Semíleptonic B decays

Giulia Ricciardi Università di Napoli "Federico II" Italy

ono

Effective Field teories for Collider physics, flavor phenomena and electroweak symmetry breaking, 10/13 Nov 2014, Schloss Waldthausen Budenheimm

Overview

 $b \rightarrow c \mid v$ • Exclusive $B \rightarrow D^{(*)}\ell v$,

• Inclusive $B \rightarrow X_c \ell v$

- $b \rightarrow u \mid v$ Exclusive $B \rightarrow \pi$ (...) ℓv ,
 - Inclusive $B \rightarrow X_u \ell v$

Most precise determination of $|V_{ub}| |V_{cb}|$

See talk of Buras for motivations

- Tension between inclusive and exclusive determinations
- Low mass open charm spectrum
- BSM when $\ell \to \tau$

Exclusive decays $B \rightarrow D^{(*)}\ell v$

$$\frac{d\Gamma}{d\omega} \left(B \to D^* \left(D \right) \right) \propto |V_{cb}|^2 \left(\omega^2 - 1 \right)^{1/2} {}^{(3/2)} \mathcal{F}(\omega)^2 (G(\omega)^2)$$

 $\omega = \frac{p_{D(*)} \cdot p_B}{m_B \; m_{D(*)}}$ Standard Step by Step

Comparison with data at a kinematically not suppressed point $\mathcal{F}(\omega)^2 |V_{cb}|^2$

Extrapolation at zero-recoil point w=1

dependence on parameterization

Perturbative and non-perturbative 1/mⁿ_{c,b} corrections to unity form factors (in HF limit)

pertubative order: complete α_s^2 at zero recoil Czarnecki, Melnikov 1996-99

 $|V_{cb}|$ extraction

$\mathsf{B}\to\mathsf{D}^*\!\mathsf{\ell}\mathsf{v}$

Generally Preferred

✓ less suppressed at zero recoil: $(w^2-1)^{1/2}$ (rather than $(w^2-1)^{3/2}$)

✓ vanishing corrections order 1/m (Luke's theorem)

✓ Latest from Lattice

-first unquenched calculation includes loops of sea quarks, up, down, strange Nf=2+1

 $\mathcal{F}(1) = 0.906 \pm 0.004 \pm 0.012$

Bailey et al. Fermilab/MILC 1403.0635

<u>} </u>	Uncertainty	$ V_{cb} $
	QCD	1.4%
	QED	0.5%
	Expt	1.3%

Largest error from discretization, Estimated taking the difference between HQET description of LGT and QCD

Kronfeld 2014

-Preliminary results ETM Nf=2 (realistic charm finite mass) in agreement Atoui 1305.0462

-only quenched results at the non-recoil point («step scaling» method, alternative to HQET) de Divitiis et al 0707.0582

 $B \rightarrow D \ell v$

✓ unquenched calculations at non-zero recoil full kinematic range
 Qiu et al Fermilab/MILC 1312.0155

-Heavy-quark discretization errors largest source of uncertainty work in progress to reduce it Jang et al SWME, MILC, and Fermilab 1311.5029

LCSR (see Mannel's talk)

 $\square \ B \to D^*\ell v$

Recent calculations incorporates higher order effects and estimates inelastic corrections

 $\mathscr{F}(1) = 0.86 \pm 0.02$ Gambino, Mannel, Uraltsev, 1206.2296+HFAG 12 Gambino Schwanda 1307.4551

-Much larger th error (More than twice on $|V_{cb}|$)

-OPE power corrections 1/m^{4,5} matrix elements estimated by ground state saturation Mannel, Turczyk, Uraltsev 2010, Heinonen, Mannel 2014

 $\Box \ B \to D \, \ell v$

 ✓ heavy quark expansion (+ BPS limit, where HF symmetries hold all orders) Uraltsev 04
 ✓ +PDG 0312001
 $G(1) = 1.04 \pm 0.02$

-Exp+th on $|V_{cb}|$ uncertainty comparable with LQCD

Consistently lower than LQCD (higher $|V_{cb}|$)

Exclusive summary

Exclusive decay	$ {f V_{cb}} imes 10^3$
$ar{B} ightarrow D^* l ar{ u}$	
FNAL/MILC (Lattice unquenched 2014)	$39.04 \pm 0.49_{\rm exp} \pm 0.53_{\rm QCD} \pm 0.19_{\rm QED}$
HFAG (Lattice unquenched 2012)	$39.54 \pm 0.50_{\rm exp} \pm 0.74_{\rm th}$
Rome (Lattice quenched $\omega \neq 1$ 2008)	$37.4 \pm 0.5_{\rm exp} \pm 0.8_{\rm th}$
HFAG (Sum Rules 2012)	$41.6\pm0.6_{\rm exp}\pm1.9_{\rm th}$
$\bar{B} \to D l \bar{\nu}$	
FNAL/MILC (Lattice unquenched $\omega \neq 1$ 2013)	$38.50 \pm 1.9_{\rm exp+lat} \pm 0.2_{\rm QED}$
PDG (HQE + BPS 2012)	$40.6 \pm 1.5_{\rm exp} \pm 0.8_{\rm th}$
Rome (Lattice quenched $\omega \neq 1$ 2009)	$41.6 \pm 1.8 \pm 1.4 \pm 0.7_{FF}$

Prospects

✓ Experimental progress

- high statistics at LHCb for $B{\rightarrow}D^{(*)}$ I v ; however, at B factories fully reconstruction of B (or conjugate) helps measurements in presence of missing neutral particle (v)

-Belle II estimated error on $|V_{cb}|$ at 75 ab⁻¹ is about 1%

 $\checkmark \ B_s \rightarrow D_s \mid v$

-More affordable on lattice: light spectator fixed to its known mass (m_s) and no extrapolation in the light quark mass needed

-Modification of step scaling	method	Blossier et d	al(ETM Collab). 0909.3187
-Agreement with SR data	$\mathcal{G}(1) = 1.052(4$	6)	Atoui et al 1310.5238

 Extraction from baryonic decays at hadronic machines,(exp hard)

 $\dot{\Lambda}^0_b \to \Lambda^+_c \ell^- \overline{\nu}$

Stone and Zhang 1402.4205

Low mass open charm spectrum

higher mass charm states background events to $B \to D^{(\star)} \mid v$ (e.g. via $B \to D^{\star\star} \mid v)$

Theoretical puzzles

1) BR for inclusive $B \rightarrow X_c | v \text{ not saturated by sum of exclusive BR} (gap puzzle)$

-Decays into D^(*) make up ~ 70% of total inclusive B \rightarrow X_c I v rate -Decays into D^(*) π make up ~ 15% of total inclusive B \rightarrow X_c I v rate

Leaves a gap of about 15%

In the HQ limit $j_l = L \otimes s_l$ P-wave mesons can be grouped into two doublets:

j_l=1/2 strongly decays only though S-waves-> broad states

j_l=3/2 strongly decays only though D-waves-> narrow states

2) narrow width dominates over large width states (sum rules + HQ, quark models)
 Le Yaouanc et al 96, Uraltsev 2001, Morenas et al. 1997, Ebert et al. 1998, Leibovich et al. 2007, Bigi et al. 2007....)

not confirmed by data (1/2 vs 3/2 puzzle) Belle, Babar 06

✓ Relevance of the infinite mass limit approach in b → c decay

Awaiting for Belle update with full data set (772 \times 10⁶ B pairs)

✓ Excludes type II 2HDM charged Higgs boson with 99.8% CL (m_{H_+} > 10 GeV) (Region with m_{H_+} < 10 GeV already excluded by B →Xs y measurements) Misiak 0609232

Using estimates of FF from HQET and quenched QCD

by using unquenched lattice for R tension lessens a bit 1.7σ

Inclusive decays $B \rightarrow X_c \mid v$

$$\Gamma(B \to X_q l \nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{qb}|^2 \left[c_3 < O_3 > + c_5 \frac{< O_5 >}{m_b^2} + c_6 \frac{< O_6 >}{m_b^3} + O\left(\frac{1}{m_b^4}\right) \right]$$

✓ Scheme dependence (quark mass definition:15, kinetic, etc.)

✓ Kinetic scheme

- Complete $O(a_s^2)$ corrections to leading term (parton model)+BLM terms $a_s^{n+1}\beta_0^n$ [Melnikov, Czarnecki, Pak, Biswas, Gambino,...]
- Complete $\alpha_s \frac{\Lambda^2}{mb^2}$

[Mannel, Pivorav., Becher, Boos, Lunghi, Alberti , Ewerth, Gambino, Nandi ,...] (see Mannel 's talk)

- $O(1/mb^{2,3})$ known, $O(\Lambda/m_b^{4,5})$ estimated [Gremm, Kapustin, Dassinger, Turczyk, Mannel, Gambino, Bigi, Uraltsev, Zwicky ...]
- $\log mc$, $1/mc^2$... intrinsic charm estimates

[Breidenbach, Feldmann, Mannel, Turczyk, Bigi, Mannel, Uraltsev, ...]

- Threshold resumming (double Sudakov-like logs) not relevant (cut off by the mc mass) Di Giustino, GR, Trentadue 11, ...
- B \rightarrow Xc τv studied at order $\alpha_s \frac{\Lambda^2}{\Lambda^2}$

Ligeti Tackmann 14

Global fit results

width + hadron, lepton momenta: about 70 measurements available (80% from B factories)

Additional constraint to increase precision estimate in m_b photon energy moments in $B \rightarrow X_s \gamma$, or a precise constraint on m_c

Constraint	$ V_{cb} $ (10 ⁻³)
$B \to X_s \gamma$	$41.94 \pm 0.43_{\rm fit} \pm 0.59_{\rm th}$
$m_c^{\overline{\mathrm{MS}}}(3 \ \mathrm{GeV})$	$41.88 \pm 0.44_{\rm fit} \pm 0.59_{\rm th}$

kinetic scheme HFAG 12

to compare with excl $\sim 2\%$

Latest global fits in kinetic scheme (mc constraint)

 $|V_{cb}| = (42.42 \pm 0.86) \times 10^{-3}$ Gambino Schwanda 2014

Including $a_s/m_b{}^2$: error decreases $|V_{cb}|_{inc} = (42.42\pm0.81) imes10^{-3}$ Here

Healey ICHEP 2014

Incorporating a_s/m_b^3 in progress

|V_{cb}| summary

Exclusive decay	$ { m V_{cb}} imes 10^3$
$\bar{B} \rightarrow D^* l \bar{\nu}$	
FNAL/MILC (Lattice unquenched 2014)	$39.04 \pm 0.49_{\rm exp} \pm 0.53_{\rm QCD} \pm 0.19_{\rm QED}$
HFAG (Lattice unquenched 2012)	$39.54 \pm 0.50_{\mathrm{exp}} \pm 0.74_{\mathrm{th}}$
Rome (Lattice quenched $\omega \neq 1$ 2008)	$37.4\pm0.5_{\rm exp}\pm0.8_{\rm th}$
HFAG (Sum Rules 2012)	$41.6 \pm 0.6_{\rm exp} \pm 1.9_{\rm th}$
$\bar{B} \rightarrow D l \bar{\nu}$	
FNAL/MILC (Lattice unquenched $\omega \neq 1$ 2013	38.50 $\pm 1.9_{exp+lat} \pm 0.2_{QED}$
PDG (HQE + BPS 2012)	$40.6 \pm 1.5_{\rm exp} \pm 0.8_{\rm th}$
Rome (Lattice quenched $\omega \neq 1$ 2009)	$41.6 \pm 1.8 \pm 1.4 \pm 0.7_{FF}$
Inclusive decays	
HFAG $(B_s \rightarrow X_s \gamma \text{ constraint})$	${\bf 41.94 \pm 0.43_{fit} \pm 0.59_{th}}$
HFAG (m_c constraint)	$41.88 \pm 0.44_{\mathrm{fit}} \pm 0.59_{\mathrm{th}}$
Gambino, Schwanda 2014	42.42 ± 0.86

30 disagreement

Future:

□ CLEO →≈50-70 more stat B factories →≈50 more stat Belle II □ LHCb: about 5 million $B \to D^* \mu \nu$ decay no prospects for $|V_{cb}|$ measurement

$|V_{ub}|$ exclusive detemination

□ Traditionally extracted by the decay $B \rightarrow \pi \ell v$ (only a single form factor in massless limit)

$$\frac{\mathrm{d}\Gamma(\overline{B}^0 \to \pi^+ \ell \bar{\nu})}{\mathrm{d}q^2} = \frac{G_F^2 |\vec{p}_{\pi}|^3}{24\pi^3} \left| V_{ub} \right|^2 \left| f_+(q^2) \right|^2$$

 $\langle \pi^+(p) | \bar{u} \gamma_\mu b | \bar{B}^0(p+q) \rangle = f_+(q^2) (2p_\mu + q_\mu)$

Non-pert th predictions for f_{+} usually confined to regions of q^2

Complementarity

✓ Light Cone Sum Rules LCSR low q² regions ~ < 16 GeV
 (OPE near the light-cone)

LCSR Khodjamirian et al 11, BGL: Boyd, Grinstein, Lebed, ...

 \checkmark Lattice large q² $\sim > 16~GeV$ (to avoid large discretization errors) Better fit with data

[Unquenched HPQCD 07, FNAL/MILC 09, ma preliminary from ALPHA, HPQCD, FNAL/MILC, RBC/UKQCD 2012

| V_{ub} | HFAG exclusive detemination

Also HFAG simultaneous fit of the BCL parameterization to data and LQCD calculations (all q² range)

 $|V_{ub}| = (3.28 + 0.29) \times 10^{-3}$

addtional recent LCSR calculations + Babar, Belle data

 $|V_{ub}| = (3.32^{+0.26}_{-0.22}) \cdot 10^{-3}$

Imsong, Khodjamirian, Mannel, van Dyk 14097816

3 σ tension between exclusive and inclusive determinations EI-Khadra ICHEP 2014

X_u	Theory	q^2	$ V_{ub} $
		${\rm GeV}/c^2$	10^{-3}
π ⁰	LCSR [33]	< 12	$3.35 \pm 0.23 \pm 0.09^{+0.36}_{-0.31}$
	LCSR [34]	< 16	$3.63 \pm 0.20 \pm 0.10 ^{+0.60}_{-0.40}$
	HPQCD [35]	> 16	$3.44 \pm 0.31 \pm 0.09^{+0.59}_{-0.39}$
	FNAL [36]		$3.29 \pm 0.30 \pm 0.09 \substack{+0.37 \\ -0.30}$
π^+	LCSR [33]	< 12	$3.40 \pm 0.13 \pm 0.09^{+0.37}_{-0.32}$
	LCSR [34]	< 16	$3.58 \pm 0.12 \pm 0.09^{+0.59}_{-0.39}$
	HPQCD [35]	> 16	$3.81 \pm 0.22 \pm 0.10^{+0.66}_{-0.43}$
	FNAL [36]	> 10	$3.64 \pm 0.21 \pm 0.09^{+0.40}_{-0.33}$
	LCSR [24]	< 16	$3.56 \pm 0.11 \pm 0.09 \substack{+0.54 \\ -0.37}$
₀ 0	BM [37]		$3.76 \pm 0.11 \pm 0.10^{+0.31}_{-0.25}$
ρ	UKQCD [38]	full range	$3.68 \pm 0.10 \pm 0.10 ^{+0.29}_{-0.34}$
	ISGW2 [25]		$3.98 \pm 0.11 \pm 0.10$
ρ^+	LCSR [24]	< 16	$3.51 \pm 0.16 \pm 0.13 \substack{+0.53 \\ -0.36}$
	BM [37]	_	$3.66 \pm 0.15 \pm 0.14^{+0.30}_{-0.24}$
	UKQCD [38]	full range	$3.59 \pm 0.15 \pm 0.13^{+0.28}_{-0.33}$
	ISGW2 [25]		$3.87 \pm 0.16 \pm 0.15$
ω	LCSR [24]	< 12	$3.08 \pm 0.29 \pm 0.11 \substack{+0.44 \\ -0.31}$
	ISGW2 [25]	full range	$3.03 \pm 0.23 \pm 0.11$

Belle 1306.2781

new players

X_{u}	Theory	q^2	V_{ub}
		${\rm GeV}/c^2$	10-3
	LCSR [33]	< 12	$3.35 \pm 0.23 \pm 0.09 \substack{+0.36 \\ -0.31}$
_0	LCSR [34]	< 16	$3.63 \pm 0.20 \pm 0.10 \substack{+0.60 \\ -0.40}$
n	HPQCD [35]	> 16	$3.44 \pm 0.31 \pm 0.09 \substack{+0.59 \\ -0.39}$
	FNAL [36]		$3.29 \pm 0.30 \pm 0.09 \substack{+0.37 \\ -0.30}$
_+	LCSR [33]	< 12	$3.40 \pm 0.13 \pm 0.09 \substack{+0.37 \\ -0.32}$
	LCSR [34]	< 16	$3.58 \pm 0.12 \pm 0.09 \substack{+0.59 \\ -0.39}$
<i>n</i> .	HPQCD [35]	> 16	$3.81 \pm 0.22 \pm 0.10 \substack{+0.66 \\ -0.43}$
	FNAL [36]		$3.64 \pm 0.21 \pm 0.09 \substack{+0.40 \\ -0.33}$
	LCSR[24]	< 16	$3.56 \pm 0.11 \pm 0.09 \substack{+0.54 \\ -0.37}$
_0	BM [37]		$3.76 \pm 0.11 \pm 0.10 \substack{+0.31 \\ -0.25}$
Ρ	UKQCD [38]	full range	$3.68 \pm 0.10 \pm 0.10 \substack{+0.29 \\ -0.34}$
	ISGW2 [25]		$3.98 \pm 0.11 \pm 0.10$
	LCSR[24]	< 16	$3.51 \pm 0.16 \pm 0.13 \substack{+0.53 \\ -0.36}$
ρ^+	BM [37]	full range	$3.66 \pm 0.15 \pm 0.14 \substack{+0.30 \\ -0.24}$
	UKQCD [38]		$3.59 \pm 0.15 \pm 0.13 \substack{+0.28 \\ -0.33}$
	ISGW2 [25]		$3.87 \pm 0.16 \pm 0.15$
ω	LCSR [24]	< 12	$3.08 \pm 0.29 \pm 0.11 \substack{+0.44 \\ -0.31}$
	ISGW2 [25]	full range	$3.03 \pm 0.23 \pm 0.11$

Babar PRD88 (2013) 032005

High statistic $B \rightarrow \rho I v$ studies may be sensitive to small right-handed admixture to SM weak currents

Bernlochner, Ligeti, Turczyk 1408.2616

Inclusive $|V_{ub}|$

large b \rightarrow c background ($|V_{cb}/V_{ub}|^2 \approx 100$)

Need experimental phase space cuts to reduce background; in general

$m_X \ll E_X$

Phase space regions where OPE fails become dominant; new unwelcome effects (with respect to semileptonic $b \rightarrow c$):

- Final gluon radiation strongly inhibited: soft and collinear singularities
- perturbative expansion of spectra affected by large logarithms

 $a_s^n \log^{2n}(2 E_X/m_X)$

to be resummed at all orders in PT

 non-perturbative effects related to a small vibration of the b quark in the B meson (Fermi motion) enhanced

Results averages: Long lasting puzzle

Inclusive

Strong statement (not yet contrasted in literature): No NP allowed by present constraints Pokorski Crivellin 1407.1320

At SuperFlavour factories (75 ab⁻¹) errors expected to reduce to 3 % (excl) 2% (incl)

Conclusions

recent progress and future prospects

- Significant advances in experiment (phase space in inclusive decays, $B \rightarrow D^{(*)} \pi \pi I v$ decays, decays into $\tau_{...}$) more expected: LHCb now and Belle II from 2016
- Significant reduction of LQCD errors & new non recoil calculations other lattice groups and methods overcoming preliminary stage
- LCSR |Vub| «ultimate» errors critical method analysis (correlation between normalization and shape, z-parameterization,...) + new goal in inclusive |Vcb| (higher orders...)

NP always more constrained; each novelty aligns to SM

but $|V_{ub}| |V_{cb}|$ discrepancy between exclusive, inclusive still alive , with different levels of vitality...