Some Recent Results in Precision Flavour Physics

Thomas Mannel

Theoretische Physik I, Universität Siegen

ERC Workshop on Effective Field Theories 2014 Schloss Waldthausen, Nov. 11th, 2014

T. Mannel, Siegen University

Some Recent Results ...

Determination of V_{ub} from exclusive decays

3 News on the inclusive determination of V_{cb}

æ

Introduction

Determination of V_{ub} from exclusive decays News on the inclusive determination of V_{cb} Overall Conclusions

Introduction

Precision Bottom Physics has become possible due to a large arsenal of model-independent methods

- Effective Theories
- ... such as Heavy Quark Expansions
- QCD sum rules

Two papers

I. S. Imsong, A. Khodjamirian, ThM, D. van Dyk, arXiv:1409.7816, ($B \rightarrow \pi$ Form Factors)

ThM, A. Pivovarov, D. Rosenthal, arXiv:1405.5072 ($\mu_G^2 \alpha_s$ *Corrections*)

ヘロン ヘアン ヘビン ヘビン

$\square B \rightarrow \pi \ell \nu_{\ell}$, determination of $|V_{ub}|$

 decay amplitude parametrized by hadronic form factors

 $\langle \pi^{+}(\boldsymbol{\rho})|\bar{\boldsymbol{u}}\gamma_{\mu}\boldsymbol{b}|\bar{\boldsymbol{B}}^{0}(\boldsymbol{\rho}+\boldsymbol{q})\rangle = \boldsymbol{f}^{+}_{\boldsymbol{B}\pi}(\boldsymbol{q}^{2})\Big[...\Big]_{\mu} + \boldsymbol{f}^{0}_{\boldsymbol{B}\pi}(\boldsymbol{q}^{2})\Big[...\Big]_{\mu}$

IV_{ub} determination [BaBar,Belle]

$$\left(rac{1}{ au_B}
ight)rac{dBR(ar{B}^0 o\pi^+l^-
u)}{dq^2}=rac{G_F^2|V_{ub}|^2}{24\pi^3}
ho_\pi^3|f_{B\pi}^+(q^2)|^2+O(m_l^2)$$

QCD Light-Cone Sum Rules (LCSR)

- the method uses full QCD with finite m_b , $1/m_b$ expansion possible
- involves analytic calculation, truncated α_s and power expansion $\sim 1/\sqrt{m_b\chi}$, $\Lambda_{QCD} \ll \chi \ll m_b$
- employs universal nonperturbative input light-cone distribution amplitudes of mesons; condensate densities
- "indirect access" to the form factor
 via hadronic dispersion relation ⊕ quark-hadron duality approximation
- form factors accessible at $0 < q^2 < 12 16$ GeV²

\Box LCSR for $B \rightarrow \pi$ form factor: the correlation function

- an artifitially "designed" amplitude
- external currents with $(p+q)^2$, $q^2 \ll m_b^2 \Rightarrow b$ -quark virtual,
- Operator product expansion (OPE) of the correlation function: $\mu \sim \sqrt{m_b \chi}$,

$$F(q^{2},(p+q)^{2}) = \sum_{t=2,3,4,..} \int du \ T^{(t)}(q^{2},(p+q)^{2},m_{b}^{2},\alpha_{s},u,\mu) \varphi_{\pi}^{(t)}(u,\mu)$$

hard scattering amplitudes \otimes pion light-cone DA's

Some Recent Results ...

ъ

\Box LCSR for $B \rightarrow \pi$ form factor: the hadronic dispersion relation

{correlation function, OPE } = {sum over intermediate *B* states}

\Box LCSR for $B \rightarrow \pi$ form factor: the result

set of inputs

$$\vec{\theta} \equiv \left(lpha_{\mathcal{S}}(\mathcal{M}_{Z}) \,, \overline{m}_{b}(m_{b}) \,, \vec{\theta}_{DA}^{(2,3,4)} \,, \vec{\theta}_{cond} \,, \mathcal{M}^{2}, \, \mathcal{s}_{0}^{\mathcal{B}} \,, \overline{\mathcal{M}}^{2} \,, \overline{\mathfrak{s}}_{0}^{\mathcal{B}}
ight) \,.$$

 \Box Previous use of $f^+_{B\pi}(q^2)$ from LCSR

• $|V_{ub}|$ determinations:

integrating $|f_{B\pi}^+(q^2)|^2$ over q^2 or using $f_{B\pi}^+(0)$ [AK, T.Mannel, N.Offen, Y-M.Wang (2011)] [A. Bharucha (2012)]

- one-by-one variation of input parameters, added in quadrature an overestimate?
- correlation between normalization and shape not studied additional constraints on theory ?
- z-parametrization used for extrapolation to large q² how reliable ?

\Box New statistical analysis of LCSR for $f_{B\pi}^+(q^2)$

- calculate the form factor f⁺_{Bπ}(q², θ) from LCSR; use 2pt SR for f_B
- input parameters $\vec{\theta}$ include:
 - α_s , *b*-quark mass
 - quark condensate densities
 - coefficients of pion DA's
 - Borel parameters
 - effective thresholds
- statistical (Bayesian) analysis:

inputs (assumed uncorrelated) taken as priors,

constructing theoretical likelihood by imposing $[m_B]_{SR}$ within 1% of m_B

□ Some results

Posterior of parameter space: one-dimension marginal PDF's

M²(GeV²)

 $s_0^B(\text{GeV}^2)$

(prior: dashed lines, blue: 68%, light-blue: 95%)

• 6 quantities obtained from LCSR:

 $f_{B\pi}^+(q^2)$ + first + second derivative (value, slope, curvature) at $q^2 = 0, 10 \text{ GeV}^2$, output approximately gaussian with large correlations

Introduction Determination of $V_{\mu b}$ from exclusive decays News on the inclusive determination of V_{ch}

LCSR results fitted to BCL parameterization

• "standard" z-series parameterization, $q^2 \rightarrow z(q^2, t_0)$, mapping SL region to small z, the BCL-version [Bourrely, Caprini, Lellouch, (2008)]

$$\begin{split} f^+_{B\pi}(q^2) &= \frac{f^+_{B\pi}(0)}{1-q^2/m^2_{B^*}} \left\{ 1 + b^+_1 \big[z(q^2,t_0) - z(0,t_0) - \frac{1}{3} \big(z(q^2,t_0)^3 - z(0,t_0)^3 \big) \big] \right. \\ &+ b^+_2 \big[z(q^2,t_0)^2 - z(0,t_0)^2 + \frac{2}{3} \big(z(q^2,t_0)^3 - z(0,t_0)^3 \big) \big] \right\}, \end{split}$$

 $\rho^{BCL} = \begin{pmatrix} 1.000 & 0.503 & -0.391 \\ 0.503 & 1.000 & -0.824 \\ -0.391 & -0.824 & 1.000 \end{pmatrix}$ $f_{B\pi}(0) = 0.307 \pm 0.02$ $b_1^+ = -1.31 \pm 0.42$ $b_2^+ = -0.904 \pm 0.444$

T. Mannel, Siegen University

\Box Bounds for $B \rightarrow \pi$ form factor

- Parameterization-independent bounds following from the analytical properties of the form factor and from the unitarity of two-point correlation function [...., L.Lellouch (1996)...]
- form factor value, slope and curvature at one point yield the best constraints: [Th. Mannel, B.Postier (1998)]

• bounds critically constraining lattice results up to $q^2 = 20 \text{ GeV}^2$.

\Box Determination of $|V_{ub}|$

fit of LCSR with the combined BaBar/Belle data at $0 < q^2 < 12 \text{ GeV}^2$

(2010):
$$|V_{ub}| = (3.43^{+0.27}_{-0.23}) \cdot 10^{-3}$$

(2013): $|V_{ub}| = (3.32^{+0.26}_{-0.22}) \cdot 10^{-3}$

blue lines: 68%, 95%, 99% prob. contours for 2010 data red area: 68%, 95%, 99% prob. contours for 2013 data

green line/area - inclusive determination: central value / 68% CL interval for GGOU/HFAG

T. Mannel, Siegen University Some Recent Results ...

Summary on exclusive V_{ub}

- statistical analysis of LCSR for f⁺_{Bπ}(q²) improves error estimate (within fixed theoretical approximation !)
- correlations between shape and normalization of f⁺_{Bπ}(q²) to be confronted with Belle-2 future data on the shape
- unitarity bounds used to constrain extrapolations to large q²
- $f_{B\pi}^0, B_{(s)} \to K$ form factors follow
- $B \rightarrow \pi \pi \ell \nu_{\ell}$ form factors:
 - partial wave expansion & resonances: ρ (*P*-wave), f_0 (*S*-wave)
 - defining regions of Dalitz plot with specific QCD dynamics

[S. Faller, T. Feldmann, A. Khodjamirian, T. Mannel and D. van Dyk, (2013)]

 calculating B → ππℓν_ℓ at low 2-pion mass and small q² from LCSR with 2-pion DAs (in progress)

News on the inclusive determination of V_{cb}

- Standard tool: Heavy Quark Expansion
- Structure of the expansion (@ tree):

$$d\Gamma = d\Gamma_{0} + \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{2} d\Gamma_{2} + \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{3} d\Gamma_{3} + \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{4} d\Gamma_{4}$$
$$+ d\Gamma_{5} \left(a_{0} \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{5} + a_{2} \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{3} \left(\frac{\Lambda_{\text{QCD}}}{m_{c}}\right)^{2}\right)$$
$$+ \dots + d\Gamma_{7} \left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)^{3} \left(\frac{\Lambda_{\text{QCD}}}{m_{c}}\right)^{4}$$

• Power counting $m_c^2 \sim \Lambda_{\rm QCD} m_b$

イロト イポト イヨト イヨト

- Tree level terms up to and including $1/m_b^5$ known
- $\mathcal{O}(\alpha_s)$ and full $\mathcal{O}(\alpha_s^2)$ for the partonic rate known
- $\mathcal{O}(\alpha_s)$ for the μ_π^2/m_b^2 is known
- QCD insprired modelling for the HQE matrix elements
- New: Complete α_s/m²_b, including the μ_G terms Alberti, Gambino, Nandi arXiv:1311.7381 ThM, Pivovarov, Rosenthal arXiv:1405.5072
- This was the remaining parametrically largest uncertainty

ヘロン 人間 とくほど くほとう

- Alberti et al.:
 - Calculation of the differential rate including the charm mass
 - partially numerical calculation
- ThM, Pivovarov, Rosenthal:
 - Fully analytic calculation
 - limit $m_c \rightarrow 0$
 - Possibility to include *m_c* in a Taylor series
- Results (seem to) agree,

some more checks in progress

< 回 > < 回 > < 回 > -

æ

Perform the OPE for $T = i \int d^4x T [H_{eff}(x)H_{eff}(0)]$

・ロト ・ 理 ト ・ ヨ ト ・

æ

• Structure of the result:

$$(\mathrm{Im} \ T)/R_0 = C_0 \left\{ \bar{b} \psi b - rac{\mathcal{O}_\pi}{2m_b^2} \right\} + rac{\mathcal{O}_G}{2m_b^2}$$

chromomagnetic moment operator

$$rac{1}{2M_B}C_m(\mu)\langle B(p_B)|\mathcal{O}_G|B(p_B)
angle=\Delta m_B^2$$

Total rate

$$\Gamma(B o X_c
u \ell) = \Gamma_b |V_{cb}|^2 \left\{ C_0 \left(1 + rac{\mu_\pi^2}{2m_b^2}
ight) + rac{C_{fin}}{8m_b^2} rac{3\Delta m_B^2}{8m_b^2}
ight\}$$

イロト イポト イヨト イヨト

3

• We get
$$(\rho = m_c^2 / m_b^2)$$

$$C_{fin} = -3 + \Delta_G^{(0)}(\rho) + \frac{\alpha_s}{\pi} \Delta_G^{(1)}(\rho) \\ + \frac{\alpha_s}{\pi} \left\{ C_A \left(\frac{31}{18} - \frac{\pi^2}{9} \right) + C_F \left(\frac{43}{144} - \frac{19\pi^2}{36} \right) \right\}$$

• $\Delta_G^{(0)}(\rho)$ is known

$$\Delta_G^{(0)}(
ho) = 8
ho - 24
ho^2 + 24
ho^3 - 5
ho^4 - 12
ho^2\ln
ho$$

ヘロト 人間 とくほとく ほとう

3

- $\Delta_G^{(1)}(\rho)$ is such that $\Delta_G^{(1)}(0) = 0$
- Numerically known from Alberti et al.

• Numerically (in the $m_c \rightarrow 0$ case:

$$\mathcal{C}_{\mathit{fin}} = -3(1+1.56rac{lpha_{m{s}}}{\pi})$$

This has a "normal" size

• The corresponding shift in V_{cb} is

$$rac{\Delta |V_{cb}|}{|V_{cb}|} = 4.67 rac{lpha_s}{\pi} rac{3\Delta m_B^2}{8m_b^2} rac{1}{2(1+\Delta_0^{(0)}(
ho))} \sim +0.3\%$$

ヘロト 人間 とくほとく ほとう

= 990

Conclusions on V_{cb}

• Next goals in inclusive V_{cb}:

- Use reparametrization invariance to obtain α_s corrections to even higher orders in 1/m
- Study the (numerous) matrix elements appearing in $1/m^n$ with n > 3
- Consider partial resummations of the 1/m series
- Consistency with exclusive determinations
 - Lattice values
 - Zero Recoil Sum Rules
 - "BPS" limit

<ロ> <問> <問> < 回> < 回> < □> < □> <

Overall Conclusions

- Semileptonic *B* decays have provided precise values of *V*_{xb}
- *V*_{cb} looks consistent between inclusive and exclusive determinations
- *V*_{ub} still exhibits a tension between inclusive and exclusive determinations
- $B \rightarrow \pi \ell \bar{\nu}$ is well studied by Lattice and QCDSR
- $B \rightarrow X_u \ell \bar{\nu}$ is studied in HQE by different groups (BLNP, GGOU)
- On the way: Study of other exclusive modes, such as $B \rightarrow \rho \ell \bar{\nu} \rightarrow \pi \pi \ell \bar{\nu}$

・ロト ・ 理 ト ・ ヨ ト ・