Flavour Expedition to the Zeptouniverse

Andrzej J. Buras (Technical University Munich, TUM-IAS)

ERC Workshop Mainz, November 2014

New Physics beyond the SM must exist !!!

Quark Flavour Physics Lepton Flavour Violation EDMs + (g-2)_{µ,e}

In our search for a more fundamental theory we need to improve our understanding of Flavour

Present Status

November 2014

Some Tensions in UT-fits (present already since 2008)

5

$\begin{array}{l} 2015\mathcal{-}2025: Expedition \\ Attouniverse \rightarrow Zeptouniverse \\ 10^{\mathcal{-}18}m \mathcal{-}10^{\mathcal{-}21}m \end{array}$

Quark Flavour = Physics

$\begin{array}{l} 2015\mathcal{-}2025: Expedition \\ Attouniverse \rightarrow Zeptouniverse \\ 10^{\mathcal{-}18}m \mathcal{-}10^{\mathcal{-}21}m \end{array}$

Quark Flavour = Physics

Searching for New Physics on the Way to Zeptouniverse

Searching for New Physics on the Way to Zeptouniverse

21st Century

Advanced ERC Grant at the TUM Institute for Advanced Study Zeptouniverse Base Camp

10

Present ERC Flavour Team

AJB

J.Girrbach-Noe

G.Isidori

S.Pokorski

F. De Fazio

D.Buttazzo

G.Buchalla

A.Ibarra

C.Bobeth

R.Knegjens

M.Ratz

O.Cata

Basic Questions for Next 28min

Can Quark Flavour Physics give us insight into the dynamics at very SD scales if no direct clear signal of NP will be seen at the LHC? No new particles below 6 TeV.

Can we reach Zeptouniverse 10⁻²¹m (~ 200 TeV) by means of Quark Flavour Physics?

Which Processes could give us the best resolution of SD scales?

G. Isidori – Looking for New Physics via the Flavor Window

• Are there other sources of flavor symmetry breaking (beside the SM Yukawa couplings)? ICHEP 2014 - Valencia

See also Charles et al. (1309.2293)

• What determines the observed pattern of quark & lepton mass matrices?

That's the question addressed by precision measurements (& searches) of flavorchanging processes of quarks & charged-leptons \rightarrow So far everything seems to fit well with the SM \rightarrow Strong limits on NP

Three points to be made in this talk

Yet

New Physics at these scales cannot be measured in K, B_s, B_d, D rare decays (NP effects negligible)

We cannot learn much about the nature of this physics through $\Delta F=2$ processes and Effective Theory approach except when flavour symmetries U(3)³ (MFV), U(2)³ are involved.

We need badly rare decays to learn about physics beyond the LHC.

What are the maximal scales at which NP can be seen in rare K, B_s, B_d, D decays?

Three Basic Requirements

Significant progress in the last years (dynamical fermions) but higher precision needed in order to see small NP effects.

Determination of $|V_{ub}|$ and $|V_{cb}|$ Crucial for Identification of New Physics

AJB + Girrbach-Noe, 1306.3755 \Leftrightarrow (Dependently on $|V_{ub}|$ and $|V_{cb}|$ different NP is required to fit the data)

	V _{ub} ∙ 10 ⁻³	V _{cb} ⋅ 10 ⁻³	Crivellin + Pokorski; 1407.1320 (NP explanation in the difference between exclusive and inclusive determinations currently ruled out)
Scenarios	3.2	39.0	
	3.2	42.0	$10^{\circ} V_{ub} _{exc} \approx 3.4 \pm 0.3$
	4.1	39.0	$10^{\circ} V_{ub} _{inc} \approx 4.3 \pm 0.3$
	4.1	42.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	3.7	40.5	
	3.9	42.0	

AJB, De Fazio, Girrbach-Noe, 1404.3824

SM Predictions for different |V_{ub}|, |V_{cb}|

3

NLO + NNLO QCD Corrections and NLO Electroweak Corrections to Wilson Coefficients

1988 - 2014Task completed !!

AJB: 1102.5650 (Update, Sept. 2014)

Most recent

NLO Electroweak to $B_{s,d} \rightarrow \mu^+ \mu^-$ NNLO QCD to $B_{s,d} \rightarrow \mu^+ \mu^-$ Bobeth, Gorbahn, Stamou

26 Years !

Hermann, Misiak, Steinhauser Status of $B_{s,d} \rightarrow \mu^+ \mu^-$

The first NLO QCD Calculation of $B_{s,d} \rightarrow \mu^+ \mu^-$

Buchalla + AJB (Nucl. Phys. B400 (1993) 225)

- > Reduction of μ_t dependence in $m_t(\mu_t)$
- Finding missing factor of two in branching ratios.

/alues of
$$Br(B_s \rightarrow \mu^+ \mu^-)_{SM} \sim 3 - 4 \cdot 10^{-9}$$
 were
with us
 $Br(B_d \rightarrow \mu^+ \mu^-)_{SM} \sim 1 \cdot 10^{-10}$ for last
15 years

Theoretical Improvements over years

Buchalla, AJB; Misiak, Urban (~1998)

September 2013

Recently: full NLO Electroweak, NNLO QCD

Bobeth, Gorbahn, Hermann, Misiak, Stamou, Steinhauser

$$\begin{split} \overline{B}r \Big(\mathsf{B}_{\mathsf{s}} \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \Big)_{\mathsf{SM}} &= \big(3.65 \pm 0.23 \big) \cdot 10^{-9} \\ Br \Big(\mathsf{B}_{\mathsf{d}} \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \Big)_{\mathsf{SM}} &= \big(1.06 \pm 0.09 \big) \cdot 10^{-10} \end{split}$$

2

Data (LHCb+CMS)
$$(2.8 \pm 0.7) \cdot 10^{-9}$$

 $(3.6^{+1.6}_{-1.4}) \cdot 10^{-10}$

Warning: $|V_{cb}|$ ($|V_{ts}|$) Dependence

In Order to identify New Physics through Flavour Physics

We need

Many precision measurements of many observables and precise theory.

Study Patterns on Flavour Violation in various New Physics models (correlations between many flavour observables).

Correlations between low energy flavour observables and Collider Physics (LHC, Tevatron)

Here top-down approach more powerful in flavour physics

Old Superstar ϵ'/ϵ will strike back provided B₆ (QCD Penguins) will be precisely known. B₈ (EW Penguins) ≈ 0.65 ± 0.05 (UK-QCD)

The Power of Correlations between Flavour Observables (Correlation Primer)

$\begin{array}{l} Crucial \mbox{ Tool for exploring} \\ Attouniverse \rightarrow Zeptouniverse \end{array}$

Important Messages

Stressed by Monika Blanke (CKM 2014)

Two Simplest General Frameworks

MFV (CMFV) U(3)³

(symmetry between 3 generations)

Stringent Correlations between K, B_s, B_d

No new sources of flavour and CP violation

$$\boldsymbol{S}_{\boldsymbol{\psi}\boldsymbol{\mathsf{K}}_{s}}=sin2\beta$$
 , $\boldsymbol{S}_{\boldsymbol{\psi}\boldsymbol{\phi}}=\boldsymbol{S}_{\boldsymbol{\psi}\boldsymbol{\phi}}^{\text{SM}}=small$

No Right-handed currents

U(2)³ Flavour Symmetry

(symmetry between two light generations)

Stringent Correlations between B_s and B_d

Correlations $\mathbf{K} \leftrightarrow \mathbf{B}_{\mathbf{s}, \mathbf{d}}$ absent

New sources of CP violation in B_s , B_d but

$$\begin{array}{c} \mathbf{S}_{\mathbf{\psi}\mathbf{K}_{s}} \leftrightarrow \mathbf{S}_{\mathbf{\psi}\mathbf{\varphi}} \\ \textbf{anticorrelated} \end{array}$$

Right-handed currents strongly suppressed

Constrained Minimal Flavour Violation

[U(3)]³ flavour symmetry

> Valid also in U(2)³

Golden Relation $\frac{\mathrm{Br}(\mathrm{B}_{\mathrm{s}} \to \mu^{+}\mu^{-})}{\mathrm{Br}(\mathrm{B}_{\mathrm{d}} \to \mu^{+}\mu^{-})} = \frac{\hat{\mathrm{B}}_{\mathrm{d}}}{\hat{\mathrm{B}}_{\mathrm{s}}} \frac{\tau(\mathrm{B}_{\mathrm{s}})}{\tau(\mathrm{B}_{\mathrm{d}})} \frac{\Delta \mathrm{M}_{\mathrm{s}}}{\Delta \mathrm{M}_{\mathrm{d}}}$ AJB 2003 $\hat{B}_{d} / \hat{B}_{s} \simeq 0.99 \pm 0.02$ (tmQCD) No CKM No weak decay constants $Br(B_{d} \rightarrow \mu^{+}\mu^{-}) = (3.6^{+1.6}_{-1.4}) \cdot 10^{-10}$

(LHCb + CMS)

Both tensions can only be clarified through improved $|V_{ub}|$, $|V_{cb}|$ + Lattice Input and improved measurement of $S_{wK_{c}}$

△F=2 Observables in Split-Family or "Natural" SUSY with U(2)³ Flavour Symmetry

Barbieri, Buttazzo, Sala, Straub (2014)

In the U(2)³ Symmetric World we could determine |V_{ub}| without significant hadronic uncertainties (QCD penguins)

L and R Quark Couplings in Tree Level FCNCs

1306.3755

AJB + Girrbach

- SM-like

- suppression relative to SM

- enhancement relative to SM

correlation

anti-correlation

1306.3755

AJB + Girrbach

- SM-like

- suppression relative to SM

- enhancement relative to SM

correlation

anti-correlation

Searching for New Physics on the Way to Zeptouniverse

3 Correlated Anomalies

(LHCb)

Matias et al Altmannshofer+Straub, Jäger et al Bobeth et al Hiller+Schmaltz Hurth et al

$$\begin{split} \mathbf{R}_{\mathbf{K}\mu\mu} &= \frac{\mathbf{Br} \left(\mathbf{B}^{+} \to \mathbf{K}^{+} \mu^{+} \mu^{-} \right)^{[15,22]}}{\mathbf{Br} \left(\mathbf{B}^{+} \to \mathbf{K}^{+} \mu^{+} \mu^{-} \right)^{[15,22]}_{SM}} < 1 \\ \mathbf{R}_{\mathbf{K}^{*}\mu\mu} &= \frac{\mathbf{Br} \left(\mathbf{B}^{0} \to \mathbf{K}^{*0} \mu^{+} \mu^{-} \right)^{[15,22]}_{SM}}{\mathbf{Br} \left(\mathbf{B}^{0} \to \mathbf{K}^{*0} \mu^{+} \mu^{-} \right)^{[15,22]}_{SM}} < 1 \\ \mathbf{R}_{\mu\mu} &= \frac{\mathbf{Br} \left(\mathbf{B}_{s} \to \mu^{+} \mu^{-} \right)}{\mathbf{Br} \left(\mathbf{B}_{s} \to \mu^{+} \mu^{-} \right)} < 1 \end{split}$$

Can be reproduced by Z or Z' with left-handed FCNC couplings.

$$C_9^{NP} \approx -C_{10}^{NP}$$
 $R_{K^*(K)} \equiv R_{K^*(K)\nu\bar{\nu}}$ (V) (A) $\mu^+\mu^-$ can distinguish between
Z and Z' solution

AJB Girrbach-Noe Niehoff Straub

Ζ́

BurasMainz2014 44

AJB, Buttazzo, Girrbach-Noe, Knegjens, 1407.0728

Due to limits of theory and experiment the answer depends on whether Zeptouniverse is "populated" by

AJB, Buttazzo, Girrbach-Noe, Knegjens, 1407.0728

Due to limits of theory and experiment the answer depends on whether Zeptouniverse is "populated" by

In QFT :

(still consistent with perturbativity)

AJB, Buttazzo, Girrbach-Noe, Knegjens, 1407.0728

Due to limits of theory and experiment the answer depends on whether Zeptouniverse is "populated" by

AJB, Buttazzo, Girrbach-Noe, Knegjens, 1407.0728

Due to limits of theory and experiment the answer depends on whether Zeptouniverse is "populated" by

Answer within Z'-Models

(Stringent correlations between $\Delta F=2$ and $\Delta F=1$)

For fixed lepton couplings, after Δ F=2 constraints, NP effects in rare decays decrease as $1/M_{z'}$

Strategy:

Assume largest g_{ij} and g_{vv} , $g_{\mu\mu}$ couplings subject to Δ F=2 constraints on g_{sd} , g_{sb} , g_{db}

 $g_{ij} \approx 3$ still allowed by perturbativity but often not by $\Delta F=2$ constraints.

NP effects should still be sufficiently large to be able to see correlations.

Main Messages from this Study

(Maximal Resolution of Short Distance Scales)

If only g_L or g_R flavour changing Z['] couplings to quarks present and $\Delta F=2$ constraints taken into account:

$$K \rightarrow \pi \nu \overline{\nu}$$
~ 200 TeV B_d physics:
 B_s physics:
~ 15 TeVMaximal
scales
that
can be
exploredIf $g_L = \pm g_R$ the scales are lower:
L P operator in A E=2 enhanced through

If $g_L = \pm g_R$ the scales are lower: LR operator in $\Delta F=2$ enhanced through RG + chiral enhancement in ΔM_K , $\epsilon_K \implies$ Smaller couplings Lower scales at which NP dynamics can be tested

In order to probe scales above 50 TeV even with B_s , B_d physics we need either left-handed or right-handed elefants:

(Z´)

AJB, Buttazzo, Girrbach-Noe, Knegjens, 1407.0728

If only left-handed or only right-handed couplings present in NP

If both LH and RH present but $g_L^{ij} \ll g_R^{ij}$ or $g_L^{ij} >> g_R^{ij}$ Only with K rare Decays $B_s \sim 15$ TeV, $B_d \sim 15$ TeV

$$\begin{array}{ll} \mathsf{K} \rightarrow \pi \nu \overline{\nu} \colon \Lambda_{\mathsf{NP}}^{\mathsf{max}} \simeq 2000 \; \mathsf{TeV} \\ \mathsf{B}_{\mathsf{d}} & : \Lambda_{\mathsf{NP}}^{\mathsf{max}} \simeq \; \mathsf{160} \; \mathsf{TeV} \\ \mathsf{B}_{\mathsf{s}} & : \Lambda_{\mathsf{NP}}^{\mathsf{max}} \simeq \; \mathsf{160} \; \mathsf{TeV} \end{array}$$

(Z´)

AJB, Buttazzo, Girrbach-Noe, Knegjens, 1407.0728

If only left-handed or only right-handed couplings present in NP $\begin{array}{l} \text{Only with K rare Decays} \\ \text{:} \quad B_{s} \sim 15 \text{ TeV}, B_{d} \sim 15 \text{ TeV} \end{array}$

If both LH and RH present but $g_L^{ij} \ll g_R^{ij}$ or $g_L^{ij} >> g_R^{ij}$ $\begin{array}{ll} \mathsf{K} \rightarrow \pi \nu \overline{\nu} \colon \Lambda_{\mathsf{NP}}^{\mathsf{max}} \simeq 2000 \; \mathsf{TeV} \\ \mathsf{B}_{\mathsf{d}} & : \Lambda_{\mathsf{NP}}^{\mathsf{max}} \simeq \; \mathsf{160} \; \mathsf{TeV} \\ \mathsf{B}_{\mathsf{s}} & : \Lambda_{\mathsf{NP}}^{\mathsf{max}} \simeq \; \mathsf{160} \; \mathsf{TeV} \end{array}$

Heavy Z´at Work

AJB, Buttazzo, Girrbach-Noe, Knegjens, 1407.0728

Heavy Z´at Work

Heavy Z´ at Work

Can we reach Zeptouniverse through S and P

AJB, Buttazzo, Girrbach-Noe, Knegjens, 1407.0728

Yes :
$$B_{s,d} \rightarrow \mu^+ \mu^-$$

S : ≈ 350 TeV P : ≈ 700 TeV Pseudoscalars more powerful than scalars because of the interference with SM contribution

Similar to $K \rightarrow \pi v \overline{v}$ (Z'): No tuning neccessary to reach Zeptouniverse

Finale: Vivace !

We are approaching the Happy End !!

Main Message

Rare K, B_s, B_d Decays will play crucial role in identifying New Physics hopefully present on the route

Attouniverse → Zeptouniverse

Coming Years : Flavour Precision Era

LHC Upgrade E = 14 TeV (CERN) Precision B_{d,s} – Meson Decays LHC KEK (Japan)

 K^+ → $\pi^+ \nu \overline{\nu}$ (~ 10⁻¹⁰) (CERN) K_L → $\pi^0 \nu \tilde{\nu}$ (~ 3 · 10⁻¹¹) J-PARC (Japan)

Lepton Flavour Violation $\mu \rightarrow e\gamma$

 $\mu \rightarrow eee$

Neutrinos

Improved Lattice Gauge Theory Calculations

Exciting Times are just ahead of us !!!

A Zeptouniverse Vision

Seen only in

 $\mathbf{K} \to \pi v \overline{v}$

$$\mathbf{B}_{\mathsf{d},\mathsf{s}} \to \boldsymbol{\mu}^{\scriptscriptstyle +} \boldsymbol{\mu}^{\scriptscriptstyle -}$$

Seen in

Rare B_d

$$\mathbf{K} \rightarrow \pi v \overline{v}$$

$$\mathbf{B}_{d,s} \to \mu^+ \mu^-$$

Seen in

B_{d,s}

Great hopes to see many oases on the way Attouniverse → Zeptouniverse

Great hopes to see many oases on the way Attouniverse \rightarrow Zeptouniverse and

at the LHC

Backup

Warning: $|V_{cb}|$ ($|V_{ts}|$) Dependence

0902.0160

Correlations in 331 Models

1405.3850

Effective Theory Approach (Δ F=2)

$$\mathbf{H}_{eff} \left(\Delta \mathbf{F} = \mathbf{2} \right) = \underbrace{\mathbf{H}_{eff}^{SM} \left(\Delta \mathbf{F} = \mathbf{2} \right)}_{\text{Must be precisely}} + \mathbf{H}_{eff}^{NP} \left(\Delta \mathbf{F} = \mathbf{2} \right)$$

$$\mathbf{H}_{\text{eff}}^{\text{NP}}\left(\Delta \mathbf{F} = \mathbf{2}\right) = \sum_{ij} \frac{\mathbf{C}_{ij}}{\Lambda_{\text{NP}}^{2}} \underbrace{\mathbf{Q}_{ij}\left(\Delta \mathbf{F} = \mathbf{2}\right)}_{4\text{-quark operators}} \qquad \begin{array}{c} \text{Utfitters}\\ \underline{\text{Isidori, Nir, Perez}} \end{array}$$

For $c_{ij} = 0(1)$ sensitivity to physics $\Lambda_{NP} > 1000$ TeV (LR operators) ($\epsilon_{\kappa}, \Delta M_{\kappa}$)

But with the help of Δ F=2 only it is not possible to learn with ET about the nature of the dynamics at Λ_{NP}

We need

 Δ F=1 transitions : Rare K, B_{s.d}, D decays

R measurement

Observed deviations between observable and SM expectations for $R_{D(*)}$ are not only due to improvement of experimental results but also reduction theoretical uncertainties.

LQCD expectations . A. Bailey, et al., Phys. Rev. Lett. 109, 071802, (2012), arXiv:1206.4992 [hep-ph].

 $R(D) = 0.316 \pm 0.012 \pm 0.007$

Andrzej Bożek @ FPCP 2013 Buzios The $B \to \tau \nu$ and $B \to \overline{D}^{(*)} \tau^+ \nu$ measurements

Simple Tests in the Coming Years

$$\bigstar$$

$$\begin{split} & \text{Sign of } S_{\psi\phi} \\ & \frac{Br\left(B_{d} \rightarrow \mu^{+}\mu^{-}\right)}{Br\left(B_{s} \rightarrow \mu^{+}\mu^{-}\right)} = \frac{\tau\left(B_{d}\right)}{\tau\left(B_{s}\right)} \frac{m_{B_{d}}}{m_{B_{s}}} \frac{F_{B_{d}}^{2}}{F_{B_{s}}^{2}} \left| \frac{V_{td}}{V_{ts}} \right. \\ & \frac{Br\left(B_{s} \rightarrow \mu^{+}\mu^{-}\right)}{Br\left(B_{d} \rightarrow \mu^{+}\mu^{-}\right)} = \frac{\hat{B}_{d}}{\hat{B}_{s}} \frac{\tau\left(B_{s}\right)}{\tau\left(B_{d}\right)} \frac{\Delta M_{s}}{\Delta M_{d}} \\ & Br\left(K^{+} \rightarrow \pi^{+}\nu\overline{\nu}\right); \quad Br\left(K_{L} \rightarrow \pi^{0}\nu\overline{\nu}\right) \\ & \frac{\text{Lepton Flavour Violation}}{\mu \rightarrow e\gamma, \ \mu \rightarrow 3e, \ \tau \rightarrow 3\mu} \\ & \tau \rightarrow e\gamma, \ \tau \rightarrow 3e \\ \tau \rightarrow \mu\gamma \end{split}$$

Standard Candles of Flavour Physics

ε¹/ε provided QCD Penguin hadronic matrix under control

$B_s \rightarrow \mu^+ \mu^-$ Beyond the Standard Model

 $(\tan\beta)^6$

 M_{H}^{4}

in SUSY

Other Z-Penguins and Boxes

SM: (3.2 ± 0.2) · 10⁻⁹

Model Independent Limit (95% C.L.)

 $Br(B_{s} \rightarrow \mu^{+}\mu^{-}) < 5.6 \cdot 10^{-9}$

Altmannshofer, Paradisi, Straub 1111.1257

$$Br(B_s \rightarrow \mu^+ \mu^-) < 11 \cdot 10^{-9}$$

In the case of $Br(B_s \rightarrow \mu^+\mu^-) > 6 \cdot 10^{-9}$ distinction between Z,Z' and H⁰ possible

Minimal Effective Model with Right-Handed Currents

AJB, Gemmler, Isidori (1007.1993)

- Explains the difference $|V_{ub}|_{excl} \neq |V_{ub}|_{incl}$
- Softens $B^+ \rightarrow \tau^+ \nu_{\tau}$ problem (large V_{ub})

But with large
$$S_{\psi\phi}$$
 predicted: (2010)

Large Br
$$(B_s \rightarrow \mu^+ \mu^-)$$
, SM-like Br $(B_d \rightarrow \mu^+ \mu^-)$, too large S $_{\psi K_s}$

Impact of small S_{yp} from LHCb (2012) (Relief !!)

SM-like
$$Br(B_s \to \mu^+ \mu^-)$$
, $Br(B_d \to \mu^+ \mu^-)$, $S_{\psi K_s}$ ok can be large

$$K^+ \rightarrow \pi^+ \nu \overline{\nu}$$
 and $K_L \rightarrow \pi^0 \nu \overline{\nu}$ (Z°-penguins)

(TH cleanest FCNC decays in Quark Sector)

Extensive
TH efforts
over
20 yearsBuchalla, AJB; Misiak, Urban (NLO QCD)
AJB, Gorbahn, Haisch, Nierste (NNLO QCD)
Brod, Gorbahn, Stamou (QED, EW two loop)
Isidori, Mescia, Smith (several LD analyses)
Buchalla, Isidori (LD in
$$K_L \to \pi^0 v \bar{v}$$
) $Br(K^+ \to \pi^+ v \bar{v})$
 $Br(K_L \to \pi^0 v \bar{v})$ = 3.2 ± 0.2 SM: $Br(K^+ \to \pi^+ v \bar{v}) = (8.4 \pm 0.7) \cdot 10^{-11}$
 Exp : $Br(K_L \to \pi^0 v \bar{v}) = (2.6 \pm 0.4) \cdot 10^{-11}$ Exp: $Br(K^+ \to \pi^+ v \bar{v}) = (17^{+11}_{-10}) \cdot 10^{-11}$
 $(E787, E949)$ Brookhaven) $Br(K_L \to \pi^0 v \bar{v}) \leq 6.8 \cdot 10^{-8}$ Future :NA62
ORCA (FNAL)Both very
sensitive to
New PhysicsJ-PARC KOTO
CP-Violation in Decay
TH uncertainty 2-3%

LHT after LHCb Data

$$\begin{split} & \mathsf{Br} \Big(\mathsf{B}_{\mathsf{s},\mathsf{d}} \to \mu^+ \mu^- \Big) \quad \text{within 40\% from SM} \\ & \left| \mathsf{S}_{\psi \phi} \right| \leq 0.25 \\ & \left\{ \mathsf{S}_{\psi \phi} > 0.20 \right\} \Rightarrow \begin{cases} \mathsf{No} \ \mathsf{New} \ \mathsf{Physics} \ \mathsf{Effects} \\ & \mathsf{in} \ \mathsf{K}^+ \to \pi^+ \nu \overline{\nu}, \mathsf{K}_{\mathsf{L}} \to \pi^0 \nu \overline{\nu} \end{cases} \end{split}$$

Concerning K-Physics

*)

Our 2006

Predictions

(Blanke et al.)

LHCb opened the road to large NP effects in rare K-decays within LHT model

The same impact of LHCb on Rare B and K decays within RS_c model

Supersymmetric Models Facing LHCb Data

ABGPS Straub 1012.3893

Models with new left-handed currents favoured

Can $|V_{ub}|_{excl} \neq |V_{ub}|_{incl}$ be explained through right-handed currents?

Crivellin; Chen + Nam; Feger, Mannel et al.; AJB, Gemmler, Isidori

$$\begin{array}{c} \mathsf{RHMFV} \\ \mathsf{Works \ better \ with \ small \ S_{\psi\phi}} \end{array}$$

$$\left| \mathbf{V}_{ub} \right|_{excl} = \mathbf{3.12} \ (\mathbf{26}) \cdot \mathbf{10^{-3}} \\ \mathbf{V}_{ub} \right|_{inc} = \mathbf{4.27} \ (\mathbf{38}) \cdot \mathbf{10^{-3}} \end{array}$$

$$\left| \mathbf{V}_{ub} \right|_{excl} = \left| \mathbf{V}_{ub}^{\mathrm{L}} + \mathbf{a}\varepsilon^{2} \mathbf{V}_{ub}^{\mathrm{R}} \right| \qquad \left| \mathbf{V}_{ub} \right|_{inc} \approx \left| \mathbf{V}_{ub}^{\mathrm{L}} \right|$$

Generally: in principle yes

But a very detailed analysis of $SU(2)_L \otimes SU(2)_R \otimes U(I)_{B-L}$ with $g_L \neq g_R$; $V_L \neq V_R$ (mixing) including FCNC constraints + EWP constraints shows that in this concrete model the effect of RH currents too small !!

\$ 3

Comparison of Simplest Models

	$\Delta \varepsilon_{\rm K} $	ΔM_{d}	ΔM_s	$\Delta S_{\psi K_s}$	$\Delta S_{\psi\phi}$	Favoured V _{ub}
CMFV	+	+	+	0	0	exclusive
	0	±	±	-	+	inclusive
U(2) ³	+	±	±	- 0 +	+ 0 -	inclusive exclusive

$$\left(\frac{\Delta M_{s}}{\Delta M_{d}}\right)_{CMFV} = \left(\frac{\Delta M_{s}}{\Delta M_{d}}\right)_{MU(2)^{3}} = \left(\frac{\Delta M_{s}}{\Delta M_{d}}\right)_{SM}$$

(the same relation for $B_{s,d}^{} \rightarrow \mu^{^{+}}\mu^{^{-}})$

$$\begin{split} \mathbf{S}_{\mathbf{\psi}\mathbf{K}_{s}} &= sin\big(2\beta + 2\phi_{new}\big)\\ \mathbf{S}_{\mathbf{\psi}\mathbf{\phi}} &= sin\big(2\big|\beta_{s}\big| - 2\phi_{new}\big) \end{split}$$

 $\beta = \mathsf{F}(|\mathsf{V}_{\mathsf{ub}}|, \gamma)$ (weak)

AJB, Girrbach, Nagai (2013)

AJB, Carlucci, Gori, Isidori; 1005.5310 AJB, Isidori, Paradisi; 1007.5291

γ = 68°

In the U(2)³ Symmetric World we could determine |V_{ub}| without significant hadronic uncertainties (QCD penguins)

Distinguishing Left-Handed Currents from Right-Handed Currents

Violation of CMFV (Z[^])

Anomalies in
$$B_d \rightarrow K * \mu^+ \mu^-$$
(24 angular observables. Good agreement
with SM but three deviations)LHCbSM

(Altmannshofer + Straub)

- $\textbf{0.77} \pm \textbf{0.04}$
- $-\textbf{0.14} \pm \textbf{0.02}$

 $0.29 \pm 0.07 \qquad (\text{Not understood} \\ \text{in any model})$

Extensive Analyses:

 $\langle \mathbf{F}_{\mathbf{L}} \rangle_{[1.6]} = \mathbf{0.66} \pm \mathbf{0.07}$

 $\left< \mathbf{S}_{5} \right>_{\text{[1.6]}} = \mathbf{0.10} \pm \mathbf{0.10}$

 $\left< \mathbf{S}_{4} \right>_{\left\lceil 14,16 \right\rceil} = -0.07 \pm 0.11$

Descotes-Genon, Matias, Virto (1307.5683) Altmannshofer + Straub (1308.1501)

$$\begin{bmatrix} DMV \\ AS \end{bmatrix} \begin{bmatrix} C_{7\gamma}^{NP} < 0, \ C_{9}^{NP} < 0 \end{bmatrix}$$
or
$$AS \begin{bmatrix} C_{9}^{NP} < 0, \ C_{9}^{'} \approx -C_{9}^{NP} \end{bmatrix}$$
right-handed

Altmannshofer Straub (1308.1501)

Left-handed Z'and Z FCNC Couplings Facing $B_d \rightarrow K^* \mu^+ \mu^-$ Anomalies

(AJB + Girrbach, 1309.2466)

Ζ fails because of small vector coupling to muons when $\Delta M_{s,d}$ constraints taken into account.

> Suggested by Descotes-Genon, Matias, Virto (1307.5683)

Softens $\langle F_L \rangle$, $\langle S_5 \rangle$ anomalies provided $C_{q}^{NP} \approx -1.5$ in a correlated manner

See also Altmannshofer Straub (1308.1501)

In Z models $C_{7y}^{NP} = 0$ Note: (1211.1896)

Optimal

Z

92

Optimal solutions to
$$\langle F_L \rangle$$
, $\langle S_5 \rangle$ C_9^N (1309.2466) C_9^N

$$C_{9}^{NP} \neq 0, \quad C_{9}^{'} = 0$$

 $C_{9}^{NP} \neq 0, \quad C_{9}^{'} \approx -C_{9}^{NP}$

(LHS)

(ALRS)

New Correlations

(General Z')

(AJB + Girrbach, 1309.2466)

: forbidden by $\mathbf{K}_{L} \rightarrow \mu^{+}\mu^{-}$

LHS, RHS LRHS

Straub's Plot 2014

Two Versions of Effective Theories

ET =

The coefficients c_i , Λ_i are free parameters. Completion unknown. Very limited framework in flavour physics except for cases when flavour symmetries and their breakdown are assumed: MFV (U(3))³, U(2)³,...