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Brief Motivation

B-Meson Light-Cone Distribution Amplitudes:

@ Essential hadronic input for QCD factorization theorems:

@ charmless non-leptonic B-decays [Beneke/Buchalla/Neubert/Sachrajda]
@ spectator corrections for heavy-to-light form factors [Beneke/TF]
@ spectator corrections for radiative/semi-leptonic decays [Beneke/TF/Seidel]
e correlation functions for QCD sum rules

[Khodjamirian/Mannel/Offen; De Fazio/TF/Hurth]
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Brief Motivation

B-Meson Light-Cone Distribution Amplitudes:
@ Essential hadronic input for QCD factorization theorems:

@ Resummation of large logs <+ RG evolution equations:

@ Renormalization of light-cone operators in HQET
[Lange/Neubert, Descotes-Genon/Knodlseder/Offen, Kawamura et al. .. .]
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Brief Motivation

B-Meson Light-Cone Distribution Amplitudes:
@ Essential hadronic input for QCD factorization theorems:

@ Resummation of large logs <+ RG evolution equations:

@ Non-trivial constraints from local OPE  [Lee/Neubert, Braun/lvanov/Korchemsky]
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Brief Motivation

B-Meson Light-Cone Distribution Amplitudes:
@ Essential hadronic input for QCD factorization theorems:

@ Resummation of large logs <+ RG evolution equations:

@ Non-trivial constraints from local OPE

° from B — vfv  [Beneke/Rohrwild; Braun/Khodjamirian]
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Brief Motivation

B-Meson Light-Cone Distribution Amplitudes:
@ Essential hadronic input for QCD factorization theorems:

@ Resummation of large logs <+ RG evolution equations:

@ Non-trivial constraints from local OPE

° from B — ~/{v

... but keep in mind (non-factorizable) power corrections ...
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Example: B — ~ Form Factors (First Approx.)

For large photon energy, E, ~ my/2:
@ Sensitive to light-cone projection w of light antiquark momentum in B-meson.

FB=7(E,) ~ [kinematic factor] x /dw—w oB(w)
0
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A first prototype of the “Buras-Counter”
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A first prototype of the “Buras-Counter”
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@ B-Meson LCDAs

@ Renormalization-group evolution
o OPE constraints from HQET

@ LCDAs for Heavy Baryons (briefly)
e mainly Ap

Summary / Main Messages
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Th. Feldmann

B-Meson LCDAs

(“Zeptomechanics”)

LCDAs in HQET




RGE for the LCDA of the B-Meson
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RGE for the LCDA of the B-Meson

Definition of ¢/ (w) :

Fourier-Transform of Light-Cone Matrix Element in HQET

w = n- k: light-cone projection of light-quark momentum

ﬁ iwT

mafy' ™ 65(w) = | 5= €“7(01G(rn) [rn, O] frys h”(0) | B(mev))

[there is another Dirac structure, leading to another LCDA, notes as ¢ (w)]
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Eigenfunctions of LN Kernel [Bell/TF/Wang/Yip '13]

RGE for ¢} (w, 1) as Integro-Differential Equation: [Lange/Neubert]J

oo

- |:rcusp In g + v+ ¢E(UJ, /.L) —w /d’f] r(w7 7]) ¢E(777 M)
0

dog(w, 1)
dinu

(Relatively) complicated solution as convolution integral with hypergeometric functions
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Eigenfunctions of LN Kernel [Bell/TF/Wang/Yip '13]

RGE for ¢} (w, 1) as Integro-Differential Equation: [Lange/Neubert]J

oo

= - |:rcusp In g + Y+ ¢E(w7 I‘L) —w /dT/ r(wv 77) (15;(777 lu)
0

dog(w, 1)
dinu

(Relatively) complicated solution as convolution integral with hypergeometric functions
Identify Continuous Set of Eigenfunctions for (1-loop) LN-Kernel: J

fo(w) = % Ji (2 \/3> with Eigenvalues: v, = — (rcusp In g 4 7+>

Ji(z): Bessel function, &' = w’ e~ 27
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Eigenfunctions of LN Kernel [Bell/TF/Wang/Yip '13]

for(w) = % Ji (2 \/ :;) with Eigenvalues: v, = — (Fcusp In g + 7+>

Eigenfunctions can be understood as momentum-space representation
of the eigenvectors of a generator of collinear conformal transformations:

S, =720, +2j1 (conformal spin of light quark: j = 1)

[Braun/Manashov 1402.5822]
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“Dual” Representation of B-meson LCDA

@ Example 1: Exponential Model  (wg ~ O(Aqep))

+ w w ooy 1 _wo
)= geon(-5) o )= e < w,)

@ Example 2: Free Parton Model (A = Mg — my)
N1 2A
(W)= o 0@R —w) & @w>=A&G )
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Detour: “Wandzura-Wilczek Wave Functions”
[Bell/TF/Wang/Yip '13]

General momentum-space representation for 2-particle Fock state:

o fg [(1+ V) Krs] - vp(x =2Vv-k = 2Ejign)

@ Heavy-Quark Limit: Two independent 2-particle LCDAs

+ op) =w [ okuald.  op() = [ dxlx—w)va(y

Jw

@ Wandzura-Wilczek relations, if 3-particle LCDAs are neglected

dog(w,
¢p(w, p) = —w %

@ Corrections from 3-particle LCDAs can be systematically included ...
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Comparison: Dual representation for ¢3(w) and ¢g(x)

oo

¢E(w7u):/iw (2\/(?) ph (W', 1),

de’ ,
bp(w, p) = /:f %% :j)ps( K,

1 dw’ 1 X ,
1/)B(X7u)=;/ 5 o (2\/w,> pg(w’, )
0

— Wave Function Models can be directly translated to pj(w’)

vJ

@ exponential model: 15(x) = % g~ X/
@ free parton model: ¥5(x) = iz 5(x — 2A)
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RGE in “Dual Space”

Properties:

dpg(w', 1)

H /70
RGE local in w’: i

= Yo pg (W', 1),

Simple solution:  pj(w', 1) = U (1, o) p (@' 110) v

The RG factor is known from SCET [see e.g. Neubert et al. 2004]
) o —9(m,p0)
Uor (o) = e MO(?)
w

with

as(n) as(u) o ,
gm) = [ FgTas@, V) =- [ # |w@+Tal@) [ 5

as(pg) as(ng) as(ng)

Th. Feldmann LCDAs in HQET 12/29



Example: Factorization in B — ”}/KV (@large recoil)

Leading B — ~ Form Factor factorizes in Hard, Jet and Soft Dynamics:

—9(111p)
FB_W(E»y) _ th(ll«aP«h) _Hh H(E»y, ,uh)
2E,

i dw’ - ; ‘uz 91 he)
—2Vhe (15 Hine he i ~7
></ = |e e (s o (2EW> J(2E,&', pine)
0

—9(sp0)
x {ev(”’“") ( 0) pE(wﬂuo)]

Eg‘t

@ In dual space, all RG factors are multiplicative!
(i.e. jet function j in dual space obeys simple RGE, too)
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Relations between Logarithmic Moments

@ Jet Function has perturbative expansion in as and Inw’
@ Need Logarithmic Moments of pj; (w’, tihe)-

" duw’ @’ ,
Lo(n) = /O —-In” (M>PE(W,M)

[for n = 0, 1, 2 identical to logarithmic moments of ¢>g(w)]

aL
RGE: dl"n(’;) = Teup(@s) Lnst (12) = 74 (as)Ln() = 1La1 (1)
Formal solution: ~ Ln(u) = & §° g 7!In"" B0 1 ei(pt0)
— m! (n=pHt I !
j=0

(requires truncation — or consider p};(w’) as generating function
q B ¢} ¢}
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OPE Constraints and Modelling

Small and Large Values of w’ now clearly separated in Dual Function !

Small values of w':

@ Simple models / parametrizations
@ Non-perturbative methods (QCD sum rules, [Lattice??])
@ Phenomenological constraints using Factorization

Large values of w':

@ Perturbative dynamics (— parton picture)
@ Constraints from local OPE (HQET parameters)
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OPE Constraints at Large Values of o/

Consider Positive Moments of LCDA:

[Lee/Neubert '05]

/\UV

Mn(Auv, ) := dw w" ¢f (w, 1)
0

@ UV cut-off required <+ no naive relation to HQET parameters (A, ...) !
@ For | ~ Auv > Mnaar.

perturbatively calculable (incl. power corr.)

In terms of dual function:

dw’ [\
Mo(Auv, ) :AUV/ “ (2 N
0

2A N2y ood f A
Mi(Auv, p) = 3UV Mo(Auvv, 1) — % / 5 < U,V> pa(W').
0

Th. Feldmann

U:l+

LCDAs in HQET



Fixed-order Matching for pj(w'):

— Perturbative Expansion for pj (w’, u) if ’w' ~p>AN=mg—mp ‘

, 1 2A 4 2A
p5(w )per. = Co KJz (2 w,) +(Co — C1) KJ4 (2 w,) +

Model-independent Prediction: (L=Inp/d")

N

™

- CESCF - 2 5 T 2
Co=1+22" (2L t2L-2 1)+O(as),

1, 9%CF (52 5 = 2
Ci=1+ e (2L +2L+4 1 + O(a%)

— reduces to the free parton result for ag — 0 Vv
. further power corrections in A/Auv, A1 2/A2y etc.
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“(Local) RG Improvement”

@ Coefficients C;(L) fulfill the same RGE as pg(w’).
@ If w’ is large, RGE can be used to resum large logs |L| > 1

Technically, this can be achieved by defining auxiliary scale
oot = pheor (1) = A/ (KQ')2 + 12, k ~1
with the RG-improved perturbative result for the dual function:

PE(W/, :U')RG = U, (Ma Nw/) PJBr(W/? Mo )pert

o' > A
w eV(u,w')

PE(W/7 n= a’/)perl. .

= for large w’ dual function falls of fasterthan 1/w’

~ !

pi (', ) ~ (W) 7T with g(ul,, p) > 0 for & > p
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Interpolating between large and small values of «/

Phenomenological procedure:
@ Start from a given model for ¢5 or pg defined at reference scale pq,

@ Consider 1/w’ expansion and adjust to perturbative result,
(requires to define an auxiliary parameter Q where transition occurs)

@ Implement local RG improvement.

(details for a concrete realization can be found in our paper)
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Interpolating between large and small values of «/

10.07
5.0 log-log plot:
.. asymptotic
20 : h u/&" behaviour
3 — pu=10GeV
3 10 - u=3GeV
2 0.5 - p=1GeV
<3

0.2
0.1

for exp. model at
po =1 GeV

Q:=€e"E pug

01 02 05 1.0 20 5.0 10.0
W'/t

+— non-perturbative +— — perturbative —
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Consequences for Logarithmic Moments

Contributions from large w’ (&' > p)

Completely determined perturbatively:

M /dw <M>ps(w D)

M

oo
ac’ @' o
~ / =~ Ink (N) gVné )p+(w p= & )pert.

i.e. L} contain the information on the HQET parameters A etc.
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Consequences for Logarithmic Moments

Contributions from small o’ (&' < u — model-dependent)
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Consequences for Logarithmic Moments

Numerical illustration for . = 3 GeV:

Ly ‘ total ‘ from &' < p ‘ from&’ > p
Lo (model 1) 1.67 1.58 0.086
Lo (model 2) 1.65 1.57 0.086
Ly (model 1) -3.85 -3.93 0.074
Ly (model 2) -3.46 -3.54 0.074
L, (model 1) 11.6 11.4 0.121
L, (model 2) 9.03 8.91 0.121

@ Model 1: exponential with wy = 438 MeV at pip = 1 GeV
@ Model 2: parton model with A = 465 MeV at po = 1 GeV

Log. moments dominated by small values of w’
= Ly are practically independent of HQET parameters J
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LCDAs for Heavy Baryons




...some general remarks ...

@ A, decays less well studied experimentally .. .
... but LHC will contribute ...

@ 2 light quarks coupled to static b-quark:

— more independent Dirac structures

— more complicated RG-evolution: LN + ERBL kernel [Ball/Braun/Gardi]
@ QCD factorization in A, decays more involved [W. Wang, TF/Yip]
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Dual Representation for A, LCDA [Bell/TF/Wang/Yip]

@ Dual representation for “twist-2” LCDA: (w1,2 = l.c.momenta of light quarks)
i dw’ o dw’ wq W w w:
Pa(wy,wz) :/ ,1 / 7,2 j ? Ji| 2 71, Ji | 2 —f pa2 (Wi, w))
o “ Jo %2 wyWs Wy wWa
/ / ’
@ Reduced variables: /= 2. and v/ =1-0 = ——L,
ww+w2 w1+w2

@ Expanding in Gegenbauer polynomials,

e’}

po(wi U) = > UT h(wy) CFP (20 - 1),

n=0,2,4,...

the coefficients satisfy a simple RGE of the form:

dfn UJ/ )
dl(n 'L’L) - |:|_Cusp(Oés) In (2% Onm + ynm(as) | fm(wr) J

@ Can be diagonalized by truncating Gegenbauer expansion
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Asymptotic behaviour (Ap) [Bell/TF/Wang/Yip]

@ Asymptotically, for i > 10, the dependence on dual momentum
fraction v’ (approximately) approaches functional form
pelwr, 0) " ey ) ()

@ Dependence on reduced momentum w; factorizes in that limit.

— 0.30
different levels of Gegenbauer truncation:
@ n = 0 (thin dotted)
@ n = 2 (thin dashed)
@ n = 4 (thick dotted)
@ n = 6 (thick dashed)
@ n = 8 (solid)
gray band oc (u'(1 — u’))'/5.

0.25

asymp

0.20

—~

—
[$)]

o
=)
&

pyw,' 0" / folw,
o o
=

[see also Braun/Derkachov/Manashov '14]
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Asymptotic behaviour (Qb) [work in progress]

@ Asymptotically, for i > 10, the dependence on dual momentum
fraction v/ approaches functional form

powp, U)o fo(wh, 1) O(U) 0(1 — )

@ Dependence on reduced momentum w; factorizes in that limit.

_0.30
§0,25 different levels of Gegenbauer truncation:
7 @ n = 0 (thin dotted)
= 0.20 _
‘e @ n = 2 (thin dashed)
20.15 .
< @ n = 4 (thick dotted)
g 0.10 @ n = 6 (thick dashed)
3005 @ n =8 (solid)
& gray band o 6(u")0(1 — u').
0.000 0

[see also Braun/Derkachov/Manashov '14]
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Ap LCDAs from “WW Wave Functions” [Bell/TF/Wang/Yip]

Chiral-even and chiral-odd LCDAs can be constructed from

MO (v, ki, k2) o< s(x1, %2, K2) [Ko Kq] hy
M(Z)(va k17k2) X wV(X17X27 K2) I:kZ yk‘]} hV

with x; = 2 v-k; and K2 = (k1 T kz)z.

= All A, LCDAs from double integrals: [notation as in Ball/Braun/Gardi]

e.g. ¢2(w1,w2) = / C/X1 / ng wiw2 ’QZJV(X1.,X2) 5
Jwy Jwy

¢4(Ld1 s OJQ) = / dX1 / dX2 (X1 — W1 )(Xg — w2) 1/)V(X1 s Xg) etc.
wq wo
(K2-dependence neglected, for simplicity)

@ Wandzura-Wilczek relations for A, LCDAs ./
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Summary / Main Messages

@ Conceptually:
RG evolution / factorization theorems simplify, when expressed
in terms of “dual” LCDAS (i.e. eigenfunctions of LN kernel)

@ Numerically:
Inverse (log) moments essentially independent of HQET par’s;
— crucial for spectator effects in exclusive B-decays;
— A\g Ultimately to be determined by experiment (!)

@ Approximately:

Wandzura-Wilczek relations from wave function picture;
(particularly useful for modelling heavy baryon LCDAsS).

Direct estimates for dual function / log moments from lattice or sum rules ?J

Th. Feldmann LCDAs in HQET 27/29



Backup Slides
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Lange-Neubert Solution of RGE

Standard procedure: (“continous Mellin moments” / “logarithmic F.T.")

du —io
introduce: 050, p) = / “ ( > o5 (w, 1)
Jo K

w

Explicit solution in #-space: [Lange/Neubert]

0 “ -
" _ V2yeq (M r(1—iora +io—g) .
(0, 1) = e (M)) FA £ i) (1 — 0+ ep(0+ig, po)

with RG functions V = V/(u, 1) and g = g(u, o) given in pert. theory.

.. staring at the solution for (6, 1) ...

r(1—ig) [®do . io
Def.  ¢g(0,p) = w I pp(W's 1) (%)
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