution (SCET/QCDF, OPE, ...)

[Slide by J. Virto @ CKM 2014]

Form factors: $B \rightarrow K$

- ▶ Recent lattice computation at high *q*² [Bouchard et al. 1306.2384]
- Excellent agreement with LCSR at low q² [Ball and Zwicky hep-ph/0406232] see also [Khodjamirian et al. 1006.4945]
- here: combined fit to lattice + LCSR at $q^2 = 0$

Form factors: $\textit{B} ightarrow \textit{K}^{*}$ and $\textit{B}_{\textit{s}} ightarrow \phi$

7 form factors

- Recent lattice computation [Horgan et al. 1310.3722]
- LCSR calculations: [Ball and Zwicky hep-ph/0412079, Khodjamirian et al. 1006.4945]

Possible strategy for low q^2

[Jäger and Camalich 1212.2263, Descotes-Genon et al. 1407.8526]

- 7 form factors reduce to 2 "soft" form factors in the heavy quark limit
- Look at observables where "soft" FFs drop out at LO
- Parametrize (factorizable) power corrections as uncertainties

Using the full form factors

In $B \to K^* \mu^+ \mu^-$, not only branching ratios have been measured but also angular observables involving ratios of form factors

Correlations between form factor uncertainties are crucial!

New results on $B ightarrow K^*$, $B_s ightarrow \phi$ form factors

[A. Bharucha, DS, Roman Zwicky (soon!)]

- Numerical B → K^{*} form factors as z expansion with correlated uncertainties (cf. Th. Mannel's talk)
- Combined fit with recent lattice computation

Outline

Theory uncertainties

- Form factors
- Hadronic effects
- 2 SM vs. data

8 NP vs. data

- Model-independent analysis
- Violation of lepton flavour universality
- Implications for b o s
 uar
 u

4 Conclusions

Hadronic uncertainties: low q^2

- Systematic calculation within QCDF [Beneke et al. hep-ph/0106067, Beneke et al. hep-ph/0412400] or SCET [Ali et al. hep-ph/0601034]
- Weak annihilation and chromomagnetic contribution beyond the heavy quark limit calculated within LCSR

[Dimou et al. 1212.2242, Lyon and Zwicky 1305.4797]

Soft gluon correction to charm loop calculated within LCSR

[Khodjamirian et al. 1006.4945, Khodjamirian et al. 1211.0234]

"Naive" parametrization of subleading hadronic effects $\ln {\it B} \to {\it K} \mu^+ \mu^-$

$$[C_9^{\rm eff}(q^2)]^{\rm SM} \rightarrow [C_9^{\rm eff}(q^2)]^{\rm SM} \left[1 + \frac{a_{\rm K}e^{i\phi_a}}{a_{\rm K}} + \frac{b_{\rm K}e^{i\phi_b}(q^2/6\,{\rm GeV}^2)\right]$$

 $\ln {\it B} \to {\it K}^* \mu^+ \mu^-$

$$[C_7^{\text{eff}}]^{\text{SM}} \rightarrow [C_7^{\text{eff}}]^{\text{SM}} \left[1 + a_\lambda e^{i\phi_a^\lambda} + b_\lambda e^{i\phi_b^\lambda} (q^2/6\,\text{GeV}^2) \right]$$

- Arbitrary strong phases allowed
- Size chosen such that LCSR charm loop effect is well within 1σ
- ► Expected suppression of λ = + amplitude "built in" [Jäger and Camalich 1212.2263]

We only use data up to $q^2 = 6 \text{ GeV}^2$!

Hadronic uncertainties: high q^2

- Violation of quark/hadron duality: observables cannot be predicted "locally" as functions of q²
- In q²-integrated observables (sufficiently above the narrow cc̄ resonances), effects of duality violation expected to be small [Beylich et al. 1101.5118]
- We only use data in large bins above $q^2 = 15 \,\text{GeV}^2$
- parametrization of subleading effects:

$$[C_9^{\mathrm{eff}}(q^2)]^{\mathrm{SM}}
ightarrow [C_9^{\mathrm{eff}}(q^2)]^{\mathrm{SM}} \left[1 + c_\lambda e^{i\phi_c^\lambda}
ight]$$

Outline

Theory uncertainties

- Form factors
- Hadronic effects

2 SM vs. data

3 NP vs. data

- Model-independent analysis
- Violation of lepton flavour universality
- Implications for $b \to s \nu \bar{\nu}$

4 Conclusions

Global fit

- Angular observables in $ar{B}^0 o ar{K}^{*0} \mu^+ \mu^-$
- (Differential) branching ratios of

$$\begin{array}{l} & \bar{B}^0 \rightarrow \bar{K}^{*0} \mu^+ \mu^- \\ & B^- \rightarrow K^{*-} \mu^+ \mu^- \\ & \bar{B}^0 \rightarrow \bar{K}^{*0} \mu^+ \mu^- \\ & B^- \rightarrow K^- \mu^+ \mu^- \\ & B_s \rightarrow \phi \mu^+ \mu^- \\ & B_s \rightarrow \mu^+ \mu^- \\ & \bar{B}^0 \rightarrow \bar{K}^{*0} \gamma \\ & B^- \rightarrow K^{*-} \gamma \\ & B \rightarrow X_s \gamma \\ & B \rightarrow X_s \mu^+ \mu^- \end{array}$$

Fit methodology

We construct a χ^2 containg **78** measurements of 62 different observables by 6 different experiments

$$\chi^{2}(\vec{C}^{\mathsf{NP}}) = \left[\vec{O}_{\mathsf{exp}} - \vec{O}_{\mathsf{th}}(\vec{C}^{\mathsf{NP}})\right]^{T} \left[C_{\mathsf{exp}} + C_{\mathsf{th}}\right]^{-1} \left[\vec{O}_{\mathsf{exp}} - \vec{O}_{\mathsf{th}}(\vec{C}^{\mathsf{NP}})\right].$$

- Full dependence on Wilson coefficients contained in \vec{O}_{th}
- NP dependence neglected but all correlations retained in C_{th}
- Theory correlations have an important impact

Fit result in the SM

• $\chi^2_{SM} = 97.2$ for 78 measurements (*p* value 6.9%)

Including also $b \rightarrow se^+e^-$ processes:

• $\chi^2_{SM} = 106.1$ for 81 measurements (*p* value 3.6%)

Decay	obs.	q ² bin	SM pred.	measurem	ent	pull
$ar{B}^0 ightarrow ar{K}^{*0} \mu^+ \mu^-$	$10^7 \frac{dBR}{dq^2}$	[16, 19.25]	0.47 ± 0.05	0.31 ± 0.07	CDF	+1.9
$ar{B}^0 ightarrow ar{K}^{*0} \mu^+ \mu^-$	A _{FB}	[2, 4.3]	-0.04 ± 0.03	-0.20 ± 0.08	LHCb	+1.9
$ar{B}^0 ightarrow ar{K}^{*0} \mu^+ \mu^-$	F_L	[2, 4.3]	0.79 ± 0.03	$\textbf{0.26} \pm \textbf{0.19}$	ATLAS	+2.7
$ar{B}^0 ightarrow ar{K}^{*0} \mu^+ \mu^-$	S_5	[2, 4.3]	-0.16 ± 0.03	$\textbf{0.12}\pm\textbf{0.14}$	LHCb	-2.0
$\bar{\rm B}^-\to \bar{\rm K}^{*-}\mu^+\mu^-$	10 ⁷ dBR/dg ²	[4,6]	0.50 ± 0.08	$\textbf{0.26} \pm \textbf{0.10}$	LHCb	+1.9
$\bar{B}^0\to\bar{K}^0\mu^+\mu^-$	10 ⁸ $\frac{dBR}{da^2}$	[0.1,2]	2.71 ± 0.53	1.26 ± 0.56	LHCb	+1.9
$\bar{B}^0\to\bar{K}^0\mu^+\mu^-$	$10^8 \frac{dBR}{da^2}$	[16, 23]	0.93 ± 0.10	0.37 ± 0.22	CDF	+2.3
$B_{s} ightarrow \phi \mu^{+} \mu^{-}$	$10^7 \frac{dBR}{dq^2}$	[1,6]	0.39 ± 0.06	0.23 ± 0.05	LHCb	+2.0

Underestimated hadronic effects?

- Plot the change in \(\chi_{SM}^2\) under variation of the central values of the a, b, c parameters parametrizing subleading hadronic effects
- Green dashed: χ^2 unchanged
- Green solid: χ^2 reduced by 1, 4.
- Blue: our nominal uncertainties

 $\Rightarrow\chi^2$ can be reduced by ${\sim}4$ in the presence of large hadronic effects in $B\to {\cal K}\mu^+\mu^-$ at low q^2

Underestimated hadronic effects in $B \to K^* \mu^+ \mu^-$?

 $\Rightarrow \chi^2$ can be reduced by \sim 9 in the presence of simultaneous huge hadronic effects in the – and 0 helicity amplitudes in $B^* \to K \mu^+ \mu^-$ at low q^2

Outline

Theory uncertainties

- Form factors
- Hadronic effects
- 2 SM vs. data

3 NP vs. data

- Model-independent analysis
- Violation of lepton flavour universality
- Implications for $b \rightarrow s \nu \bar{\nu}$

4 Conclusions

Model-independent new physics analysis

$$\mathcal{H}_{\mathrm{eff}} = -rac{4 \, G_F}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16\pi^2} \sum_i (C_i O_i + C_i' O_i') + \mathrm{h.c.}$$

$$O_{7} = \frac{m_{b}}{e} (\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu} \qquad O_{7}' = \frac{m_{b}}{e} (\bar{s}\sigma_{\mu\nu}P_{L}b)F^{\mu\nu}$$

$$O_{9} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell) \qquad O_{9}' = (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell)$$

$$O_{10} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \qquad O_{10}' = (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$

Lessons from the SMEFT

- ► Tensor operators $(\bar{s}\sigma^{\mu\nu}P_{L,R}b)(\bar{\ell}\sigma^{\mu\nu}P_{L,R}\ell)$ and scalar $(\bar{s}P_{L,R}b)(\ell P_{L,R}\ell)$ "secretly dim. 8"
- $(\bar{s}P_{L,R}b)(\ell P_{R,L}\ell)$ strongly constrained by $B_s \to \mu^+\mu^-$

More lessons from the SMEFT

Pattern of effects frequently encountered in NP models:

- ► Z penguins
 - $$\begin{split} i(\bar{q}_L \gamma_\mu q_L) H^{\dagger} D^{\mu} H & i(\bar{d}_R \gamma_\mu d_R) H^{\dagger} D^{\mu} H \\ \Rightarrow C_9^{\mathsf{NP}} &= 0.08 \ C_{10}^{\mathsf{NP}} & \Rightarrow C_9' &= 0.08 \ C_{10}' \end{split}$$

& always lepton flavour universal!

semi-leptonic operators (e.g. Z' models)

 $\begin{aligned} &(\bar{q}_L \gamma_\mu q_L) (\bar{l}_L \gamma^\mu l_L) &(\bar{q}_L \gamma_\mu q_L) (\bar{l}_R \gamma^\mu l_R) &(\bar{q}_R \gamma_\mu q_R) (\bar{l}_L \gamma^\mu l_L) &(\bar{q}_R \gamma_\mu q_R) (\bar{l}_R \gamma^\mu l_R) \\ &C_9^{\mathsf{NP}} = -C_{10}^{\mathsf{NP}} &C_9^{\mathsf{NP}} = +C_{10}^{\mathsf{NP}} &C_9' = -C_{10}' &C_9' = +C_{10}' \end{aligned}$

Best-fit values for NP in individual Wilson coefficients

Coeff.	best fit	1σ	2σ	$\chi^{\rm 2}_{\rm b.f.}-\chi^{\rm 2}_{\rm SM}$
$C_7^{\sf NP}$	-0.04	[-0.07, -0.01]	[-0.10, 0.02]	1.8
C'_7	-0.05	[-0.14, 0.03]	[-0.22, 0.11]	0.4
$C_9^{\sf NP}$	-1.19	[-1.54, -0.82]	[-1.88, -0.45]	10.7
C'_9	0.11	[-0.18, 0.39]	[-0.46, 0.67]	0.1
$C_{10}^{\sf NP}$	0.49	[0.23, 0.75]	[-0.01, 1.04]	3.9
C'_{10}	-0.12	[-0.34, 0.09]	[-0.56, 0.30]	0.3
$C_9^{ m NP}=C_{10}^{ m NP}$	-0.07	[-0.32, 0.21]	[-0.56, 0.51]	0.1
$C_9^{ m NP}=-C_{ m 10}^{ m NP}$	-0.46	[-0.64, -0.29]	[-0.84, -0.12]	7.7
$\mathit{C}_{9}^{\prime}=\mathit{C}_{10}^{\prime}$	-0.12	[-0.42, 0.17]	[-0.73, 0.45]	0.2
$C_{9}^{\prime}=-C_{10}^{\prime}$	0.07	[-0.06, 0.20]	[-0.19, 0.34]	0.3

Allowed regions for 2 (real) Wilson coefficients

- Green: 2σ when doubling form factor uncertainties
- Red: 2σ when doubling non-form factor hadronic uncertainties

Angular observables vs. branching ratios

- Green: all branching ratios
- Red: $B \to K^* \mu^+ \mu^-$ angular observables only

Violation of lepton flavour universality?

$$R_{K} = \frac{\mathsf{BR}(B \to K\mu^{+}\mu^{-})_{[1,6]}}{\mathsf{BR}(B \to Ke^{+}e^{-})_{[1,6]}} = 0.745^{+0.090}_{-0.074} \pm 0.036 \,, \quad R_{K}^{\mathsf{SM}} \simeq 1.00$$

Global fit of $b \rightarrow s\mu\mu$ and $b \rightarrow see$ (cf. [Ghosh et al. 1408.4097, Hurth et al. 1410.4545])

Future tests of LFU

Spectacular deviations in $B \to K^* \mu^+ \mu^-$ vs $B \to K^* e^+ e^-$ angular observables and others can distinguish between different scenarios!

Observable	Ratio of mu	Ratio of muon vs. electron mode				
	$C_9^{ m NP}=-1.5$	-1.5	-0.7	-1.3		
	$C_9'=0$	0.8	0	0		
	$C_{10}^{NP}=0$	0	0.7	0.3		
$10^7 \; {d{ m BR}\over dq^2} (ar B^0 o ar K^{*0} \ell^+ \ell^-)_{[1,6]}$	0.83	0.77	0.79	0.81		
$10^7 \; {d { m BR} \over d q^2} (ar B^0 o ar K^{*0} \ell^+ \ell^-)_{[15,22]}$	0.76	0.69	0.76	0.75		
$A_{ extsf{FB}}(ar{B}^0 o ar{K}^{st 0} \ell^+ \ell^-)_{[4,6]}$	0.18	0.10	0.75	0.27		
$\mathcal{S}_5(ar{B}^0 o ar{\mathcal{K}}^{*0} \ell^+ \ell^-)_{[4,6]}$	0.66	0.66	0.93	0.71		
$10^8 \; {d { m BR} \over d q^2} (B^+ o K^+ \ell^+ \ell^-)_{[1,6]}$	0.75	0.82	0.77	0.74		
$10^8 \; rac{d { m BR}}{d q^2} (B^+ o K^+ \ell^+ \ell^-)_{[15,19]}$	0.75	0.83	0.77	0.75		

Outline

Theory uncertainties

- Form factors
- Hadronic effects

2 SM vs. data

3 NP vs. data

- Model-independent analysis
- Violation of lepton flavour universality
- Implications for $b \to s \nu \bar{\nu}$

4 Conclusions

Correlating $b ightarrow s\ell\ell$ and b ightarrow s uar u

Dimension-6 SM gauge invariant operators

$$\begin{split} Q^{(1)}_{Hq} &= i(\bar{q}_L \gamma_\mu q_L) H^{\dagger} D^\mu H \\ Q^{(3)}_{Hq} &= i(\bar{q}_L \gamma_\mu \tau^a q_L) H^{\dagger} D^\mu \tau_a H \\ Q_{Hd} &= i(\bar{d}_R \gamma_\mu d_R) H^{\dagger} D^\mu H \end{split}$$

$$egin{aligned} &\mathcal{Q}_{ql}^{(1)} = (ar{q}_L \gamma_\mu q_L) (ar{l}_L \gamma^\mu l_L) \ &\mathcal{Q}_{ql}^{(3)} = (ar{q}_L \gamma_\mu au^a q_L) (ar{l}_L \gamma^\mu au_a l_L) \ &\mathcal{Q}_{dl} = (ar{d}_R \gamma_\mu d_R) (ar{l}_L \gamma^\mu l_L) \end{aligned}$$

Match onto

$$\begin{aligned} O_{9}^{(\prime)} &= (\bar{s}\gamma_{\mu} P_{L(R)} b) (\bar{\ell}\gamma^{\mu} \ell) \\ O_{L,R} &= (\bar{s}\gamma_{\mu} P_{L(R)} b_{L,R}) (\bar{\nu}_{L} \gamma^{\mu} \nu_{L}) \end{aligned}$$

$$\mathcal{O}_{10}^{(\prime)} = (ar{s}\gamma_{\mu}\mathcal{P}_{L(R)}b)(ar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$

$b ightarrow s\ell\ell$ vs. $b ightarrow s uar{ u}$ Wilson coefficients

$$\begin{split} C_L^{\mathsf{NP}} &= \widetilde{c}_{ql}^{(1)} + \widetilde{c}_Z \\ C_R &= \widetilde{c}_{dl} + \widetilde{c}_Z' \\ C_9^{\mathsf{NP}} &= \widetilde{c}_{qe} + \widetilde{c}_{ql}^{(1)} \\ C_9' &= \widetilde{c}_{de} + \widetilde{c}_{dl} \\ C_{10}^{\mathsf{NP}} &= \widetilde{c}_{qe} - \widetilde{c}_{ql}^{(1)} + \widetilde{c}_Z \\ C_{10}' &= \widetilde{c}_{de} - \widetilde{c}_{dl} + \widetilde{c}_Z' \end{split}$$

(ignoring
$$\widetilde{c}_{q\prime}^{(3)}$$
 and $(1-4s_w^2)pprox 0.08)$

2 scenarios:

- Z penguins: NP in $\widetilde{c}_{Z}^{(\prime)}$ only
- Z': NP in "4-fermion operators" as generated by exchange of a SM-singlet Z'

Allowed ranges for $B o K^{(*)} u ar{ u}$ in Z, Z' scenarios

• Global fit to all $b \rightarrow s \mu^+ \mu^-$ data

 Current data favour suppression in Z scenario and enhancement in Z' scenario

[Buras et al. 1409.4557]

solid: real Wilson coeff.; dashed: complex

Conclusions & Outlook

- There are several $\sim 2\sigma$ tensions in $b \rightarrow s$ transitions
- They could be explained by hadronic effects that are unexpectedly large (we have quantified it)
- They could be due to new physics in C_9 (and possibly C'_9 , C_{10})
- ► The hint for lepton flavour non-universality fits well into the picture

Things to look forward to:

- $B \to K^* \mu^+ \mu^-$ update by LHCb with 3/fb
- ▶ Angular analysis of $B \to K^* e^+ e^-$: spectacular effects if R_K is due to NP
- $b
 ightarrow s
 u \overline{
 u}$ at Belle-II