Signs for new physics in the recent flavour data?

Tobias Hurth

ERC Workshop "Effective Field Theories for Collider Physics, Flavour Phenomena, and Electroweak Symmetry Breaking

Waldthausen Castle, November 10-13 2014

No guiding principle in the flavour sector

$$\mathcal{L}_{SM} = \mathcal{L}_{Gauge}(A_i, \psi_i) + \mathcal{L}_{Higgs}(\Phi, \psi_i, v)$$

$$|V_{us}| pprox 0.2, |V_{cb}| pprox 0.04, |V_{ub}| pprox 0.004$$
 versus $g_s pprox 1, g pprox 0.6, g' pprox 0.3$

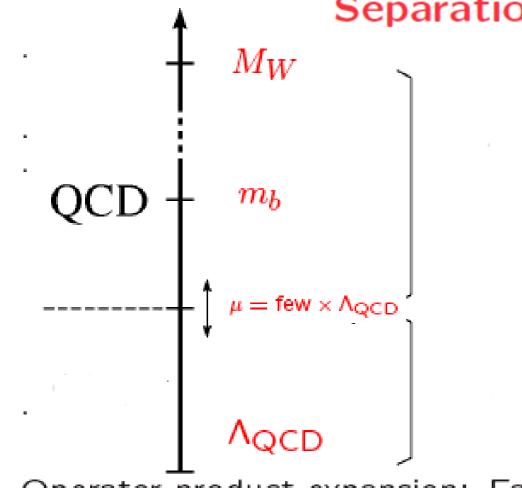
- Approximate symmetries (Froggatt -Nielsen)
- Geometry in extra dimensions (Randall-Sundrum)

Ambiguity of new physics scale from flavour data

$$\mathcal{L} = \mathcal{L}_{Gauge} + \mathcal{L}_{Higgs} + \sum_{i} \frac{c_i^{New}}{\Lambda_{NP}} \mathcal{O}_i^{(5)} + \dots$$

Radiative and semileptonic penguin decays

Separation of new physics and hadronic effects



short-distance physics perturbative

long-distance physics nonperturbative

Operator product expansion: Factorization of short- and long-distance physics

• Electroweak effective Hamiltonian: $H_{eff} = -\frac{4G_F}{\sqrt{2}} \sum C_i(\mu, M_{heavy}) \mathcal{O}_i(\mu)$

• $\mu^2 \approx M_{New}^2 >> M_W^2$: 'new physics' effects: $C_i^{SM}(M_W) + C_i^{New}(M_W)$

How to compute the hadronic matrix elements $\mathcal{O}_i(\mu=m_b)$?

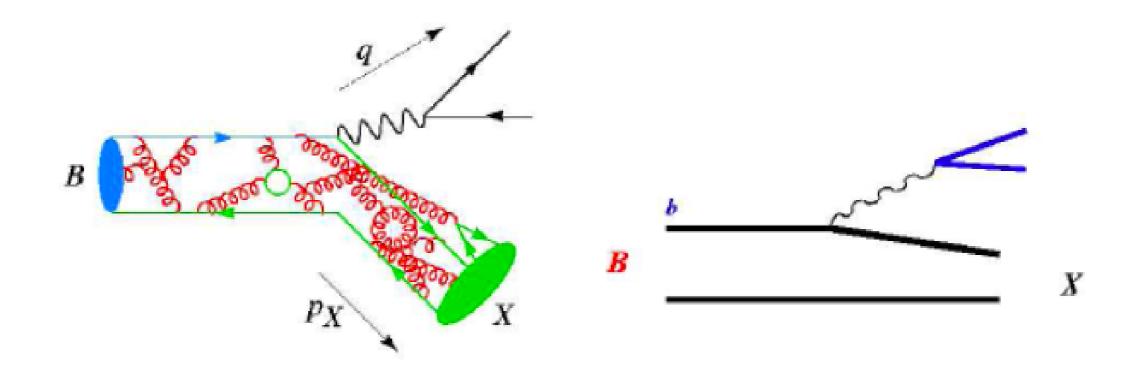
How to compute the hadronic matrix elements $O_i(\mu=m_b)$?

Inclusive modes $B \to X_s \gamma$ or $B \to X_s \ell^+ \ell^-$

Heavy mass expansion for inclusive modes:

$$\Gamma(\bar{B} \to X_s \gamma) \xrightarrow{m_b \to \infty} \Gamma(b \to X_s^{parton} \gamma), \quad \Delta^{nonpert.} \sim \Lambda_{QCD}^2 / m_b^2$$

No linear term Λ_{QCD}/m_b (perturbative contributions dominant)



Inclusive modes $B \to X_s \gamma$ or $B \to X_s \ell^+ \ell^-$

Heavy mass expansion for inclusive modes:

$$\Gamma(\bar{B} \to X_s \gamma) \xrightarrow{m_b \to \infty} \Gamma(b \to X_s^{parton} \gamma), \quad \Delta^{nonpert.} \sim \Lambda_{QCD}^2 / m_b^2$$

No linear term Λ_{QCD}/m_b (perturbative contributions dominant)

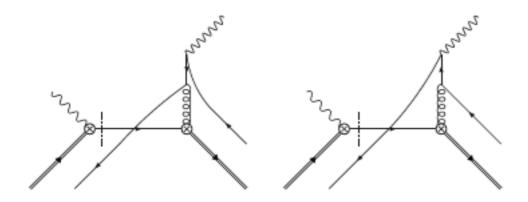
An old story:

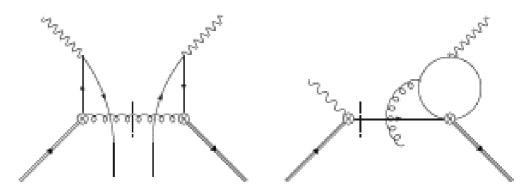
– If one goes beyond the leading operator $(\mathcal{O}_7, \mathcal{O}_9)$: breakdown of local expansion

A dedicated analysis:

naive estimate of non-local matrix elements leads to 5% uncertainty.

Benzke, Lee, Neubert, Paz, arXiv:1003.5012





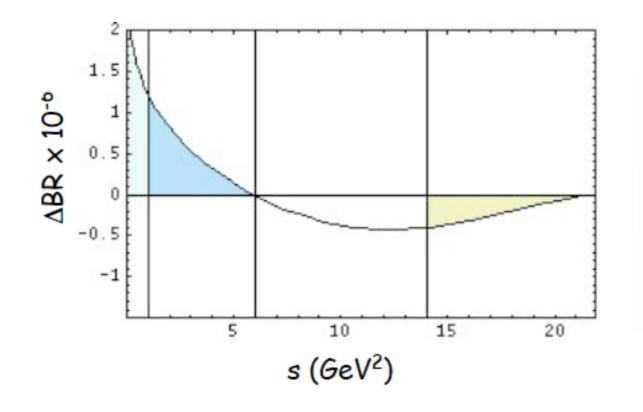
Latest improvements of inclusive $\bar{B} \to X_s \ell^+ \ell^-$

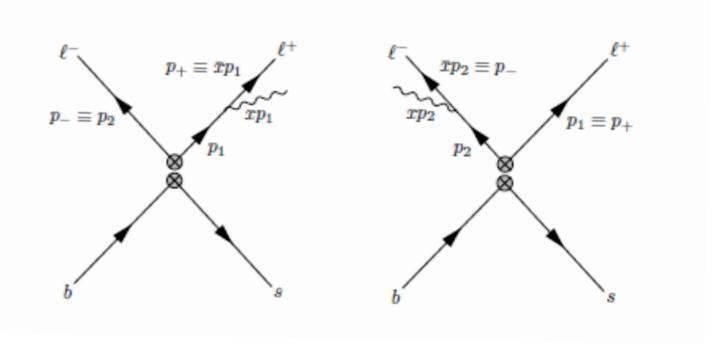
Beyond existing NNLL QCD precision electromagnetic corrections

were calculated: Huber, Hurth, Lunghi, Nucl. Phys. B802(2008)40 and work in progress

Corrections to matrix elements lead to large collinear $Log(m_b/m_\ell)$

$$\delta BR(B \to X_s \mu^+ \mu^-) = \begin{cases} (+2.0\%) & \text{low } q^2 \\ (-6.8\%) & \text{high } q^2 \end{cases} \quad \delta BR(B \to X_s e^+ e^-) = \begin{cases} (+5.2\%) & \text{low } q^2 \\ (-17.6\%) & \text{high } q^2 \end{cases}$$



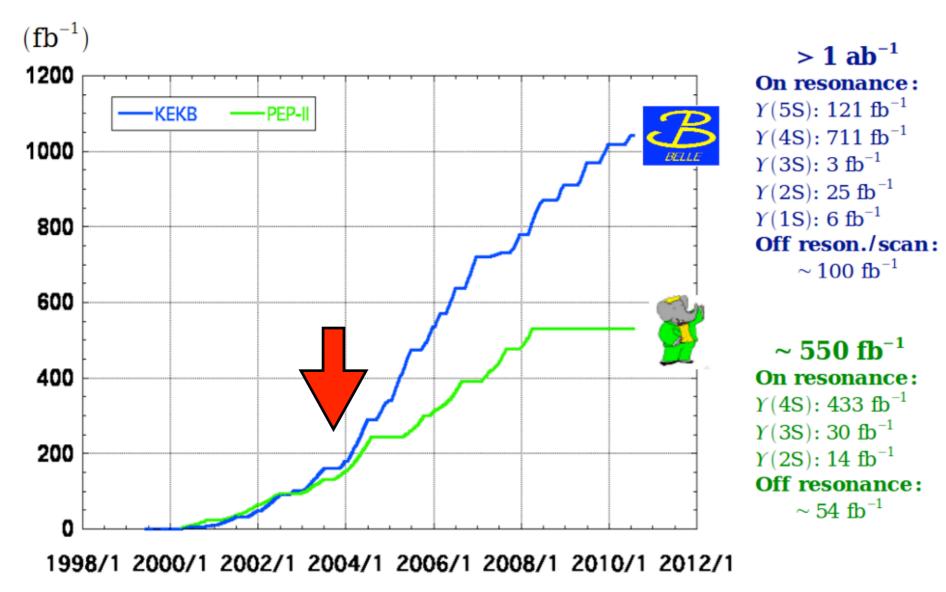


Until very recently:

'Latest' Babar and Belle measurements of inclusive $\mathcal{B}(b \to s\ell\ell)$

Belle hep-ex/0503044 (!!!) (based $152 \times 10^6 B\bar{B}$ events)

Babar hep-ex/0404006 (!!!) (based $89 \times 10^6 B\bar{B}$ events)



Two new analyses from the B factories:

New Babar analysis on dilepton spectrum arXiv:1312.3664 New Belle analysis on AFB arXiv:1402.7134

Observables

$$\frac{d^2\Gamma}{dq^2\,dz} = \frac{3}{8}\,\left[(1+z^2)\,H_T(q^2) + 2\,z\,H_A(q^2) + 2\,(1-z^2)\,H_L(q^2) \right]$$

$$\frac{d\Gamma}{dq^2} = H_T(q^2) + H_L(q^2)$$

$$\sqrt[3]{\frac{2}{\sqrt{2}}} \sqrt[3]{\frac{2}{\sqrt{2}}} \sqrt[$$

Low- q^2 region: $1 \text{ GeV}^2 < q^2 < 6 \text{ GeV}^2$

High- q^2 region: $q^2 > 14.4 \,\text{GeV}^2$

Huber, Hurth, Lunghi

Dependence on Wilson coefficients

$$H_T(q^2) \propto 2s(1-s)^2 \left[\left| C_9 + \frac{2}{s} C_7 \right|^2 + \left| C_{10} \right|^2 \right]$$
 $H_A(q^2) \propto -4s(1-s)^2 \operatorname{Re} \left[C_{10} \left(C_9 + \frac{2}{s} C_7 \right) \right]$

 H_T suppressed in low- q^2 window

$$H_L(q^2) \propto (1-s)^2 \Big[|C_9 + 2C_7|^2 + |C_{10}|^2 \Big]$$

- Devide low- q^2 bin in two bins (zero of H_A in low- q^2)
- Most important input parameters

$$m_b^{1S} = (4.691 \pm 0.037) \text{GeV}, \qquad \overline{m}_c(\overline{m}_c) = (1.275 \pm 0.025) \text{GeV}$$

 $|V_{ts}^* V_{tb}/V_{cb}|^2 = 0.9621 \pm 0.0027, \qquad BR_{b \to c \, e \, \nu}^{exp.} = (10.51 \pm 0.13) \%$

• Perturbative expansion (NNLO QCD + NLO QED) $lpha_{
m s}$ $\kappa = lpha_{
m em}/lpha_{
m s}$

$$A = \kappa \left[A_{LO} + \alpha_s A_{NLO} + \alpha_s^2 A_{NNLO} + \mathcal{O}(\alpha_s^3) \right]$$

$$+ \kappa^2 \left[A_{LO}^{em} + \alpha_s A_{NLO}^{em} + \alpha_s^2 A_{NNLO}^{em} + \mathcal{O}(\alpha_s^3) \right] + \mathcal{O}(\kappa^3)$$

- Collinear Photons give rise to log-enhanced QED corrections $\alpha_{
 m em} \log(m_b^2/m_\ell^2)$
- Higher powers of z in double differential decay width
 - Definition of H_i ? Sensitivity for QED observables?
- Size of logs depend on experimental set-up

$$q^2 = (p_{\ell^+} + p_{\ell^-})^2$$
 vs. $q^2 = (p_{\ell^+} + p_{\ell^-} + p_{\gamma, \text{coll}})^2$

- We assume no photons are included in the definition of q^2 (di-muon channel at Babar/Belle, di-electron at Belle)
- Babar's di-electron channel: Photons that are emitted in a cone of 35 mrad angular opening are included in q^2

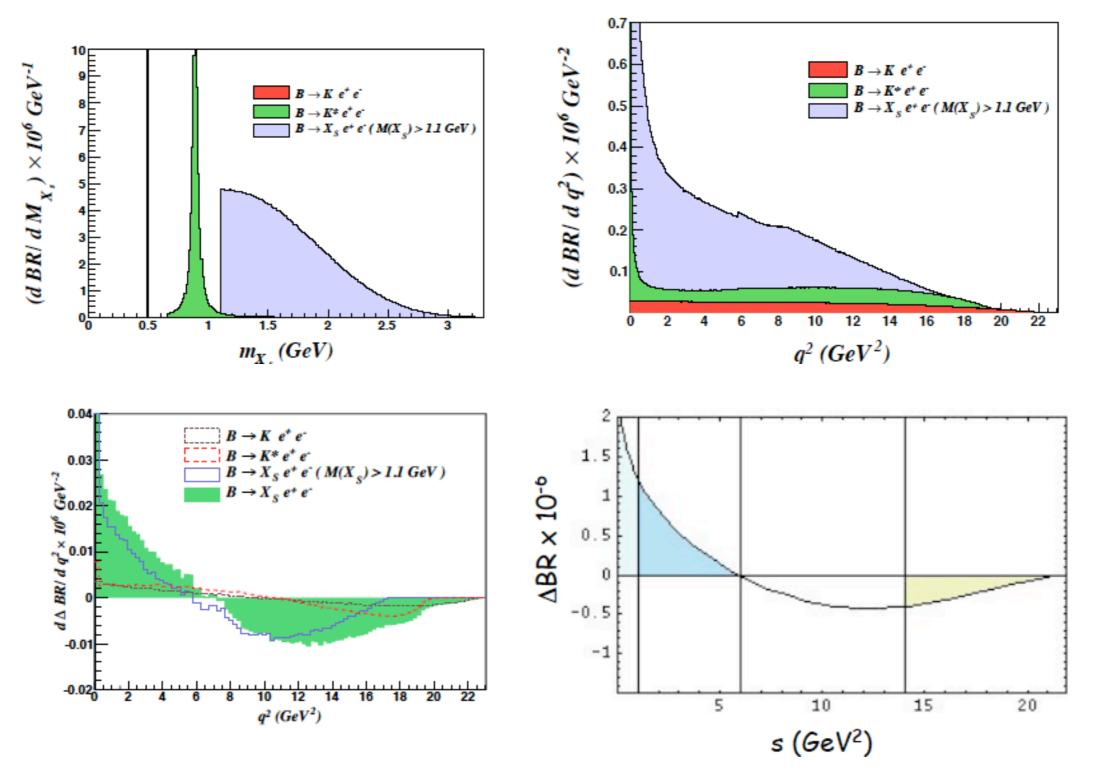
Monte Carlo techniques needed to estimate this effect

$$\frac{\left[\mathcal{B}_{ee}^{\text{low}}\right]_{q=p_{e^{+}}+p_{e^{-}}+p_{\gamma_{\text{coll}}}}}{\left[\mathcal{B}_{ee}^{\text{low}}\right]_{q=p_{e^{+}}+p_{e^{-}}}}-1=1.65\%$$

$$\frac{\left[\mathcal{B}_{ee}^{\text{high}}\right]_{q=p_{e^{+}}+p_{e^{-}}+p_{\gamma_{\text{coll}}}}}{\left[\mathcal{B}_{ee}^{\text{high}}\right]_{q=p_{e^{+}}+p_{e^{-}}}}-1=-6.8\%$$

Monte Carlo analysis

(event generator EVTGEN, hadronization JETSET, EM radiation PHOTOS)



Results

Low-
$$q^2$$
 (1 $GeV^2 < q^2 < 6GeV^2$)

$$BR(B \to X_s ee) = (1.67 \pm 0.10) \, 10^{-6}$$
 (preliminary)

$$BR(B \to X_s \mu \mu) = (1.62 \pm 0.09) \, 10^{-6}$$
 (preliminary)

Babar: $BR(B \to X_s \ell \ell) =$

=
$$(1.60 (+0.41-0.39)_{stat}(+0.17-0.13)_{syst}(\pm 0.18)_{mod}) 10^{-6}$$

good agreement with SM

Results

High-
$$q^2$$
, Theory: $q^2 > 14.4 GeV^2$, Babar: $q^2 > 14.2 GeV^2$

$$BR(B \to X_s ee) = (0.220 \pm 0.070) \, 10^{-6}$$
 (preliminary)

$$BR(B \to X_s \mu \mu) = (0.253 \pm 0.070) \, 10^{-6}$$
 (preliminary)

Babar:
$$BR(B \to X_s \ell \ell) =$$

$$(0.57 (+0.16 - 0.15)_{stat}(+0.03 - 0.02)_{syst}) 10^{-6}$$

Further refinement

• Normalization to semileptonic $B \to X_u \ell \nu$ decay rate with the same cut reduces the impact of $1/m_b$ corrections in the high- q^2 region significantly.

Ligeti, Tackmann arXiv:0707.1694

Theory prediction for ratio (preliminary)

$$R(s_0)_{ee} = (2.25 \pm 0.31) \, 10^{-3}$$

$$R(s_0)_{\mu\mu} = (2.62 \pm 0.30) \, 10^{-3}$$

• Additional O(5%) uncertainty due to nonlocal power corrections $O(\alpha_s \Lambda/m_b)$

Further results in units of 10^{-6} (preliminary)

$$\begin{array}{lll} H_L[1,3.5]_{ee} = & 0.64 \pm 0.03 & H_L[1,3.5]_{\mu\mu} = 0.68 \pm 0.04 \\ H_L[3.5,6]_{ee} = & 0.50 \pm 0.03 & H_L[3.5,6]_{\mu\mu} = 0.53 \pm 0.03 \\ H_L[1,6]_{ee} = & 1.13 \pm 0.06 & H_L[1,6]_{\mu\mu} = 1.21 \pm 0.07 \\ H_T[1,3.5]_{ee} = & 0.29 \pm 0.02 & H_T[1,3.5]_{\mu\mu} = 0.21 \pm 0.01 \\ H_T[3.5,6]_{ee} = & 0.24 \pm 0.02 & H_T[3.5,6]_{\mu\mu} = 0.19 \pm 0.02 \\ H_T[1,6]_{ee} = & 0.53 \pm 0.04 & H_T[1,6]_{\mu\mu} = 0.40 \pm 0.03 \\ H_A[1,3.5]_{ee} = & -0.103 \pm 0.005 & H_A[1,3.5]_{\mu\mu} = -0.110 \pm 0.005 \\ H_A[3.5,6]_{ee} = & +0.073 \pm 0.012 & H_A[3.5,6]_{\mu\mu} = +0.067 \pm 0.012 \\ H_A[1,6]_{ee} = & -0.029 \pm 0.016 & H_A[1,6]_{\mu\mu} = & -0.042 \pm 0.016 \end{array}$$

Total error $\mathcal{O}(5-8\%)$. Still dominated by scale uncertainty.

How to compute the hadronic matrix elements $\mathcal{O}(m_b)$?

Exclusive modes $B \to K^* \gamma$ or $B \to K^* \ell^+ \ell^-$

Naive approach:

Parametrize the hadronic matrix elements in terms of form factors

Exclusive modes $B \to K^* \gamma$ or $B \to K^* \ell^+ \ell^-$

QCD-improved factorization: BBNS 1999

$$\mathcal{T}_a^{(i)} = C_a^{(i)} \xi_a + \phi_B \otimes T_a^{(i)} \otimes \phi_{a,K^*} + O(\Lambda/m_b)$$

Existence of 'non-factorizable' strong interaction effects which do *not* correspond to form factors

Exclusive modes $B \to K^* \gamma$ or $B \to K^* \ell^+ \ell^-$

QCD-improved factorization: BBNS 1999

$$\mathcal{T}_a^{(i)} = C_a^{(i)} \xi_a + \phi_B \otimes T_a^{(i)} \otimes \phi_{a,K^*} + O(\Lambda/m_b)$$

- Separation of perturbative hard kernels from process-independent nonperturbative functions like form factors
- Relations between formfactors in large-energy limit Charles et al. 1998
- Limitation: insufficient information on power-suppressed Λ/m_b terms (breakdown of factorization: 'endpoint divergences')

Phenomenologically highly relevant issue general strategy of LHCb to look at ratios of exclusive modes

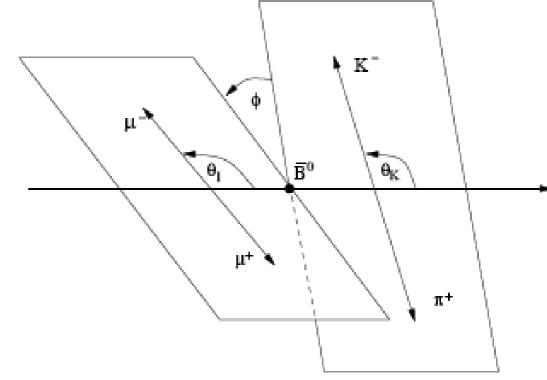
Egede, Hurth, Matias, Ramon, Reece, arXiv:0807.2589, arXiv:1005.0571 see also Altmannshofer et al., arXiv:0811.1214; Bobeth et al., arXiv:0805.2525

Kinematics

• Assuming the \bar{K}^* to be on the mass shell, the decay $\bar{B^0} \to \bar{K}^{*0} (\to K^- \pi^+) \ell^+ \ell^-$ described by the lepton-pair invariant mass, s, and the three angles θ_l , θ_{K^*} , ϕ .

After summing over the spins of the final particles:

$$\frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_K d\phi} = \frac{9}{32\pi} J(q^2, \theta_l, \theta_K, \phi)$$



$$J(q^2, \theta_l, \theta_K, \phi) =$$

$$= J_{1s}\sin^2\theta_K + J_{1c}\cos^2\theta_K + (J_{2s}\sin^2\theta_K + J_{2c}\cos^2\theta_K)\cos 2\theta_l + J_3\sin^2\theta_K\sin^2\theta_l\cos 2\phi + J_4\sin 2\theta_K\sin 2\theta_l\cos\phi + J_5\sin 2\theta_K\sin \theta_l\cos\phi + (J_{6s}\sin^2\theta_K + J_{6c}\cos^2\theta_K)\cos\theta_l + J_7\sin 2\theta_K\sin \theta_l\sin\phi + J_8\sin 2\theta_K\sin 2\theta_l\sin\phi + J_9\sin^2\theta_K\sin^2\theta_l\sin 2\phi$$

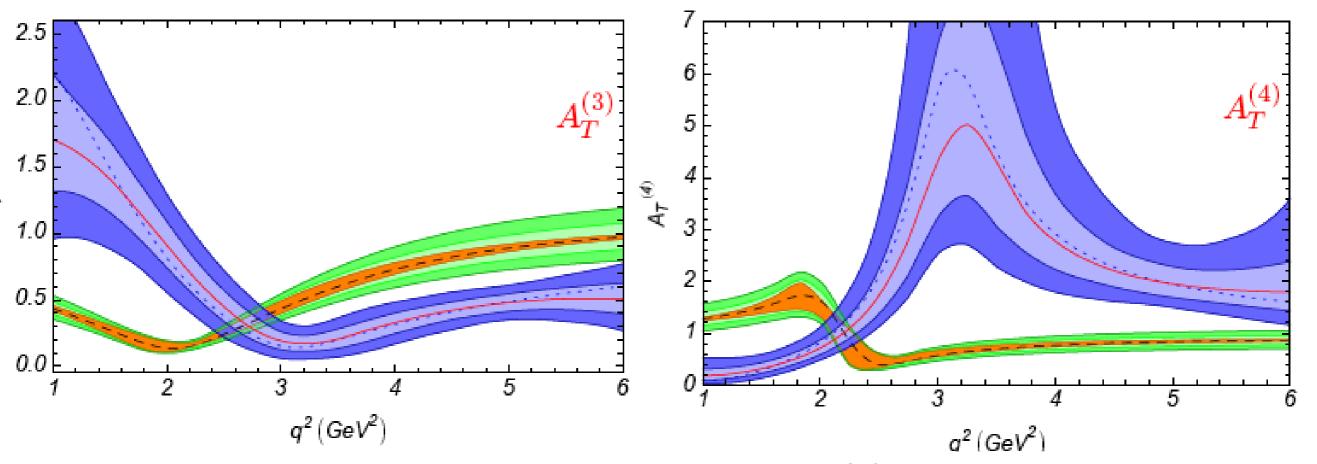
$$J_i = J_i(A_{\perp L/R}, A_{\parallel L/R}, A_{0L/R})$$
 $A_{\perp,\parallel} = (H_{+1} \mp H_{-1})/\sqrt{2}, \quad A_0 = H_0$

Careful design of theoretical clean angular observables

Egede, Hurth, Matias, Ramon, Reece, arXiv:0807.2589, arXiv:1005.0571

- Dependence of soft form factors, \(\xi_\perp \) and \(\xi_\perp \), to be minimized!
 form factors should cancel out exactly at LO, best for all \(s\)
- unknown Λ/m_b power corrections

$$A_{\perp,\parallel,0}=A_{\perp,\parallel,0}^0\left(1+c_{\perp,\parallel,0}\right)$$
 vary c_i in a range of $\pm 10\%$ and also of $\pm 5\%$



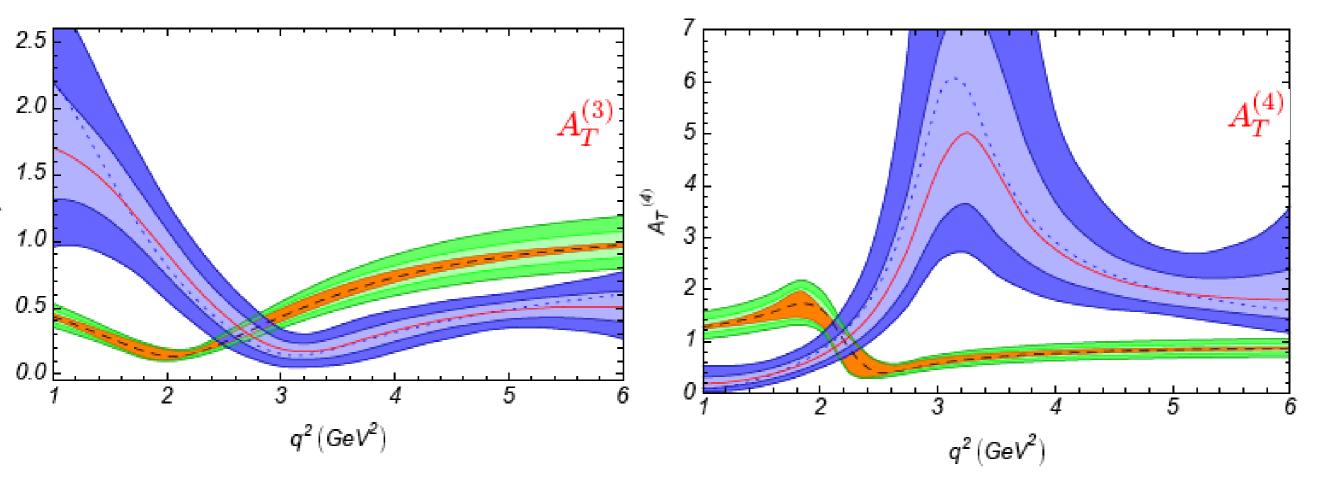
The experimental errors assuming SUSY scenario (b) with large-gluino mass and positive mass insertion, is compared to the theoretical errors assuming the SM.

Careful design of theoretical clean angular observables

Egede, Hurth, Matias, Ramon, Reece, arXiv:0807.2589, arXiv:1005.0571

- Dependence of soft form factors, ξ_{\perp} and ξ_{\parallel} , to be minimized ! form factors should cancel out exactly at LO, best for all s
- unknown Λ/m_b power corrections

$$A_{\perp,\parallel,0}=A_{\perp,\parallel,0}^0\left(1+c_{\perp,\parallel,0}\right)$$
 vary c_i in a range of $\pm 10\%$ and also of $\pm 5\%$



Optimised basis of clean (formfactor-independent)

observables: P_i Descotes-Genon, Hurth, Matias, Virto arXiv:1303.5794

Definition of P_5'

$$n_{\parallel} = \begin{pmatrix} A_{\parallel}^L \\ A_{\parallel}^{R*} \end{pmatrix} \;, \quad n_{\perp} = \begin{pmatrix} A_{\perp}^L \\ -A_{\perp}^{R*} \end{pmatrix} \;, \quad n_0 = \begin{pmatrix} A_0^L \\ A_0^{R*} \end{pmatrix}$$

$$P_1 = \frac{|n_{\perp}|^2 - |n_{\parallel}|^2}{|n_{\perp}|^2 + |n_{\parallel}|^2} = \frac{J_3}{2J_{2s}} ,$$

$$P_2 = \frac{\text{Re}(n_{\perp}^{\dagger} n_{\parallel})}{|n_{\parallel}|^2 + |n_{\perp}|^2} = \beta_{\ell} \frac{J_{6s}}{8J_{2s}},$$

$$P_3 = \frac{\operatorname{Im}(n_{\perp}^{\dagger} n_{\parallel})}{|n_{\parallel}|^2 + |n_{\perp}|^2} = -\frac{J_9}{4J_{2s}} ,$$

$$P_4 = \frac{\operatorname{Re}(n_0^{\dagger} n_{\parallel})}{\sqrt{|n_{\parallel}|^2 |n_0|^2}} = \frac{\sqrt{2}J_4}{\sqrt{-J_{2c}(2J_{2s} - J_3)}} ,$$

$$P_5 = \frac{\text{Re}(n_0^{\dagger} n_{\perp})}{\sqrt{|n_{\perp}|^2 |n_0|^2}} = \frac{\beta_{\ell} J_5}{\sqrt{-2J_{2c}(2J_{2s} + J_3)}} ,$$

$$P_6 = \frac{\operatorname{Im}(n_0^{\dagger} n_{\parallel})}{\sqrt{|n_{\parallel}|^2 |n_0|^2}} = -\frac{\beta_{\ell} J_7}{\sqrt{-2J_{2c}(2J_{2s} - J_3)}} ,$$

Redefinition:

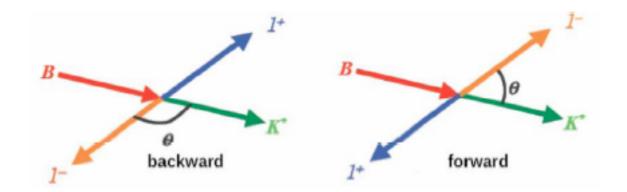
$$P_4' \equiv P_4 \sqrt{1 - P_1} = \frac{J_4}{\sqrt{-J_{2c}J_{2s}}}$$

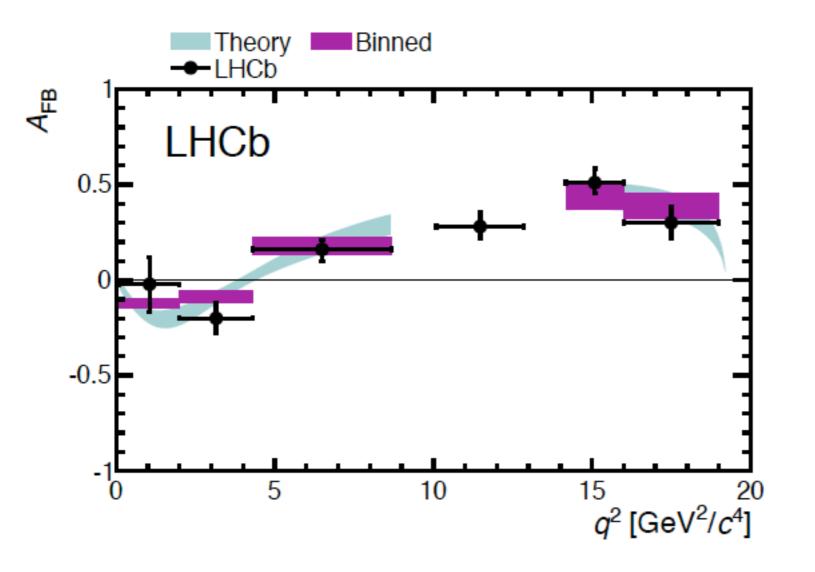
$$P_5' \equiv P_5 \sqrt{1 + P_1} = \frac{J_5}{2\sqrt{-J_{2c}J_{2s}}}$$

$$P_6' \equiv P_6 \sqrt{1 - P_1} = -\frac{J_7}{2\sqrt{-J_{2c}J_{2s}}}$$

Measurements of forward-backward asymmetry in $B \to K^* \mu^+ \mu^-$

$$A_{\!F\!B}\left(s=m_{\mu^{\!+}\mu^{\!-}}^2\right)\!=\!\frac{N_F-N_B}{N_F+N_B}$$





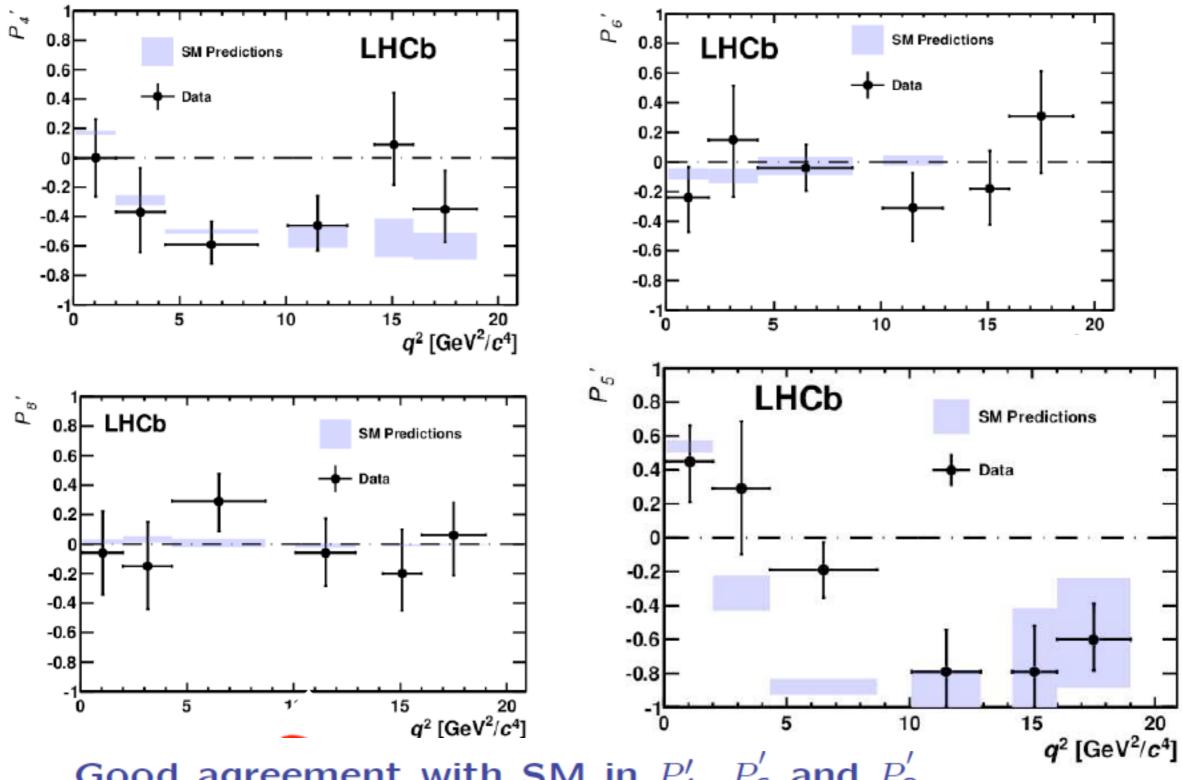
Excellent agreement with SM at current level of precision.

However:

Many more angular observables in $B \to K^* \mu \mu$ to be measured, more sensitive to NP than AFB. New flavour structures needed !

LHCb arXiv:1304.6325

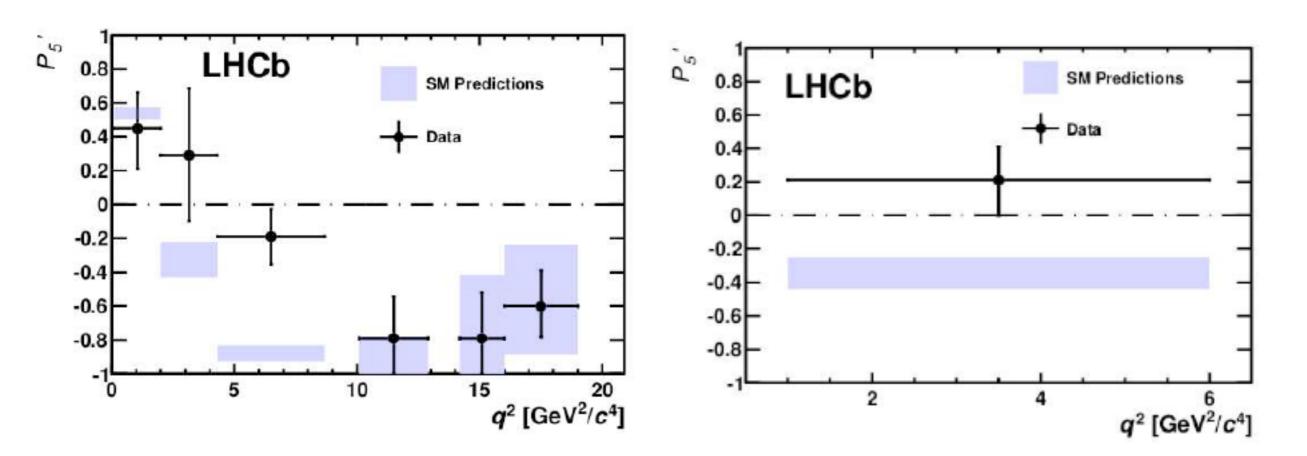
First measurements of new angular observables LHCb arXiv:1308.1707



Good agreement with SM in P_4' , P_6' and P_8' ,

but a 4.0σ deviation in the third bin in $P_{5}^{'}$

SM predictions Descotes-Genon, Hurth, Matias, Virto arXiv:1303.5794



LHCb Anomaly

a statistical fluctuation, an underestimation of Λ/m_b corrections or new physics in C_9 ?

$$C_7 \quad (B \to X_s \gamma) \quad C_{10} \quad (B \to \mu^+ \mu^-)$$

LHCb Anomaly

Hurth, Mahmoudi arXiv:1312.5276,1411 today

• Power corrections: No strict theory: $A'_i = A_i(1 + C_i)$, $|C_i|$ 10%

3% on the observable level: 4.0σ

More realistic: 10% on the observable level: 3.6σ

Dimensional estimate, some soft arguments

Assume 30% : 2.2σ

Descotes, Matias, Virto arXiv:1307.5683

- Validity of QCDf and of perturbative description of charm loops: $[1GeV^2, 6GeV^2]$, but local bin is $q^2 \in [4.3, 8.63]GeV^2$
- Issue of charm loops Khodjamirian et al. arXiv:1006.4945
 Only soft gluon (but no spectator) contributions included yet

Analysis of factorizable power corrections

Descotes, Hofer, Matias, Virto, arXiv: 1407.8526

$$A_2(q^2) = \frac{m_B}{m_B - m_{K*}} \left[\xi_{\perp}(q^2) - \xi_{\parallel}(q^2) \right] + \Delta A_2^{\alpha_s}(q^2) + \Delta A_2^{\Lambda}(q^2) \,,$$

$$A_0(q^2) = \frac{E}{m_{K^*}} \, \xi_{\parallel}(q^2) \, + \, \Delta A_0^{\alpha_s}(q^2) \, + \, \Delta A_0^{\Lambda}(q^2) \, , \qquad \qquad \xi_{\parallel}^{(2)}(q^2) \equiv \frac{m_{K^*}}{E} A_0(q^2) \, ,$$

Only central value of power corrections fixed

Present error (without knowing the correlations)

in the LCSR calculation of formfactors too large

Nonfactorizable power corrections still open

Analysis of factorizable power corrections

Descotes, Hofer, Matias, Virto, arXiv: 1407.8526

$$A_2(q^2) = \frac{m_B}{m_B - m_{K*}} \left[\xi_{\perp}(q^2) - \xi_{\parallel}(q^2) \right] + \Delta A_2^{\alpha_s}(q^2) + \Delta A_2^{\Lambda}(q^2) \,,$$

$$A_0(q^2) = \frac{E}{m_{K^*}} \, \xi_{\parallel}(q^2) \, + \, \Delta A_0^{\alpha_s}(q^2) \, + \, \Delta A_0^{\Lambda}(q^2) \, , \qquad \qquad \xi_{\parallel}^{(2)}(q^2) \equiv \frac{m_{K^*}}{E} A_0(q^2) \, ,$$

Only central value of power corrections fixed

Present error (without knowing the correlations)

in the LCSR calculation of formfactors too large

Nonfactorizable power corrections still open

Suggestions beyond guessing numbers

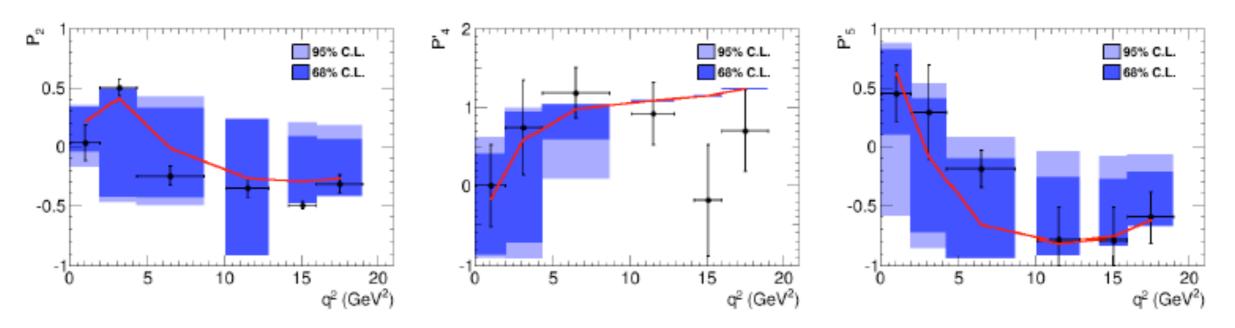
Direct calculation of QCD formfactors including correlations see Altmannshofer et al.,arXiv:0811.1214

Methods used in an analysis of $B \to K\ell\ell$

Kjodjamirian, Mannel, Wang, ar Xiv: 1211.0234

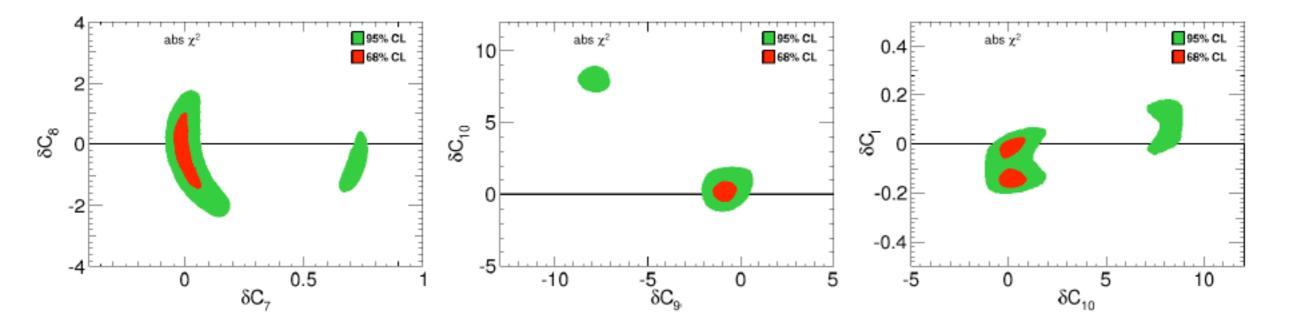
Kjodjamirian et al.,arXiv:1006.4945

• If new physics (negative C_9 and less significant nontrivial C_9') then it is compatible with the hypothesis of Minimal Flavour Violation

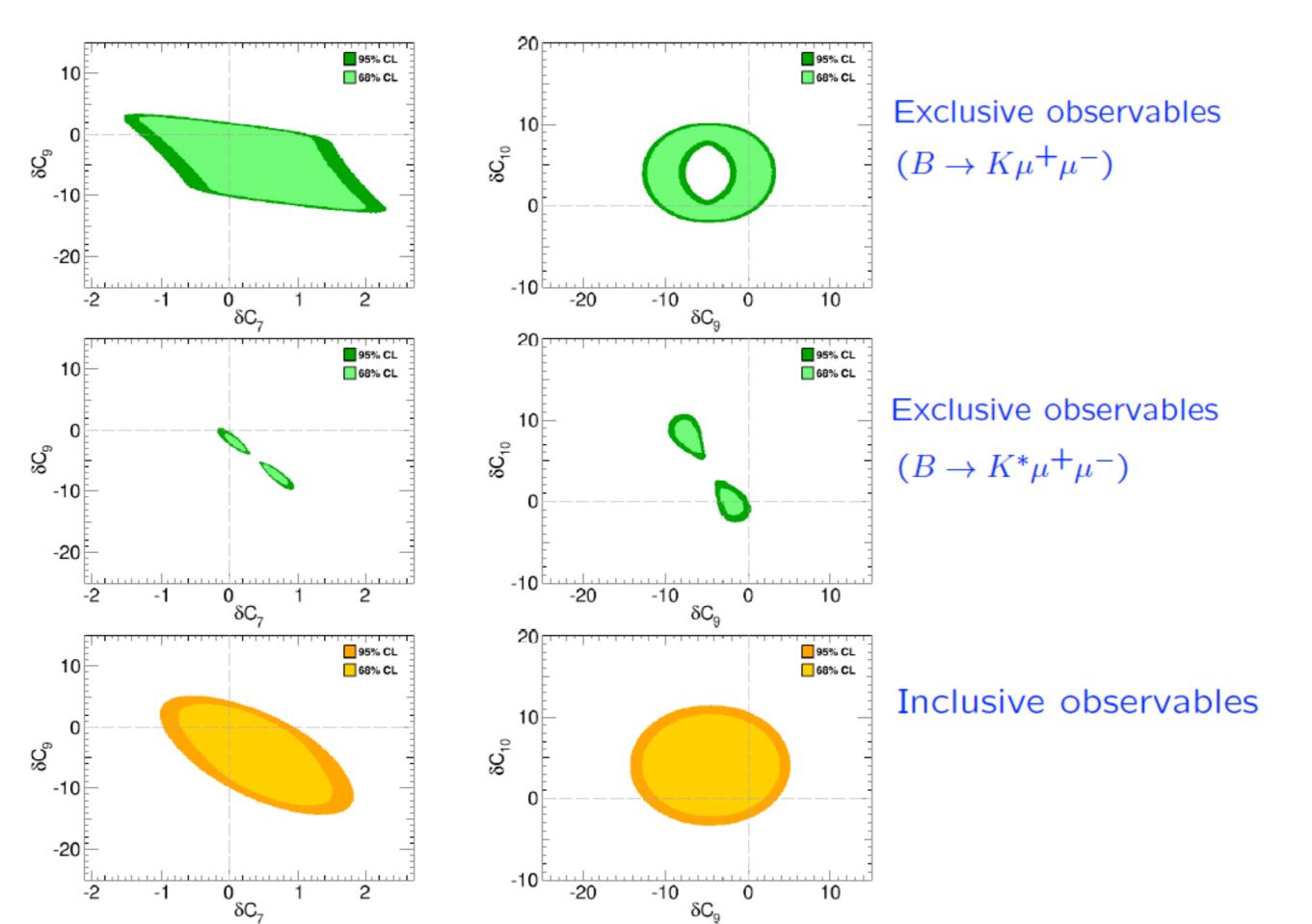


MFV predictions for P_2 , P'_4 , and P'_5

• Global fit to the NP contributions δC_i in the MFV (Update) effective theory



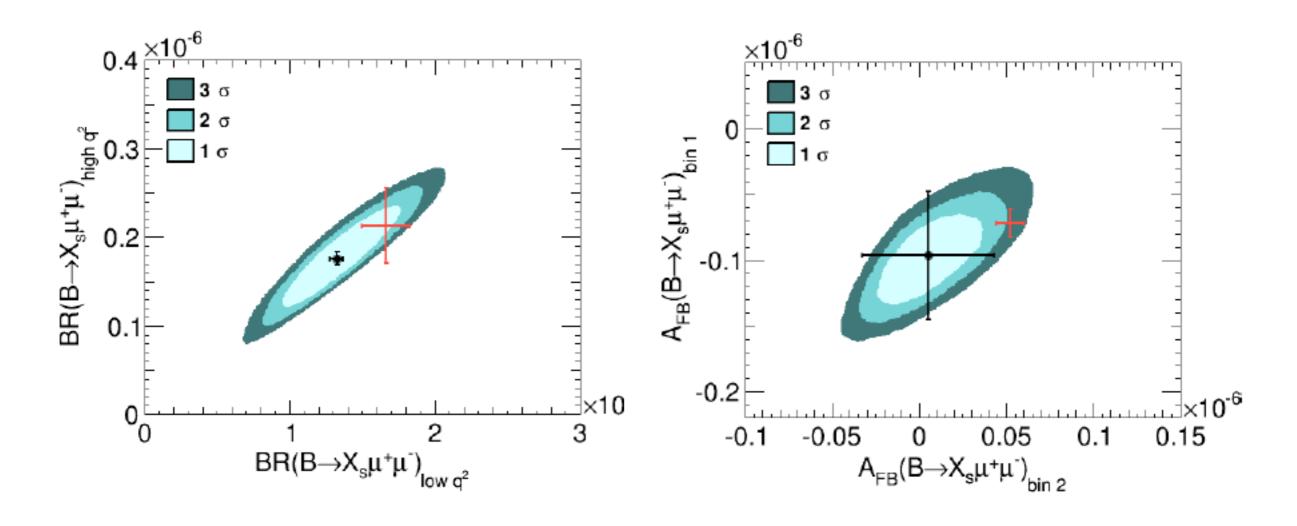
Crosscheck with Inclusive mode (Update)



Future opportunities: (Update)

LHCb upgrade: $5fb^{-1}$ to $50fb^{-1}$

Super-B Factory Belle-II: $50ab^{-1}$



New physics explanations

 "The usual suspects, such as the MSSM, warped extra dimension scenarios, or models with partial compositeness, cannot accommodate the observed deviations"

Gauld, Goertz, Haisch arXiv:1308.1959;1310.1082

Altmannshofer, Straub arXiv:1308.1501

Coefficient	1σ	2σ	3σ
$\mathcal{C}_7^{ ext{NP}}$	[-0.05, -0.01]	[-0.06, 0.01]	[-0.08, 0.03]
$\mathcal{C}_9^{ ext{NP}}$	[-1.6, -0.9]	[-1.8, -0.6]	[-2.1, -0.2]
$\mathcal{C}_{10}^{ ext{NP}}$	[-0.4, 1.0]	[-1.2, 2.0]	[-2.0, 3.0]
$\mathcal{C}^{ ext{NP}}_{7'}$	[-0.04, 0.02]	[-0.09, 0.06]	[-0.14, 0.10]
$\mathcal{C}_{9'}^{ ext{NP}}$	[-0.2, 0.8]	[-0.8, 1.4]	[-1.2, 1.8]
$\mathcal{C}_{10'}^{ ext{NP}}$	[-0.4, 0.4]	[-1.0, 0.8]	[-1.4, 1.2]

Model-independent analysis Descotes, Matias, Virto arXiv:1307.5683

• 1σ solutions: Z' -models (331-models....): only change C_9

Descotes, Matias, Virto arXiv:1307.5683

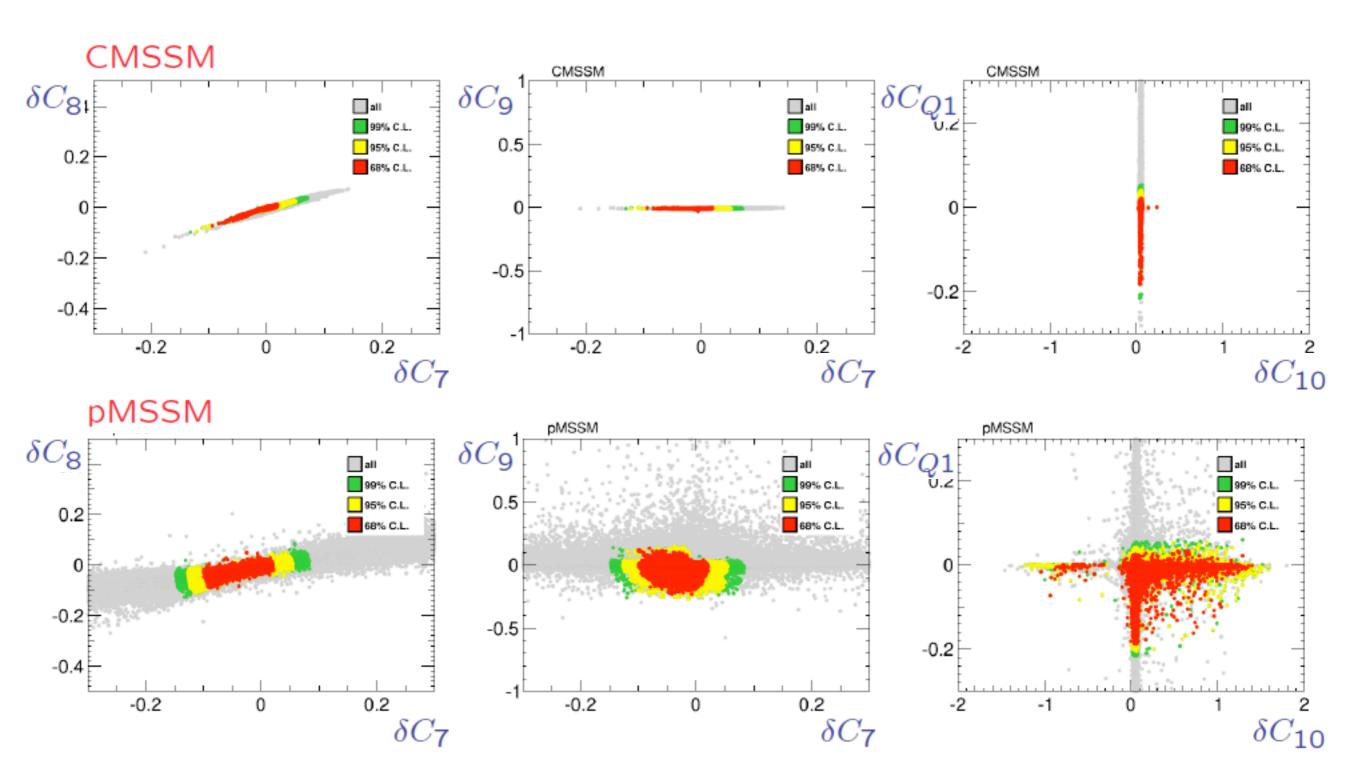
Altmannshofer, Straub arXiv:1308.1501

Gauld, Goertz, Haisch arXiv:1308.1959;1310.1082

Buras, De Fazio, Girrbach arXiv:1311.6729

Altmannshofer, Gori, Pospelov, Yavin arXiv:1403.1269

• SUSY are compatible with the anomaly at the 2σ level Overall fit at the 1σ level Mahmoudi, Neshatpour, Virto arXiv:1401.2145



Let us wait for the new LHCb analysis based on the $3fb^{-1}$ data set !

Signs for lepton non-universality?

$$R_K \equiv \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)} = 0.745^{+0.090}_{-0.074} \, (\mathrm{stat}) \pm 0.036 \, (\mathrm{syst})$$
 LHCb; arXiv:1406.6482

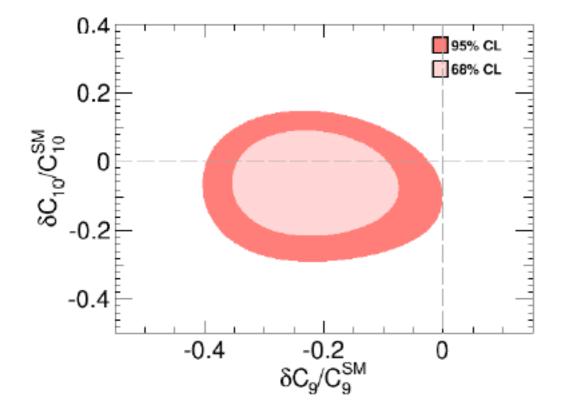
 2.6σ deviation from SM

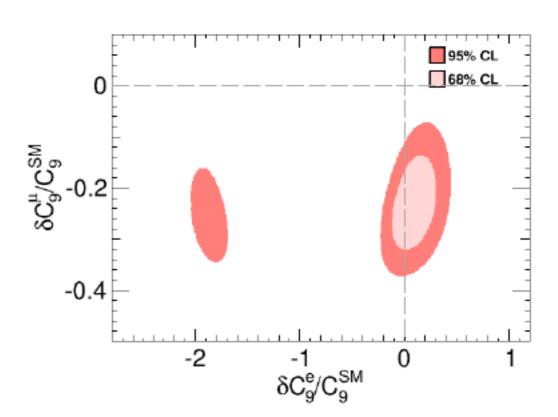
Hiller, Schmaltz; Ghosh et al.; Biswas et al.; Straub et al.; Hurth et al.; Glashow et al.

Global fits to the $b \to s\ell\ell$ data

Hurth, Mahmoudi, Neshatpour, arXiv:1410.4545

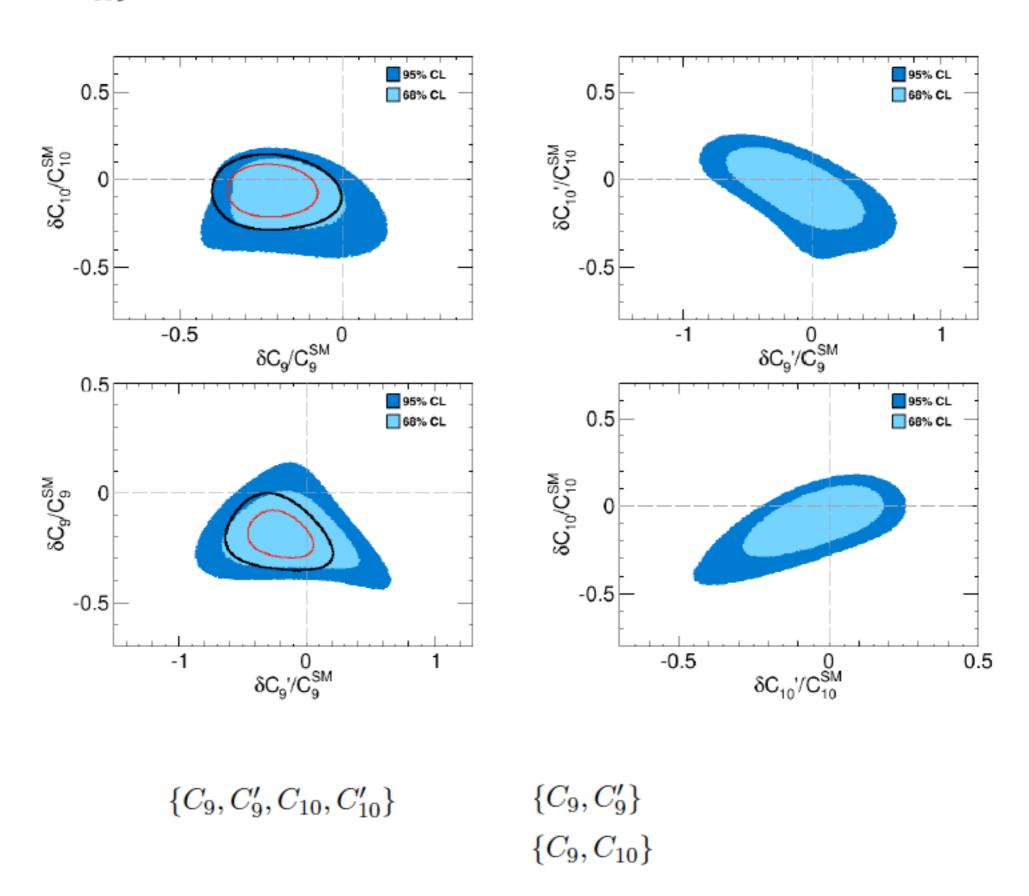
Fit results for two operators

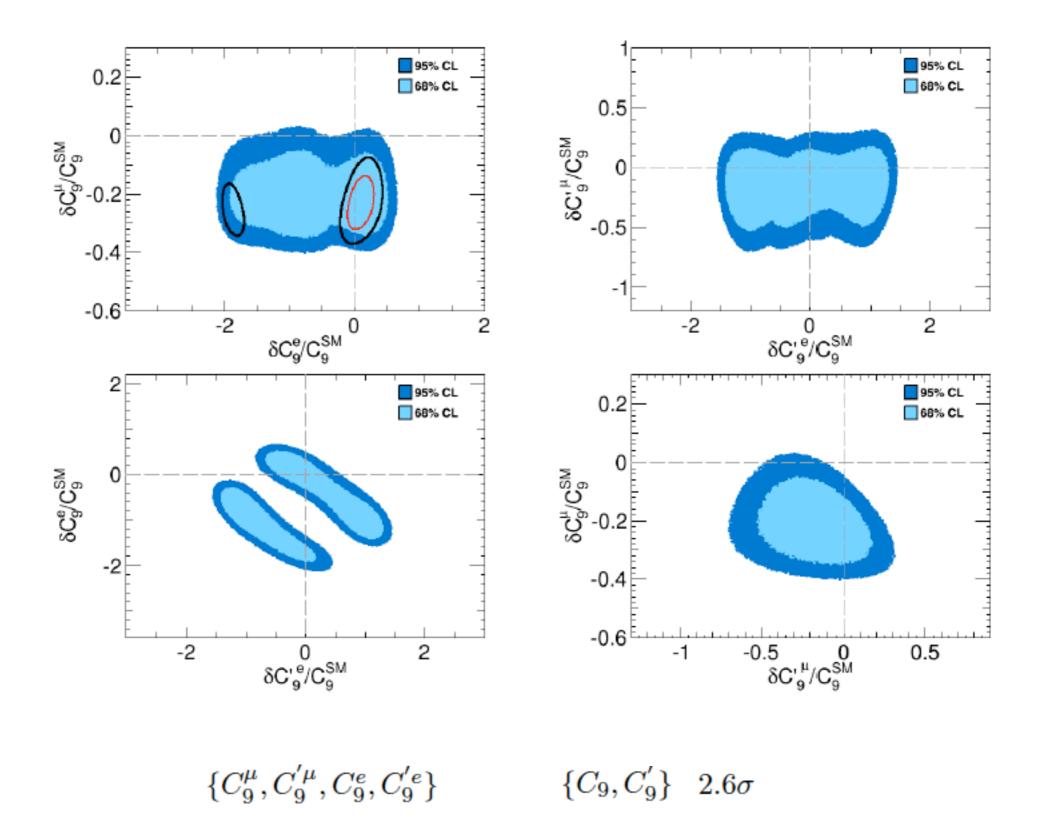


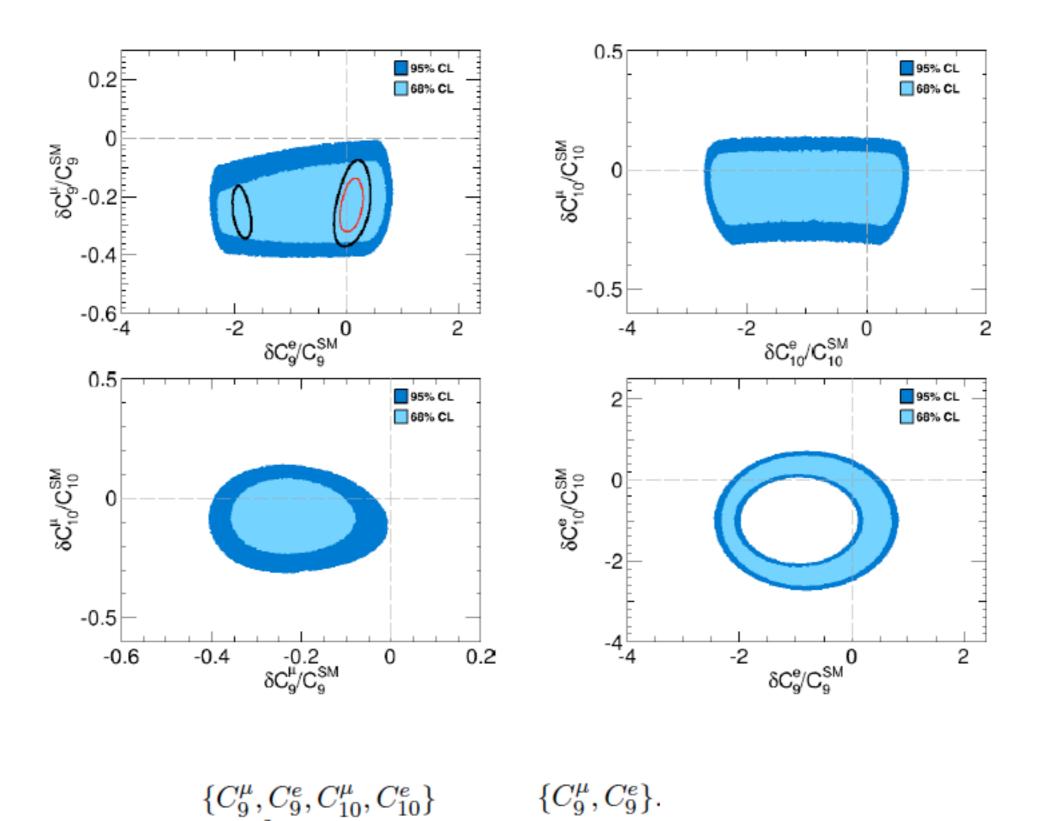


Fit results for four operators

 $\{C_9, C_9^{'}, C_{10}, C_{10}^{'}\}$







 $\{C_9, C_{10}\}$

 2.5σ

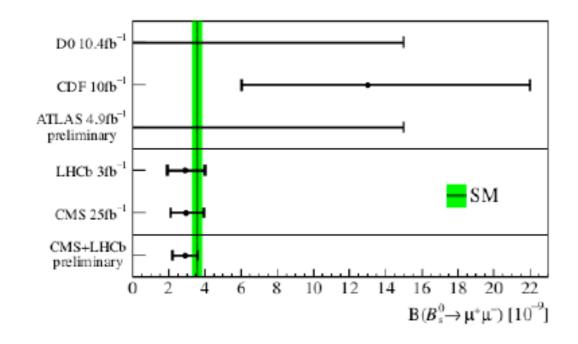
Implications of the latest measurements of $B_s \to \mu\mu$

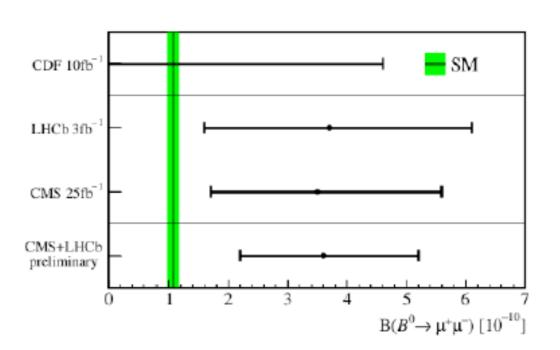
Implications of the latest measurements of $B_s \to \mu\mu$

Observation:

$$BR(B_s \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$$

BR(
$$B^0 \to \mu^+ \mu^-$$
) = 3.6 $^{+1.6}_{-1.4} \times 10^{-10}$





LHCb-CONF-2013-012, CMS-PAS-BPH-13-007

Stephanie Hansmann-Menzemer

Recent theory effort to eliminate perturbative uncertainties of 7%

NLO QCD corrections

→ NNLO QCD corrections

Buchalla, Buras 1999, Misiak, Urban1999 Hermann, Misiak, Steinhauser ar Xiv: 1311.1347

Leading- m_t NLO electroweak corrections

Buchalla, Buras 1998

→ NLO electroweak corrections

Bobeth, Gorbahn. Stamou arXiv:1311.1348

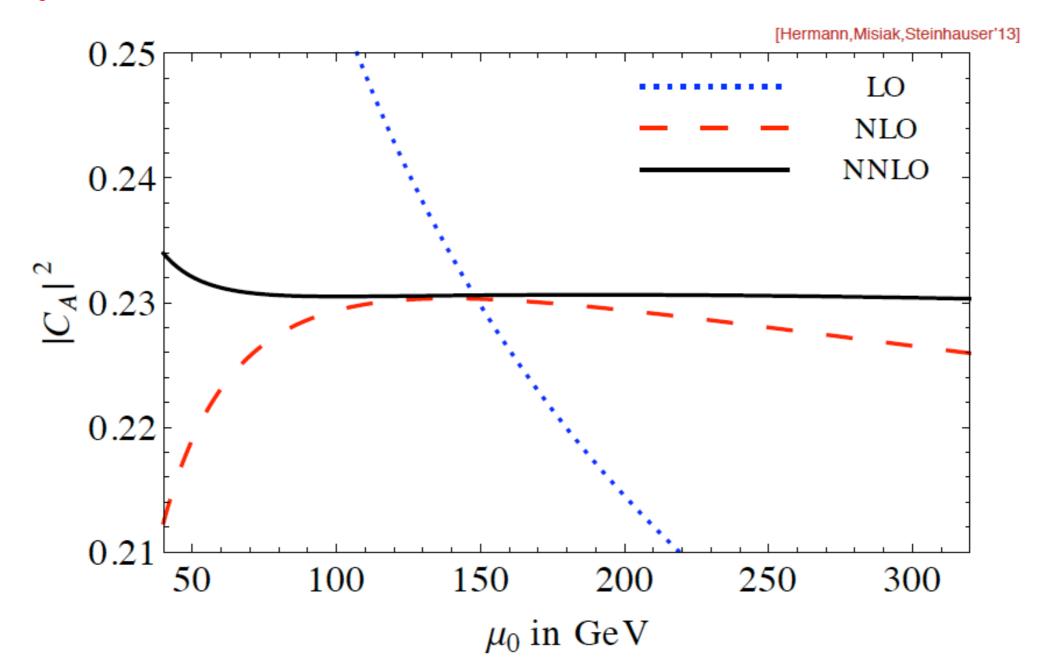
Experiment versus Theory

$$\overline{\mathcal{B}}_{s\mu}^{\ \ \
m exp} = (2.9 \pm 0.7) \times 10^{-9} \ \overline{\mathcal{B}}_{s\mu}^{\ \ \
m th} = (3.65 \pm 0.23) \times 10^{-9}$$

Error budget:

	f_{B_s}	CKM	$ au_{ extsf{ extit{H}}}^{ extbf{ extit{s}}}$	M_t	$\alpha_{m{s}}$	other	non-	\sum
						param.	param.	
$\overline{\mathcal{B}}_{s\ell}$	4.0%	4.3%	1.3%	1.6%	0.1%	< 0.1%	1.5%	6.4%

Scale dependence:



Implications of the latest measurements of $B_s \to \mu\mu$

$$A_{
m SM} \sim m_{\mu}/m_b \Leftrightarrow A_{H^0,A^0} \sim an^3 eta$$

