Effective Z' Bosons in Rare B Decays

Wolfgang Altmannshofer waltmannshofer@perimeterinstitute.ca

PI PERIMETER INSTITUTE

ERC Workshop

"Effective Field Theories for Collider Physics, Flavor Phenomena and Electroweak Symmetry Breaking"

Schloss Waldthausen November 10 - 13, 2014

WA, David Straub

"State of new physics in $b \rightarrow s$ transitions" (1411.soon)

WA, Stefania Gori, Maxim Pospelov, Itay Yavin

"Dressing $L_{\mu} - L_{\tau}$ in color" (PRD 89 (2014) 095033; 1403.1269)

"Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams" (PRL 113 (2014) 091801; 1406.2332)

- 1) Anomalies in $b \rightarrow s$ Transitions
- 2 Z' Explanations of the Anomalies
- 3) Effective Z' Bosons and $L_{\mu}-L_{ au}$
- 4 Summary

The $B ightarrow K^* \mu^+ \mu^-$ Anomaly

LHCb Collaboration 1308.1707

tension in angular observables in the $B \rightarrow K^* \mu^+ \mu^-$ decay

Reduced Branching Ratios

LHCb Collaboration 1305.2168, 1403.8044

 $B \rightarrow K^* \mu^+ \mu^-$, $B \rightarrow K \mu^+ \mu^-$ and $B_s \rightarrow \phi \mu^+ \mu^-$ branching ratio measurements seem systematically below SM predictions

Violation of Lepton Flavor Universality

 $B \rightarrow K \mu^+ \mu^-$ rate seems suppressed with respect to $B \rightarrow K e^+ e^-$

What could it be?

statistical fluctuation?

statistical fluctuation?

underestimated SM uncertainties? unaccounted hadronic effects?

statistical fluctuation?

underestimated SM uncertainties? unaccounted hadronic effects?

New Physics?

can anomalies be explained model independently? can anomalies be explained in concrete NP models? statistical fluctuation?

underestimated SM uncertainties? unaccounted hadronic effects?

New Physics?

can anomalies be explained model independently? can anomalies be explained in concrete NP models?

for much more details see tomorrow's talks by Jäger, Hurth, Straub

New Physics in b ightarrow s Decays

$$\mathcal{H}_{\text{eff}}^{b \to s} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right)$$

magnetic dipole operators

 $\propto 1/q^2$

semileptonic operators

	C_7, C_7'	C_9, C_9'	C_{10}, C_{10}'
$B ightarrow (X_{s}, K^{*}) \gamma$	*		
$B ightarrow$ (X _s , K, K*) $\mu^+\mu^-$	*	*	*
$B_{\rm S} o \phi \; \mu^+ \mu^-$	*	*	*
$B_{s} ightarrow \mu^{+} \mu^{-}$			*

neglecting tensor operators (secretly dimension 8)

neglecting scalar operators (strongly constrained by $B_s \rightarrow \mu^+ \mu^-$)

Wolfgang Altmannshofer (PI)

WA, Straub *preliminary*

$$O_9^{(\prime)} \propto (ar{s} \gamma_\mu P_{L(R)} b) (ar{\mu} \gamma^\mu \mu)$$

muonic vector current

- ► NP contributions to C₉ give best description of the data
- (NP with $C_9 = -C_{10}$ works almost equally well)
- best fit result

 $C_9^{
m NP} = -1.5 \pm 0.4$ $C_9' = +0.6 \pm 0.4$

 slight preference for NP in RH currents; but nothing significant

Implications for the New Physics Scale

generic tree
$$\frac{1}{\Lambda_{NP}^2} (\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$$
 $\Lambda_{NP} \simeq 35 \text{ TeV} \times (C_9^{NP})^{-1/2}$ MFV tree $\frac{1}{\Lambda_{NP}^2} V_{tb} V_{ts}^* (\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 7 \text{ TeV} \times (C_9^{NP})^{-1/2}$ generic loop $\frac{1}{\Lambda_{NP}^2} \frac{1}{16\pi^2} (\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 3 \text{ TeV} \times (C_9^{NP})^{-1/2}$ MFV loop $\frac{1}{\Lambda_{NP}^2} \frac{1}{16\pi^2} V_{tb} V_{ts}^* (\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 0.6 \text{ TeV} \times (C_9^{NP})^{-1/2}$

(assumes New Physics has O(1) coupling to muons)

Wolfgang Altmannshofer (PI)

Z' Explanations of the Anomalies

Models with Flavor Changing Z'

parametrization of generic Z' couplings (Buras, De Fazio, Girrbach 1211.1896)

$$\mathcal{L} \supset \overline{f}_{i} \gamma^{\mu} \left[\Delta_{L}^{f_{i}f_{j}} P_{L} + \Delta_{R}^{f_{i}f_{j}} P_{R} \right] f_{j} Z_{\mu}'$$

want vectorial coupling to muons: $\Delta_L^{\mu\mu} = \Delta_R^{\mu\mu} = \frac{1}{2} \Delta_V^{\mu\mu}$

$$C_9^{\rm NP} = -\frac{\Delta_L^{bs} \Delta_V^{\mu\mu}}{V_{tb} V_{ts}^*} \frac{v^2}{M_{Z'}^2} \frac{4\pi^2}{e^2} \simeq -\frac{\Delta_L^{bs} \Delta_V^{\mu\mu}}{V_{tb} V_{ts}^*} \frac{(5 \text{ TeV})^2}{M_{Z'}^2}$$

Constraints from B_s Mixing

▶ flavor changing Z' contributes also to B_s mixing at tree level

$$\frac{M_{12}}{M_{12}^{\rm SM}} - 1 = \frac{v^2}{M_{Z'}^2} (\Delta_L^{bs})^2 \left(\frac{g_2^2}{16\pi^2} (V_{tb}V_{ts}^*)^2 S_0\right)^{-1}$$

Constraints from B_s Mixing

▶ flavor changing Z' contributes also to B_s mixing at tree level

$$\frac{M_{12}}{M_{12}^{\rm SM}} - 1 = \frac{v^2}{M_{Z'}^2} (\Delta_L^{\rm bs})^2 \left(\frac{g_2^2}{16\pi^2} (V_{tb}V_{ts}^*)^2 S_0\right)^{-1}$$

 constraint on the Z' mass and the flavor changing coupling (allowing for 10% NP in B_s mixing)

$$rac{M_{Z'}}{|\Delta^{bs}_L|}\gtrsim$$
 244 TeV $\simeq rac{10$ TeV $|V_{tb}V^*_{ts}|$

Constraints from Neutrino Tridents

- production of a muon anti-muon pair in the scattering of a muon-neutrino in the Coulomb field of a heavy nucleus
- the Z' contributes to the trident cross section (WA, Gori, Pospelov, Yavin, 1403.1269 and 1406.2332)

$$\frac{\sigma}{\sigma_{\rm SM}} = \frac{1}{1 + (1 + 4s_W^2)^2} \left[1 + \left(1 + 4s_W^2 + \frac{v^2 (\Delta_V^{\mu\mu})^2}{2M_{Z'}^2} \right)^2 \right]$$

Constraints from Neutrino Tridents

- production of a muon anti-muon pair in the scattering of a muon-neutrino in the Coulomb field of a heavy nucleus
- ► the Z' contributes to the trident cross section (WA, Gori, Pospelov, Yavin, 1403.1269 and 1406.2332)

$$\frac{\sigma}{\sigma_{\rm SM}} = \frac{1}{1 + (1 + 4s_W^2)^2} \left[1 + \left(1 + 4s_W^2 + \frac{v^2 (\Delta_V^{\mu\mu})^2}{2M_{Z'}^2} \right)^2 \right]$$

experimental measurement

 $\sigma/\sigma_{\rm SM} = 0.82 \pm 0.28$ (CCFR, PRL66 (1991) 3117)

 $rac{M_{Z'}}{|\Delta_V^{\mu\mu}|}\gtrsim 0.27~ ext{TeV}$

combining constraints from B_s mixing and neutrino tridents gives an upper bound on the Z' contribution to C_9

$$|C_9^{\mathsf{NP}}| = rac{|\Delta_L^{bs}|}{M_{Z'}} rac{|\Delta_V^{\mu\mu}|}{M_{Z'}} rac{v^2}{V_{tb}V_{ts}^*} rac{4\pi^2}{e^2} \lesssim 9.3$$

(compare to the best fit value $C_9^{\rm NP} \simeq 1.4$)

Constraints from LEP

- ► assume the couplings of the Z' are lepton flavor universal
- strong constraints from LEP results on four lepton contact interactions

$$\mathcal{L}=rac{4\pi}{\Lambda_{\pm}^2}(ar{e}\gamma_{\mu}e)(ar{\ell}\gamma^{\mu}\ell)$$

LEP Electroweak Working Group 1302.3415

Constraints from LEP

- ► assume the couplings of the Z' are lepton flavor universal
- strong constraints from LEP results on four lepton contact interactions

$$\mathcal{L} = rac{4\pi}{\Lambda_{\pm}^2} (ar{e} \gamma_{\mu} e) (ar{\ell} \gamma^{\mu} \ell)$$

► much stronger upper bound on C₉ in the case of lepton flavor universality

$$rac{M_{Z'}}{|\Delta_V^{\ell\ell}|}\gtrsim 3.5 \ {
m TeV} \ \Rightarrow \ |C_9^{
m NP}|\lesssim 0.72$$

(factor 2 below the best fit)

LEP Electroweak Working Group 1302.3415

Constraints from LHC

Z' couplings to first generation quarks are strongly constrained by LHC results from direct Z' searches and searches for quark-lepton contact interactions

Effective Z' Bosons and $L_{\mu}-L_{ au}$

muon number - tau number is anomaly free in the Standard Model gauging it leads to the wanted vector couplings with muons

$$egin{aligned} \mathcal{L} &= -rac{1}{4}(Z')^{lphaeta}(Z')_{lphaeta} + (D_{lpha}\Phi)^*(D^{lpha}\Phi) + V(\Phi) \ &+ g'(ar\mu\gamma^{lpha}\mu - ar au\gamma^{lpha} au + ar
u_{\mu}\gamma^{lpha}P_L
u_{\mu} - ar
u_{ au}\gamma^{lpha}P_L
u_{\mu}) Z'_{lpha} \end{aligned}$$

Z' gets its mass from the vev of a additional scalar Φ , charged under $U(1)' = L_{\mu} - L_{\tau}$

 $m_{Z'}=g'\langle\Phi
angle$

Effective Couplings to Quarks

a scalar current can be coupled to quark currents at dimension 6 level

(e.g. Fox, Liu, Tucker-Smith, Weiner 1104.4127)

$$\mathcal{L}_{\text{dim6}} = (\Phi^* i \overleftrightarrow{D_{\alpha}} \Phi) \left[\frac{\lambda_{ij}^{(q)}}{\Lambda^2} (\bar{q}_L^i \gamma^{\alpha} q_L^j) + \frac{\lambda_{ij}^{(d)}}{\Lambda^2} (\bar{d}_R^i \gamma^{\alpha} d_R^j) + \frac{\lambda_{ij}^{(u)}}{\Lambda^2} (\bar{u}_R^i \gamma^{\alpha} u_R^j) \right]$$

gives couplings of the Z' to quarks once Φ is replaced by its vev

Effective Couplings to Quarks

a scalar current can be coupled to quark currents at dimension 6 level

(e.g. Fox, Liu, Tucker-Smith, Weiner 1104.4127)

$$\mathcal{L}_{\text{dim6}} = (\Phi^* i \overleftrightarrow{D_{\alpha}} \Phi) \left[\frac{\lambda_{ij}^{(q)}}{\Lambda^2} (\bar{q}_L^i \gamma^{\alpha} q_L^j) + \frac{\lambda_{ij}^{(d)}}{\Lambda^2} (\bar{d}_R^i \gamma^{\alpha} d_R^j) + \frac{\lambda_{ij}^{(u)}}{\Lambda^2} (\bar{u}_R^i \gamma^{\alpha} u_R^j) \right]$$

gives couplings of the Z' to quarks once Φ is replaced by its vev

contributions to $b \rightarrow s\mu^+\mu^-$ are independent of the U(1)' gauge coupling and the Z' mass

$$b_L$$
 μ^+ $c_9 \simeq \frac{\lambda_{bs}^{(q)}}{\Lambda^2}$, $c_9' \simeq \frac{\lambda_{bs}^{(d)}}{\Lambda^2}$

A Simple Model for the Quark Couplings

introduce heavy vector-like quarks that are charged under the U(1)' and that mix with the SM quarks

$$\mathcal{L}_{\mathsf{mix}} = \Phi \overline{\mathbf{Q}} (Y_{Qb} b_L + Y_{Qs} s_L + Y_{Qd} d_L) + \dots$$

contributions to $b \to s \mu^+ \mu^-$ are set by the heavy quark masses and the mixing Yukawas

 $(L_{\mu} - L_{\tau} \text{ predicts no effects in } e^+e^- \text{ mode; opposite effects in } \mu^+\mu^- \text{ and } \tau^+\tau^- \text{ modes})$

Anomalous Magnetic Moment of the Muon

preferred value for the scalar vev

 $\langle\Phi\rangle\simeq 180GeV$

WA, Gori, Pospelov, Yavin 1403.1269

SM prediction: Pich 1310.7922 exp. results: PDG + Belle 1310.8503

$$\Delta=(7.0\pm3.0)\times10^{-3}$$

WA, Gori, Pospelov, Yavin 1403.1269

Z Couplings to Leptons

loops involving the Z'lead to corrections of the couplings of the SM Z to muons, taus and neutrinos

\rightarrow strong constraints from LEP measurements

WA, Gori, Pospelov, Yavin 1403.1269

Neutrino Trident Production

$$\frac{\sigma}{\sigma_{\rm SM}} \simeq \frac{1 + \left(1 + 4s_W^2 + 2v^2/\langle\Phi\rangle^2\right)^2}{1 + \left(1 + 4s_W^2\right)^2}$$

 \rightarrow lower bound on the U(1)' breaking vev

WA, Gori, Pospelov, Yavin 1403.1269

Branching Ratio $Z \rightarrow 4\mu$

z ~~~~ μ⁺ μ⁺ μ⁺

branching ratio measured at 10% level by

ATLAS (CONF-2013-055) and CMS (1210.3844)

 $\mathsf{BR}(Z
ightarrow4\mu)=(4.2\pm0.4) imes10^{-6}$

possible to improve at LHC run II

WA, Gori, Pospelov, Yavin 1403.1269

B_s Mixing

 B_s mixing leads to an upper bound on the U(1)' breaking vev, if the Z' is to explain the $b \rightarrow s\mu^+\mu^-$ anomalies

 $\langle \Phi \rangle \lesssim 1.8 \text{TeV}$

WA, Gori, Pospelov, Yavin 1403.1269

B_s Mixing

 B_s mixing leads to an upper bound on the U(1)' breaking vev, if the Z' is to explain the $b \rightarrow s\mu^+\mu^-$ anomalies

 $\langle \Phi \rangle \lesssim 1.8 \text{TeV}$

might be possible to probe (parts of) the open parameter space with neutrino tridents at LBNE

(WA, Gori, Pospelov, Yavin 1406.2332)

WA, Gori, Pospelov, Yavin 1403.1269

- ► current b → sµ⁺µ⁻ data shows various discrepancies both in branching ratios and angular observables
- models with a flavor changing Z' at (or below!) the TeV scale are natural candidates to explain the discrepancies
- ► explicit example: Z' of gauged L_µ L_τ with effective flavor changing couplings to quarks

Back Up

WA, Straub *preliminary*

 $O_{9/10} \propto (ar{s} \gamma_\mu P_L b) (ar{\mu} \gamma^\mu / \gamma_\mu \gamma_5 \mu)$

LH quark current

best fit result

 $C_9^{
m NP} = -1.3 \pm 0.3$ $C_{10}^{
m NP} = +0.3 \pm 0.2$

Probing the $L_{\mu} - L_{\tau}$ Gauge Boson at LBNE

WA, Gori, Pospelov, Yavin 1406.2332