New search strategies for composite quark partners at the LHC Run II

Thomas Flacke

KAIST

C. Delaunay, TF, J. Gonzales-Fraile, S.J. Lee, G. Panico, G. Perez [JHEP 02 (2014) 055] TF, Jeong Han Kim, S. J. Lee, Sung Hak Lim [JHEP 1405 (2014) 123] M. Backović, TF, S. J. Lee, G. Perez [arXiv: 1409.0409] M. Backović, TF, Jeong Han Kim, S. J. Lee [arXiv: 1410.8131] ERC workshop, Mainz

EFTs for C.P., Flavor, EWSB

Outline

- Motivation
- The general setup: minimal composite Higgs from SO(5)/SO(4) breaking
- Partially composite quarks
 - The Lagrangian
 - Overview on the phenomenology
- · Constraints on composite quark partners from run I
- · Prospects for composite quark partners at LHC run II
- Conclusions and Outlook

Motivation

Partially composite quarks Bounds on quark partners from run I Prospects for composite quark partners at LHC run II Conclusions and Outlook

Motivation

- C Atlas and CMS found a Higgs-like resonance with a mass m_h ~ 125 GeV and couplings to γγ, WW, ZZ, bb, and ττ compatible with the Standard Model (SM) Higgs.
- ⓒ The Standard Model suffers from the hierarchy problem.
- \Rightarrow Search for an SM extension with a Higgs-like state which provides an explanation for why m_h , $v \ll M_{pl}$.

One possible solution: Composite Higgs Models (CHM)

- Consider a model which gets strongly coupled at a scale $f \sim O(1 \text{ TeV})$. \rightarrow Naturally obtain $f \ll M_{pl}$.
- Assume a global symmetry which is spontaneously broken by dimensional transmutation → strongly coupled resonances at *f* and Goldstone bosons (to be identified with the Higgs sector).
- Assume that the only source of explicit symmetry breaking arises from Yukawa-type interactions.
 - \rightarrow The Higgs-like particles become pseudo-Goldstone bosons
 - \Rightarrow Naturally generates a scale hierarchy $v \sim m_h < f \ll M_{pl}$.

Motivation

Partially composite quarks Bounds on quark partners from run I Prospects for composite quark partners at LHC run II Conclusions and Outlook

Composite Higgs model: general setup

Simplest realization:

The minimal composite Higgs model (MCHM) Agashe, Contino, Pomarol [2004] Effective field theory based on $SO(5) \rightarrow SO(4)$ global symmetry breaking.

- The Goldstone bosons live in $SO(5)/SO(4) \rightarrow 4$ d.o.f.
- $SO(4) \simeq SU(2)_L \times SU(2)_R$

Gauging $SU(2)_L$ yields an $SU(2)_L$ Goldstone doublet.

Gauging T_R^3 assigns hyper charge to it. Later: Include a global $U(1)_X$ and gauge $Y = T_R^3 + X$.

 \Rightarrow Correct quantum numbers for the Goldstone bosons

to be identified as a non-linear realization of the Higgs doublet.

We use the CCWZ construction to construct the low-energy EFT. Coleman, Wess, Zumino [1969], Callan, Coleman [1969]

Central element: the Goldstone boson matrix

$$U(\Pi) = \exp\left(\frac{i}{f}\Pi_{i}T^{i}\right) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & \cos\overline{h}/f & \sin\overline{h}/f\\ 0 & 0 & 0 & -\sin\overline{h}/f & \cos\overline{h}/f \end{pmatrix},$$

where $\Pi = (0, 0, 0, \overline{h})$ with $\overline{h} = \langle h \rangle + h$ and T^{i} are the broken *SO*(5) generators. Motivation

Partially composite quarks: Bounds on quark partners from run I Prospects for composite quark partners at LHC run II Conclusions and Outlook

From it, one can construct the CCWZ d^i_μ and e^a_μ symbols *E.g.* kinetic term for the "Higgs":

$$\mathcal{L}_{\Pi} = \frac{f^2}{4} d^{i}_{\mu} d^{i\mu} = \frac{1}{2} \left(\partial_{\mu} h \right)^2 + \frac{g^2}{4} f^2 \sin^2 \left(\frac{\overline{h}}{f} \right) \left(W_{\mu} W^{\mu} + \frac{1}{2c_w} Z_{\mu} Z^{\mu} \right)$$
$$\Rightarrow v = 246 \text{ GeV} = f \sin \left(\frac{\langle h \rangle}{f} \right) \equiv f \sin(\epsilon).$$

Note: In the above, the Higgs multiplet is parameterized as a Goldstone multiplet and it is *assumed* that a Higgs potential is induced which leads to EWSB.

Concrete realizations c.f. e.g. Review by Contino [2010], Panico et al. [2012], ...:

Couplings of the Higgs to the quark sector (most importantly to the top)* explicitly break the SO(5) symmetry.

 \Rightarrow Couplings to the top sector induce an effective potential for the Higgs which induces EWSB.

^{*} c.f. Delaunay, Grojean, Perez [2013] for the influence of other quark partners on Higgs physics

How to include the quarks?

In the SM, the Higgs multiplet

- induces EWSB (✓ in CHM),
- provides a scalar degree of freedom (✓ in CHM),
- generates fermion masses via Yukawa terms (← implementation in CHM?).

One solution $\kappa_{aplan [1991]}$: Include elementary fermions q as incomplete linear representations of SO(5) which couple to the strong sector via

 $\mathcal{L}_{mix} = y\overline{q}_{l_{\mathcal{O}}}\mathcal{O}^{l_{\mathcal{O}}} + \text{h.c.}\,,$

where \mathcal{O} is an operator of the strongly coupled theory in the representation $I_{\mathcal{O}}$. Note: The Goldstone matrix $U(\Pi)$ transforms non-linearly under SO(5), but linearly under the SO(4) subgroup $\rightarrow \mathcal{O}^{I_{\mathcal{O}}}$ has the form $f(U(\Pi))\mathcal{O}'_{fermion}$.

Simplest choice for quark embedding:

$$q_{L}^{5} = \frac{1}{\sqrt{2}} \begin{pmatrix} id_{L} \\ d_{L} \\ iu_{L} \\ -u_{L} \\ 0 \end{pmatrix}, \quad u_{R}^{5} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ u_{R} \end{pmatrix}, \quad \psi = \begin{pmatrix} Q \\ \tilde{U} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} iD - iX_{5/3} \\ D + X_{5/3} \\ iU + iX_{2/3} \\ -U + X_{2/3} \\ \sqrt{2}\tilde{U} \end{pmatrix}$$

BSM particle content (per *u*-type quark):

	U	X _{2/3}	D	X 5/3	Ũ
<i>SO</i> (4)	4	4	4	4	1
<i>SU</i> (3) _c	3	3	3	3	3
$U(1)_X$ charge	2/3	2/3	2/3	2/3	2/3
EM charge	2/3	2/3	-1/3	5/3	2/3

Fermion Lagrangian:

$$\mathcal{L}_{comp} = i \,\overline{Q} (D_{\mu} + i e_{\mu}) \gamma^{\mu} Q + i \overline{\tilde{U}} \overline{\mathcal{D}} \widetilde{U} - M_{4} \overline{Q} Q - M_{1} \overline{\tilde{U}} \widetilde{U} + \left(i c \overline{Q}^{i} \gamma^{\mu} d_{\mu}^{i} \widetilde{U} + \text{h.c.} \right),$$

$$\mathcal{L}_{el,mix} = i \,\overline{q}_{L} \overline{\mathcal{D}} q_{L} + i \,\overline{u}_{R} \overline{\mathcal{D}} u_{R} - y_{L} f \overline{q}_{L}^{5} U_{gs} \psi_{R} - y_{R} f \overline{u}_{R}^{5} U_{gs} \psi_{L} + \text{h.c.}$$

Derivation of Feynman rules:

- expand d_{μ} , e_{μ} , U_{gs} around $\langle h \rangle$,
- · diagonalize the mass matrices,
- match the lightest mass eigenvalue with the SM quark mass \rightarrow this fixes y_L in terms of the other parameters (light quarks: $m_q \ll v/\sqrt{2}$; if $y_R \sim 1 \Rightarrow y_L \ll 1$) (top quark: $m_t \sim v/\sqrt{2}$; requires $y_R \sim 1$ and $y_L \sim 1$)
- calculate the couplings in the mass eigenbasis.

Masses and couplings

The SM like quark:

$$m_{\nu} = \frac{v}{\sqrt{2}} \frac{|M_1 - M_4|}{f} \frac{y_L f}{\sqrt{M_4 + y_L^2 f^2}} \frac{y_R f}{\sqrt{|M_1|^2 + y_R^2 f^2}} + \mathcal{O}(\epsilon^3)$$

Partners in the 4:

$$M_{X5/3} = M_4 = M_{Uf1} + O(\epsilon^2)$$
$$M_D = \sqrt{M_4^2 + y_L^2 f^2} = M_{Uf2} + O(\epsilon^2)$$

Singlet Partner:

$$M_{Us} = \sqrt{|M_1|^2 + y_R^2 f^2} + \mathcal{O}(\epsilon^2)$$

Couplings (examples):

$$\begin{vmatrix} g_{XWu}^{R} \end{vmatrix} = \frac{g}{\sqrt{2}} \frac{\epsilon}{\sqrt{2}} \begin{vmatrix} \frac{y_{R}f M_{1}}{M_{4}M_{Us}} - \sqrt{2}c_{R}\frac{y_{R}f}{M_{Us}} \end{vmatrix} + \mathcal{O}(\epsilon^{3}) \begin{vmatrix} g_{UsWd}^{L} \end{vmatrix} = \frac{g}{\sqrt{2}} \frac{\epsilon}{\sqrt{2}} \left(\frac{y_{L}f (M_{1}M_{4} + y_{R}^{2}f^{2})}{M_{Uf2}M_{Us}^{2}} - \frac{\sqrt{2}c_{L}y_{L}f}{M_{Uf2}} \right) + \mathcal{O}(\epsilon^{3})$$

How to (qualitatively) understand the "mixing" couplings:

Production and decays

Production mechanisms (shown here: $X_{5/3}$ production)

(b) EW pair production

(c) QCD pair production

Decays:

- $X_{5/3} \to W^+ u$ (100%),
- $D \rightarrow W^- u$ (~ 100%),
- $U_{f1} \rightarrow Zu$ (dominant),
- $U_{f2} \rightarrow hu$ (dominant),
- light quark partner: $U_s \rightarrow hu$, top partner: also $U_s \rightarrow Zu$, $U_s \rightarrow Wb$

Bounds on top partners from run I

- ATLAS and CMS determined bounds on (QCD) pair-produced top partners with charge 5/3 (the $X_{5/3}$) in the same-sign di-lepton channel. $M_{X_{5/3}} > 770 \,\text{GeV}$ ATLAS [1409.5500] , $M_{X_{5/3}} > 800 \,\text{GeV}$ CMS [PRL 112 (2014) 171801]
- ATLAS and CMS determined a bound on (QCD) pair-produced top partners with charge 2/3 (applicable for the T_s , T_{f1} , T_{f2}). [Similar bounds for *B*] $M_{T_s} > 350 (810) \text{ GeV}$ ATLAS [1409.5500], $M_{T_s} > 687 (782) \text{ GeV}$ CMS [PLB 729, 149 (2014)] (the bound depends on the BRs assumed for $T_s \rightarrow th$, tZ, *Wb*)
- Bounds including single-production channels: Matsedonskyi, Panico, Wulzer [2014]

Note: In the above plots $c_R = 2g_{XWu}^R/g$ and $c_L^{Wb} = 2g_{USWd}^L/g$ as compared to the coupling formulae given earlier.

Determining bounds on partners of light quarks from run I

Bounds on partners of light quarks in the 4

Delaunay, TF, Gonzales-Fraile, S.J. Lee, Panico, Perez [JHEP 02 (2014) 055]

- From QCD pair production: M^{u,d,s,c} > 530 GeV (from ATLAS and CMS searches applicable to WWjj, ZZjj final states)
- Single production: (from ATLAS and CMS searches applicable to Wjj, Zjj final states)

Determining bounds on partners of light quarks from run I

The above results for light quark partners assumed absence of a singlet partner. In the presence of an SO(4) singlet quark partner, bounds from single-production channels are relaxed:

Limits on y_R^{μ} as a function of M_4 for different values of M_1 . Solid: full limits. Dashed: limits ignoring signal loss due to cascade decays. \Rightarrow Bounds on *SO*(4) singlet partners are important!

Determining bounds on partners of light quarks from run I

· Bounds on partners of light quarks in the singlet

TF, J. H. Kim, S. J. Lee, S. H. Lim [JHEP 1405 (2014) 123]

- From QCD pair production: $M_4^{u,d,s,c} > 310 \,\text{GeV}$
 - (using $p_T^{\gamma\gamma}$, N_{jet} , p_T^{jet} from the $h \rightarrow \gamma\gamma$ search in [ATLAS-CONF-2013-072])
- Single production:

Prospects for composite quark partners at LHC run II

At run II, we have more energy

 \Rightarrow searches are sensitive to higher quark partner masses.

However, for composite quark partners there are two additional genuine aspects:

- 1. Single-production channels (if present) will become more important as compared to QCD pair production channels.
- For heavier quark partners, their decay products become strongly boosted
 ⇒ we need dedicated search strategies for boosted tops, Higgses, EW
 gauge bosons.

Two examples:

1. Maximizing the sensitivity for the "most visible" quark partner: An optimized search strategy for top partners in the **4**.

M. Backović, TF, S. J. Lee, G. Perez [arXiv: 1409.0409]

2. Maximizing the sensitivity for the "least visible" quark partner: An optimized search strategy for singlet partners of light quarks.

M. Backović, TF, J. H. Kim, S. J. Lee [arXiv: 1410.8131]

- "fat jets",

Prospects for composite quark partners at LHC run II

Search for top partners in the $q\bar{t}tW$ final state with semi-leptonic decay of tW.

The final state is characterized by		We use this by
 a high energy forward jet 	\rightarrow	used as a tag
- two <mark>b</mark> 's	\Rightarrow	demand two <u>b</u> -tags
- a highly boosted tW system with:		
- one hard lepton,	\rightarrow	$p_T^l > 100 \mathrm{GeV}$ cut
– missing energy,		

→ reconstruct boosted t/W using Template Overlap Method (TOM)

Prospects for composite quark partners at LHC run II

Search for top partners in the $q\bar{t}tW$ final state with semi-leptonic decay of tW.

M. Backović, TF, S. J. Lee, G. Perez [arXiv: 1409.0409]

					3/10						(,					
$X_{5/3} + B$	σ_s	[fb]	$\sigma_{t\bar{t}}$	[fb]	σ_{W+je}	ets [fb]	e	8	$\epsilon_{t\bar{t}}$		$\epsilon_{W+\text{jets}}$		S/B		S/\sqrt{B}	
Fat jet candidate	t	W	t	W	t	W	t	W	t	W	t	W	t	W	t	W
Basic Cuts	1.6	2.3	76.0	556.0	5921.0	3879.0	0.36	0.51	0.06	0.46	0.19	0.12	3×10^{-4}	4×10^{-4}	0.1	0.1
$p_T > 700 \text{ GeV}$	1.3	2.0	60.0	506.0	1322.0	1082.0	0.28	0.45	0.05	0.42	0.04	0.04	9×10^{-4}	$8 imes 10^{-4}$	0.2	0.2
$p_T^l > 100 \text{ GeV}$	1.2	1.9	23.0	349.0	912.0	733.0	0.27	0.41	0.02	0.29	0.03	0.02	0.001	0.001	0.2	0.2
Ov > 0.5	1.0	1.3	12.0	170.0	354.0	254.0	0.23	0.30	0.01	0.14	0.01	0.008	0.003	0.002	0.3	0.3
$M_{X_{5/3}/B} > 1.5 \text{ TeV}$	0.9	1.2	0.7	106.0	168.0	160.0	0.20	0.26	$6 imes 10^{-4}$	0.09	0.006	0.005	0.005	0.003	0.4	0.3
$m_{jl} > 300 \text{ GeV}$	0.8	0.4	0.5	12.0	111.0	27.0	0.17	0.08	$4 imes 10^{-4}$	0.01	0.004	9×10^{-4}	0.007	0.02	0.4	0.7
b-tag & no fwd. tag	0.3	0.1	0.08	2.7	0.2	0.5	0.07	0.03	$7 imes 10^{-5}$	0.002	5×10^{-6}	2×10^{-5}	1.3	0.09	3.7	1.0
fwd. tag & no b -tag	0.5	0.3	0.2	3.7	32.0	7.8	0.10	0.06	$2 imes 10^{-4}$	0.003	0.001	3×10^{-4}	0.02	0.05	0.6	0.9
b-tag and fwd. tag	0.2	0.1	0.03	0.9	0.03	0.1	0.05	0.02	2×10^{-5}	$7 imes 10^{-4}$	1×10^{-6}	4×10^{-6}	3.7	0.2	5.3	1.3

 $M_{X_{5/3}/B} = 2.0$ TeV, $\sigma_{X_{5/3}+B} = 15$ fb, L = 35 fb⁻¹, $\langle N_{\rm vtx} \rangle = 50$

Table 5. Example cutflow for signal and background events in the presence of $\langle N_{vtx} \rangle = 50$ interactions per bunch crossing, for $M_{X_{5/3}/B} = 2.0$ TeV and inclusive cross sections $\sigma_{X_{5/3}/B}$. No pileup subtraction/correction techniques have been applied to the samples. $\sigma_{x,it}W_{+jets}$ are the signal/background cross sections including all branching ratios, whereas ϵ are the efficiencies of the cuts relative to the generator level cross sections. The results for $M_{X_{5/3}/B} = 2.0$ TeV assume both $X_{5/3}$ and B production.

Prospects for composite quark partners at LHC run II

M. Backović, TF, S. J. Lee, G. Perez [arXiv: 1409.0409]

Prospects for composite quark partners at LHC run II

Search for light quark singlet partners in the *hhjj* final state with $h \rightarrow b\overline{b}$ decays. M. Backović, TF, J. H. Kim, S. J. Lee [arXiv: 1410.8131]

Prospects for composite quark partners at LHC run II

Search for light quark singlet partners in the *hhjj* final state with $h \rightarrow b\overline{b}$ decays. M. Backović, TF, J. H. Kim, S. J. Lee [arXiv: 1410.8131]

	σ_s [fb]	$\sigma_{t\bar{t}}$ [fb]	$\sigma_{b\bar{b}}$ [fb]	$\sigma_{\text{multi-jet}}$ [fb]	S/B	S/\sqrt{B}
Preselection Cuts	6.8	4.6×10^2	8.4×10^{3}	2.8×10^{5}	$2.4 imes 10^{-5}$	$7.5~\times 10^{-2}$
Basic Cuts	1.2	4.6	16.0	6.8×10^{2}	1.7×10^{-3}	2.7×10^{-1}
$ \Delta_{mh} < 0.1$	$8.2~{\times}10^{-1}$	1.7	6.5	2.8×10^{2}	2.9×10^{-3}	$2.9~{\times}10^{-1}$
$ \Delta_{mU} < 0.1$	5.6×10^{-1}	5.5×10^{-1}	2.0	87.0	6.3×10^{-3}	3.5×10^{-1}
$m_{U_{h1,2}} > 800 \text{ GeV}$	$5.0~\times 10^{-1}$	3.6×10^{-1}	1.6	67.0	7.3×10^{-3}	$3.6~\times 10^{-1}$
b-tag	$3.4~{\times}10^{-1}$	4.4×10^{-2}	1.1×10^{-2}	1.5×10^{-2}	4.8	7.5

Table IV: $M_{U_h} = 1$ TeV , $\sigma_s = 6.8$ fb , $\mathcal{L} = 35$ fb⁻¹

	σ_s [fb]	$\sigma_{t\bar{t}}$ [fb]	$\sigma_{b\bar{b}}$ [fb]	$\sigma_{\text{multi-jet}}$ [fb]	S/B	S/\sqrt{B}
Preselection Cuts	2.4	4.6×10^{2}	8.4×10^{3}	2.8×10^{5}	8.15×10^{-6}	2.6×10^{-2}
Basic Cuts	6.0×10^{-1}	4.6	16.0	6.8×10^{2}	$8.6~{\times}10^{-4}$	1.4×10^{-1}
$ \Delta_{mh} < 0.1$	3.9×10^{-1}	1.7	6.5	2.8×10^{2}	1.4×10^{-3}	1.4×10^{-1}
$ \Delta_{mU} < 0.1$	2.7×10^{-1}	5.5×10^{-1}	2.0	87.0	$3.0~\times 10^{-3}$	1.7×10^{-1}
$m_{U_{h1,2}} > 1000 \text{ GeV}$	2.2×10^{-1}	1.9×10^{-1}	1.0	45.0	4.8×10^{-3}	1.9×10^{-1}
b-tag	1.34×10^{-1}	2.2×10^{-2}	8.5×10^{-3}	1.2×10^{-2}	3.1	3.8

Table V: $M_{U_h} = 1.2 \text{ TeV}$, $\sigma_s = 2.4 \text{ fb}$, $\mathcal{L} = 35 \text{ fb}^{-1}$

Conclusions and Outlook

- Composite Higgs models provide a viable solution to the hierarchy problem. Realizing quark masses via partial compositeness requires quark partners.
- Top partners (in the MCHM) are constraint from run I to $M_X \gtrsim 800 \,\text{GeV}$.
- The phenomenology of light quark partners strongly differs from top-partner phenomenology.
 - For partially composite quarks with partners in the fourplet, we find a flavor and y_R independent bound of $M_4^{u/c} \gtrsim 525$ GeV as well as stronger flavor and y_R

dependent bounds (*e.g.* $M_4^u \gtrsim 1.8$ TeV, $M_4^c \gtrsim 610$ GeV for $y_R^{u/c} = 1$).

- For partially composite quarks with partners in the singlet, we find a flavor- and $\lambda_{\rm mix}^{\rm eff}$ independent bound of $M_{U_h} > 310 \,{\rm GeV}$ as well as increased flavor-and $\lambda_{\rm mix}^{\rm eff}$ -dependent bounds.
- For run II, single-production channels and strongly boosted top and Higgs searches become important.
 - Performing dedicated searches for boosted tops, the X_{5/3} can be discovered even at masses beyond 2 TeV.
 - Even the (currently weakest constraint) singlet partners of light quarks can be discovered at masses beyond 1 TeV.

Backup

- We use the Template Overlap Method (TOM)
 - Low susceptibility to pileup.
 - Good rejection power for light jets.
 - Flexible Jet Substructure framework (can tag tops, Higgses, Ws ...)

For a gruesome amount of detail on TOM see:

Almeida, Lee, Perez, Sterman, Sung - Phys.Rev. D82 (2010) 054034 MB, Juknevich, Perez - JHEP 1307 (2013) 114 Almeida, Erdogan, Juknevich, Lee, Perez, Sterman - Phys.Rev. D85 (2012) 114046 MB, Gabizon, Juknevich, Perez, Soreq - JHEP 1404 (2014) 176

- Template Overlap Method

- Good rejection power for light jets.
- Flexible Jet Substructure framework

 $(\textbf{can tag t, h, W } \ldots)$

Forward Jets as useful tags of top partner production also proposed in: De Simone, Matsedonskyi, Rattazzi Wulzer JHEP 1304 (2013) 004

Seems easy, but actually quite difficult!

Complicated at high pileup (fake jets appear)

r = 0.2 - good compromise between pileup insensitivity and signal

Standard ATLAS r = 0.4 **forward jet will not work** without some aggressive pileup subtraction technique (**open problem!**)

b-tagging Strategy

Full simulation of b-tagging requires consideration of complex detector effects (e.g. tracking info).

We use a **simplified approach**:

Assign a "b-tag" to every r = 0.4 jet which has a truth level b or c jet within dr = 0.4from the jet axis.

For each "b-tag" we use the benchmark efficiencies: $\epsilon_b = 0.75, \ \epsilon_c = 0.18, \ \epsilon_l = 0.01$

