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SM is a very good approximation of fundamental physics 
at weak scale, including the Higgs sector  

There’s no sign of new light particles from BSM

In other words, SM is a good effective theory at the 
weak scale 

In such a case,  possible new physics effects can be 
encoded into higher dimensional operators added to the 
SM 

EFT framework offers a systematic expansion around the 
SM organized in terms of operator dimensions, with 
higher dimensional operator suppressed by the mass scale 
of new physics 

Where do we stand



EFT comes with many free parameters. But in spite 
of that it predicts correlations between different 
observables 

Framework to combine constraints on new physics 
from Higgs searches, electroweak precision 
observables, gauge boson pair production, fermion 
pair production, dijet production,  atomic parity 
violations, magnetic and electric dipole moments, and 
more...

In case of a signal, offers unbiased information 
about new physics

Where do we go



Effective Field Theory 
approach to BSM physics 



No new particles at energies  probed 
by LHC

Linearly realized SU(3)xSU(2)xU(1) 
local symmetry spontaneously broken 
by Higgs doublet field vev

Later, more assumptions about 
approximate global symmetries (for 
practical reason only)

Effective Theory Approach to BSM

Basic assumptions

Alternatively, 
non-linear Lagrangians

with derivative expansion



If coefficients c of higher dimensional 
operators are order 1, Λ corresponds to mass 
scale on BSM theory with couplings of order 
1 (more generally, Λ ∼ m/g)

Slightly simpler (and completely equivalent) is 
to use EW scale v in denominators and work 
with small coefficients of higher  dimensional 
operators c∼(v/Λ)^(d-4)   

Effective Theory Approach to BSM
Building effective Lagrangian



Z and W boson mass ratio related to Weinberg angle

Higgs coupling to gauge bosons proportional to their mass squared 

Higgs coupling to fermions proportional to their mass 

Triple and quartic vector boson couplings proportional to gauge couplings 

Standard Model Lagrangian

Some predictions at lowest order

+h.c.

All these predictions can be perturbed 
by higher-dimensional operators 



At dimension 5, only operators one can construct are so-
called Weinberg operators, which violate lepton number

After EW breaking they give rise to Majorana mass terms 
for SM (left-handed) neutrinos

They have been shown to be present by neutrino oscillation 
experiments

 However, to match the measurements,  their coefficients 
have to be extremely small, c ∼ 10^-11 

Therefore dimension 5 operators have no observable impact 
on LHC phenomenology 

Dimension 5 Lagrangian



4-fermion 
operators

2-fermion 
dipole 

operators

2-fermion 
vertex 

corrections

 Self-
interactions of 
gauge bosons 

2-fermion 
Yukawa 

interactions

Higgs 
interactions 
with gauge 

bosons

e.g.

e.g. e.g.

e.g.

e.g.

e.g.

Dimension 6 Lagrangian

Higgs 
interactions 
with itself

e.g.

(all hell breaks loose)



EFT approach to BSM

Generally,  EFT has maaaaany parameters 

After imposing baryon and lepton number conservation, there  are 
2499 non-redundant parameters at dimension-6 level

Flavor symmetries dramatically reduce number of parameters 

E.g., assuming flavor blind couplings the number of parameters is 
reduced down to 76  

Some of these couplings are constrained by Higgs searches, some 
by dijet measurements, some by measurements of W and Z boson 
production, some by LEP electroweak precision observables, etc.

Important to explore synergies between different measurements 
and different colliders to get the most out of existing data   

Alonso et al 1312.2014



First attempt to classify dimension-6 operators back in 1986

First fully non-redundant set of operators explicitly written down 
only in 2010

Operators can be traded for other operators using integration by 
parts and equations of motion

Because of that, one can choose many different bases == non-
redundant sets of operators 

All bases are equivalent, but some are more equivalent convenient.

Here I stick to the so-called Warsaw basis. It is distinguished by 
the simplest tensor structure of Higgs and matter couplings

Other basis choices exist in the literature, they may be more 
convenient for particular applications, or they may connect better 
to certain classes of BSM model 

EFT approach to BSM

Grządkowski et al.
 1008.4884

see e.g. 
Giudice et al  hep-ph/0703164

Contino et al 1303.3876 

Buchmuller,Wyler
Nucl.Phys. B268 (1986)

Grządkowski et al.
 1008.4884

http://arxiv.org/abs/1303.3876
http://arxiv.org/abs/1303.3876
http://arxiv.org/abs/hep-ph/0703164
http://arxiv.org/abs/hep-ph/0703164
http://arxiv.org/abs/arXiv:1303.3876
http://arxiv.org/abs/arXiv:1303.3876
http://arxiv.org/abs/1303.3876
http://arxiv.org/abs/1303.3876


I’m taking into account coefficients of dimension-6 operators at the linear level

I’m assuming flavor blind vertex corrections (more general approach left for  future 
work) 

Restrict to observables that do not depend on 4-fermion operators (more general 
approach left for  future work)

EFT approach to BSM
In this talk:

Assumptions

Goals

Identify which combinations of dimension-6 operators are constrained

What do these constraints imply for Higgs physics at the LHC



Synergy
between Higgs and EWPT 



First operator OH shifts kinetic 
term of Higgs bosons

After normalizing Higgs boson field 
properly, universal shift by cH of 
all SM Higgs coupling to matter

Second operator O6 modifies Higgs 
boson self-couplings

Dimension 6 Lagrangian

Higgs couplings



Induces new (not present in 
SM), 3-derivative coupling 
between charged and neutral 
gauge bosons

New sources of CP violation at 
dimension 6 level

Dimension 6 Lagrangian

Triple 
Gauge 

Couplings



Higgs-gauge operators

has to rescale the Higgs boson field as h ! (1 � cH)h . After the rescaling, the

Lagrangian describing the single Higgs boson couplings to two SM particles has the

form

Lh = Lh,g + Lh,f . (3.21)

The first term stands for couplings to the SM gauge bosons,

Lh,g =
h

v
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(3.22)

The dictionary between these couplings and the parameters in the dimension 6

Lagrangian Eq. (3.2) is the following:

cw = 1� cH ,

cz = 1� cH � cT ,

cgg = 4cGG,

c�� = �4 (cWW � cWB + cBB) ,

cz� = � 2

g2L + g2Y

�
2g2LcWW � (g2L � g2Y )cWB � 2g2Y cBB

�
,

czz = � 4
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2

�
g4LcWW + 2g2Lg

2
Y cWB + g4Y cBB

�
,

cww = �4cWW . (3.23)

Note that 7 Higgs couplings map to only 6 parameters of the dimension 6 Lagrangians

One finds that couplings satisfy the following relation:

cww = czz +
2g2Y cz�
g2L + g2Y

+
g4Y

(g2L + g2Y )
2
c��. (3.24)
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Contino et al
 1303.3876

4

These operators modify Higgs couplings to gauge 
bosons

OT modifies Higgs couplings to Z boson mass only 
(custodial symmetry breaking)

OWW, OBB and OS introduce new 2-derivative 
Higgs couplings to γγ and Zγ, WW and ZZ. 
Prediction:3 parameters to describe 4 of these 
couplings

CP violating Higgs couplings appear
Higgs Couplings



Higgs gauge operators

Two of these operators contribute to EW precision 
observables 

OS and OT affect propagators of EW gauge 
bosons (equivalent to Peskin-Takeuchi  S and T 
parameters)

Therefore these 2 operators are probed by V-pole 
measurements, in particular Z-pole measurements 
at LEP-1 and W mass measurements at LEP-2 and 
Tevatron Oblique

Corrections



Higgs gauge operators

One of these operators contributes to vector 
boson pair production 

OS induces anomalous triple gauge couplings κγ  
in the standard Hagiwara et al parametrization

Therefore this parameter  can be probed by WW 
and WZ production at LEP-2 and LHC  

Hagiwara et al, 
Phys.Rev. D48 (1993)

Triple Gauge 
Couplings



The second part contains vertex-type operators:

LD=6
2FV = ic0HQq̄�

i�̄µqH
†�i !DµH +

�
icHUDu

c�µd̄
c✏HDµH + h.c.

�

+ icHQq̄�̄µqH
† !DµH + icHUu

c�µū
cH† !DµH + icHDd

c�µd̄
cH† !DµH

+ ic0HL
¯̀�i�̄µlH

†�i !DµH + icHL
¯̀̄�µlH

† !DµH + icHEe
c�µē

cH† !DµH. (3.6)

They modify the Z and W boson couplings to the SM fermions, and they introduce

new couplings of the Higgs boson.

To be finished.... LD=6
2FD are 2-fermion operators that include the field strength of

the SM gauge fields (so that they contribute to the anomalous dipole moments of the

SM fermions). LD=6
4F are 4-fermion operators.

3.2 Oblique Corrections

Oblique corrections are deviations of the propagators of the SM gauge bosons from

the canonical form. These can be induced by dimension 6 operators, as they modify

quadratic terms of gauge bosons in the Lagrangian. I define the the 2-point functions

of the SM gauge bosons:

M(V1,µ ! V2,⌫) = ⌘µ⌫⇧V1V2(p
2) + pµp⌫⇧̃V1V2(p

2), (3.7)

where p is the momentum of Vi. The propagator function ⇧̃ does not play any role

when the gauge boson couples to massless fermion, or when it couples via a conserved

vector current, which covers most of the phenomenologically interesting cases; we

ignore it in the following. I also define the expansion of the other propagator function

in powers of momentum squared:

⇧V1V2(p
2) = ⇧(0)

V1V2
+ ⇧(2)

V1V2
p2 + ⇧(4)

V1V2
p4 + . . . (3.8)
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Vertex operators

Contribute to EW precision observables by  shift the Z and W boson couplings 
to leptons and quarks 

Contribute to vector boson pair production and H>4f decays, by shifting electron 
and quark couplings to W and Z

They also introduce new vertices between Higgs, vector boson and two leptons 

e+ W+

νe

e− W−

e+

e−
γ

W+

W−

e+

e−
Z

W+

W−

Figure 1.4: Feynman diagrams (CC03) for the process e+e− → W+W− at the Born level.
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Figure 1.5: Feynman diagrams (NC02) for the process e+e− → ZZ at the Born level.
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Figure 1.6: Feynman diagrams for the process e+e− → WWγ and WWZ at the Born level
involving quartic electroweak-gauge-boson vertices.
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Figure 1.7: Vector-boson fusion diagrams for the single W/Z/γ process at the Born level.
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For vertex operators, similar story 
as for Higgs-gauge operators:



The same operators are probed by Higgs 
physics, Z-pole measurements and vector 
boson pair production

Starting from precision measurement one can 
formulate model independent predictions 
concerning what kind of Higgs signals are 
possible 

Synergy



Current precision 
constraints

on dimension 6 operators 



For pole observables, interference between  SM and 4-fermion operators is 
suppressed by Γ/m

Corrections can be expressed by Higgs-gauge and vertex operators only  (+1 four-
fermion operator contributing to Γμ ). For example:

Pole constraints 

Observable Experimental value SM prediction

�Z [GeV] 2.4952± 0.0023 2.4954
�had [nb] 41.540± 0.037 41.478

R` 20.767± 0.025 20.741
A` 0.1499± 0.0018 0.1473

A0,`
FB 0.0171± 0.0010 0.0162

Rb 0.21629± 0.00066 0.21474
Ab 0.923± 0.020 0.935
AFB

b 0.0992± 0.0016 0.1032
Rc 0.1721± 0.0030 0.1724
Ac 0.670± 0.027 0.667
AFB

c 0.0707± 0.0035 0.073

Table 4.1: Experimental values of the Z-pole observables as quoted in Ref. [10],
except for A` where the SLC-LEP1 combination from Ref. [11] is given. The errors
of the first six observables are correlated among each other and, likewise, the errors
of the heavy flavor observables are correlated. For the theoretical predictions I use
the best fit SM values from GFitter [11].

parameters. Under new physics corrections the partial width shift as

��(Z ! ff̄) =
Nfm̂Z

12⇡

h
gfZ,L

⇣
gfZ,L

�gZ,e↵

gZ
� gZQf�s2e↵ + �gfZ,L

⌘

+gfZ,R
⇣
gfZ,R

�gZ,e↵

gZ
� gZQf�s2e↵ + �gfZ,R

⌘i
(4.15)

LEP-1 measured all of those but, instead of the partial widths, the experiments

usually quote a set of observables constructed out the ratios of the decay widths.

Their experimental values and SM predictions are summarized in Table 4.1. Below

I discuss the dependence of the Z-pole observables on new physics corrections. One

can easily obtain the analytic expression for the dependence of the Z-pole observables,

but the formulas are lengthy and not particularly revealing. Therefore, below I only

quote approximate numerical dependence.

�Z : The total width of the Z boson is the sum over all partial widths. One should

note ��Z depends on a di↵erent combination of oblique corrections than mW ,

and of course on a di↵erent combination of vertex correction.

24

Z pole
Observable Experimental value SM prediction

mW [GeV] 80.385± 0.015 [12] 80.3602
�W [GeV] 2.085± 0.042 [13] 2.091

Br(W ! had) [%] 67.41± 0.27 [?] 67.51

Table 4.2: W-pole observables. The hadronic branching fractions assume lepton flavor
inversality. For the theoretical predictions of mW and �W , I use the best fit SM values
from GFitter [11], while for Br(W ! had) I take the value quoted in [?].

Assuming flavor blind couplings, in terms of dimension 6 operators the mass and

e↵ective couplings shift as

�mW =
mW
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✓
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2
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4
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◆
. (4.28)

From that it is easy to derive the shift of he partial widths using ��(W ! ff 0) =

Nf m̂W

24⇡
gL�gfW,L,e↵ .

The current experimental information on the W-pole observables boson mass is

summarized in Table 4.2. The new physics corrections can be found using the above

formulas in addition to �W =
P

f �(W ! ff 0) and Br(W ! had) =
P

q �(W !
qq0)/�W .

To summarize, the W pole measurements constrains 3 combinations of parameters

in the e↵ective Lagrangian, the ones in Eq. (4.28).

4.4 Gauge boson pair production

We move to o↵-Z-pole observables, starting with WW pair production. The total

cross sections and angular distributions for process were measured by LEP-2 at several

center-of-mass energies
p
s.

29

W pole

Input: mZ, α(0), Γμ



Including leading order new physics corrections 
amount to replacing Z coupling to fermions with 
effective couplings

These effective couplings encode the effect of 
vertex and oblique correction 

Shift of the effective couplings in the presence of 
dimension-6 operators allows one to read off the 
dependence of observables on dimension-6 operators

Z-pole constraints: nuts and bolts

Lowest order:

w/ new physics:

e.g.



First, assume that BSM affects only oblique 
operators OS and OT but no vertex corrections

Then V-pole measurements imply very strong 
limits on these operators 

In other words, new physics scale suppressing 
these operators is in few-10 TeV ballpark

If that is the case: 
- Higgs coupling to W and Z mass (set by cT)  
mismatch must be unobservably small  
- 2-derivative Higgs couplings to WW, ZZ are 
tightly correlated with couplings to Zγ and γγ 

Pole constraints 

But this is
not robust
conclusion! 



Assuming flavor blind vertex corrections here. 

Pole observables depend on 10 effective theory parameters 
(7 vertex corrections, 2 oblique corrections, 1 four-fermion operator)

We have 10 independent and precisely measured pole observables 
(7 partial widths of Z, 2 partial width of W, W mass)

So we can constrain all these parameters ? No... 

The second part contains vertex-type operators:

LD=6
2FV = ic0HQq̄�

i�̄µqH
†�i !DµH +

�
icHUDu

c�µd̄
c✏HDµH + h.c.

�

+ icHQq̄�̄µqH
† !DµH + icHUu

c�µū
cH† !DµH + icHDd

c�µd̄
cH† !DµH

+ ic0HL
¯̀�i�̄µlH

†�i !DµH + icHL
¯̀̄�µlH

† !DµH + icHEe
c�µē

cH† !DµH. (3.6)

They modify the Z and W boson couplings to the SM fermions, and they introduce

new couplings of the Higgs boson.

To be finished.... LD=6
2FD are 2-fermion operators that include the field strength of

the SM gauge fields (so that they contribute to the anomalous dipole moments of the

SM fermions). LD=6
4F are 4-fermion operators.

3.2 Oblique Corrections

Oblique corrections are deviations of the propagators of the SM gauge bosons from

the canonical form. These can be induced by dimension 6 operators, as they modify

quadratic terms of gauge bosons in the Lagrangian. I define the the 2-point functions

of the SM gauge bosons:

M(V1,µ ! V2,⌫) = ⌘µ⌫⇧V1V2(p
2) + pµp⌫⇧̃V1V2(p

2), (3.7)

where p is the momentum of Vi. The propagator function ⇧̃ does not play any role

when the gauge boson couples to massless fermion, or when it couples via a conserved

vector current, which covers most of the phenomenologically interesting cases; we

ignore it in the following. I also define the expansion of the other propagator function

in powers of momentum squared:

⇧V1V2(p
2) = ⇧(0)

V1V2
+ ⇧(2)

V1V2
p2 + ⇧(4)

V1V2
p4 + . . . (3.8)
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Pole constraints 



Pole observables depend, at linear level, on 10 
dimension-6 operators in Warsaw basis

One can show that LEP constrains 8  combinations 
of EFT parameters: c-hats to the right 

Only combinations of vertex and oblique 
corrections are constrained, not separately 

This leaves 2 EFT directions that can visibly affect  
Higgs searches at the linear level

These 2 directions can be parameterized by cT, cS, 
simply related to usual S and T parameters

From LEP-1 and Tevatron pole data alone there’s no 
model independent constraints on S and T!  

Gupta et al, 1405.0181

Flat directions of pole observables

Cacciapaglia et al
hep-ph/0604111

http://arxiv.org/abs/arXiv:1405.0181
http://arxiv.org/abs/arXiv:1405.0181


The flat directions arise due to EFT operator identities

Obviously, operators OW and OB do  not affect Z and W couplings to fermions

They only affect gauge boson propagators (same way as OS) and Higgs couplings to 
gauge bosons. Moreover, OW affects triple gauge couplings   

They are not part of  Warsaw basis, because they are redundant with vertex 
corrections.  

Conversely, this means that there are 2 combinations of vertex corrections whose 
effect on pole observables is identical to that of S and T parameter!

These 2 flat directions are lifted only when VV production data are included 

Flat directions of pole observables



From this once can reconstruct the χ^2 function of pole observables as a function 
of coefficients of dimension-6 operators 

If in particular model only a subset of operators are generated, one can constrain 
χ^2  and minimize wrt to the new parameter set  

This way, from above one can quickly derive constrains on any model of new physics

Pole constraints AA,Riva
1411.0669



VV production 

e+ W+
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Figure 1.4: Feynman diagrams (CC03) for the process e+e− → W+W− at the Born level.
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Figure 1.5: Feynman diagrams (NC02) for the process e+e− → ZZ at the Born level.
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Figure 1.6: Feynman diagrams for the process e+e− → WWγ and WWZ at the Born level
involving quartic electroweak-gauge-boson vertices.
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Figure 1.7: Vector-boson fusion diagrams for the single W/Z/γ process at the Born level.

24

Depends on triple gauge couplings

Also depends on electron/quark couplings to W and 
Z bosons and on operators modifying EW gauge 
boson propagators 

Indirectly, depends on operators shifting the SM 
reference parameters (GF, α, mZ)

WW production at LEP and LHC



WW production amplitude depends on the 
same effective couplings gZeff and gWeff as 
the pole observables 

It also depends on effective electromagnetic 
couplings which does not change in the 
presence of dimension-6 operators 

Finally, it depends on 3 effective triple gauge 
couplings whose shift in the presence of 
dimension-6 operators is different than for 
pole observables

e+e-→W+W-  nuts and bolts

Eq. (16) shows the possibility to parametrize the effects of the dimension-6 Lagrangian, using
only the modifications of the Z-couplings to fermions. Indeed, it is possible, using field redefinitions
proportional to the equations of motions and by taking appropriate linear combinations of the
dimension-6 operators, to obtain a non-redundant operator basis in which all propagator corrections
vanish, δΠV V = 0, and there are only vertex corrections δgfZ [11] (modifications to theW couplings
are related to the Z couplings by an accidental custodial symmetry at the level of the dimension-6
Lagrangian, δglL,W = δgνL,Z−δgeL,Z , δgqL,Z = δguL,Z−δgdL,Z). Such parametrization is particularly
useful to compare with experiments, and we will further discuss it in Appendix A.3.

In the next section we discuss model-independent constraints on these flat directions from
vector boson pair production at LEP-2 and the LHC

4 Constraints from electroweak gauge boson pair produc-

tion at LEP-2

The e+e− → W+W− process was studied at LEP-2 at several center-of-mass energies. The total
cross sections and differential distributions in the W scattering angle are reported in Ref. [28]. In
principle, from these measurements one can extract different tensor structure of gauge bosons self-
couplings and separate the t- and s-channel photon and Z contributions, thanks to their different
angular and energy dependence.

Our first step is to understand which combinations of dimension-6 operators are constrained
by WW production. To this end we define a set of effective couplings that fully describe the
e+e− →W+W− process in the presence of new physics. One simplifying assumption we introduce
at this point is that there are only up to p2 corrections to the gauge boson propagators.4 This
implies δΠV V (m2

V ) = δΠ(0)
V V +m2

W δΠ(2)
V V , and δΠ′

V V (m
2
V ) = δΠ(2)

V V .
The e+e− → W+W− amplitude can be split into t- and s-channel contributions: M = Mt +

∑

V=γ,Z MV
s . The first piece is the t-channel neutrino exchange amplitude:

Mt = −
g2#W,L;eff

2t
ε̄µ(pW−)ε̄ν(pW+)ȳ(pe+)σ̄νσ · (pe− − pW−)σ̄µx(pe−), (19)

where t = (pe− − pW−)2, ε’s are polarization vectors of W±, and x, y are spinor wave-functions of
e± (see Ref. [19]). The effective W coupling to leptons g#W,L;eff is defined in Eq. (15), and it include
the effects of vertex corrections and W wave-function renormalization due to oblique corrections.
It is the same coupling that determines the W decay width into leptons, therefore this part of the
amplitude constrains the same combination of dimension-6 operators as the pole observables.

The remaining part of the amplitude describes the s-channel photon and Z exchange:

MV
s = −

1

s−m2
V

[geV,L;eff ȳ(pe+)σ̄ρx(pe−) + geV,R;effx(pe+)σρȳ(pe−)] ε̄µ(pW−)ε̄ν(pW+)F V
µνρ, (20)

where s = (pe− − pe+)2. For the photon diagram, the effective coupling is geγ;eff = eeff ≡ e√
1−δΠ

(2)
γγ

for both left- and right-handed fermions. One finds δeeff = 0, that is to say, the photon couplings to

4 This is true for most of the operators in Eq. (3) except for O2W , O2B . Therefore, in the rest of this section we
will assume that, using equations of motion, these two have been traded for other operators in Eq. (3) and 4-fermion
operators. Dropping these operators greatly simplifies the discussion of oblique corrections to the WW production,
and avoids dealing with the complicated tensor structure of gauge boson self-interactions introduced by O2W .
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Eq. (16) shows the possibility to parametrize the effects of the dimension-6 Lagrangian, using
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dimension-6 operators, to obtain a non-redundant operator basis in which all propagator corrections
vanish, δΠV V = 0, and there are only vertex corrections δgfZ [11] (modifications to theW couplings
are related to the Z couplings by an accidental custodial symmetry at the level of the dimension-6
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V V +m2

W δΠ(2)
V V , and δΠ′

V V (m
2
V ) = δΠ(2)

V V .
The e+e− → W+W− amplitude can be split into t- and s-channel contributions: M = Mt +

∑

V=γ,Z MV
s . The first piece is the t-channel neutrino exchange amplitude:
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2t
ε̄µ(pW−)ε̄ν(pW+)ȳ(pe+)σ̄νσ · (pe− − pW−)σ̄µx(pe−), (19)
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the effects of vertex corrections and W wave-function renormalization due to oblique corrections.
It is the same coupling that determines the W decay width into leptons, therefore this part of the
amplitude constrains the same combination of dimension-6 operators as the pole observables.

The remaining part of the amplitude describes the s-channel photon and Z exchange:

MV
s = −

1

s−m2
V

[geV,L;eff ȳ(pe+)σ̄ρx(pe−) + geV,R;effx(pe+)σρȳ(pe−)] ε̄µ(pW−)ε̄ν(pW+)F V
µνρ, (20)

where s = (pe− − pe+)2. For the photon diagram, the effective coupling is geγ;eff = eeff ≡ e√
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(2)
γγ

for both left- and right-handed fermions. One finds δeeff = 0, that is to say, the photon couplings to

4 This is true for most of the operators in Eq. (3) except for O2W , O2B . Therefore, in the rest of this section we
will assume that, using equations of motion, these two have been traded for other operators in Eq. (3) and 4-fermion
operators. Dropping these operators greatly simplifies the discussion of oblique corrections to the WW production,
and avoids dealing with the complicated tensor structure of gauge boson self-interactions introduced by O2W .

10

matter are not affected by dimension-6 operators. For the Z boson diagram, the effective couplings
geZ;eff , defined in Eq. (15), are again the same as the ones that determine the Z-boson decay widths
into left- and right-handed leptons. Qualitatively new effects of dimension-6 operators enter via
the triple gauge boson vertex function:

F V
µνρ = g1,V ;eff

[

ηρµp
ν
W− − ηρνp

µ
W+ + ηµν(pW+ − pW−)ρ

]

+ κV ;eff [ηρµ(pW+ + pW−)ν − ηρν(pW+ + pW−)µ]

+
gVWWλV

m2
W

[ηρµ (pW+(pW+ + pW−)pνW− − pW+pW−(pW+ + pW−)ν)

+ ηρν
(

pW+pW−(pW+ + pW−)µ − pW−(pW+ + pW−)pµW+

)]

. (21)

where gγWW = e, gZWW = gL cos θW . The effective TGCs are defined as

g1,γ;eff = eeff , κγ;eff = eeff [1 + δκγ ] ,

g1,Z;eff =
gL cos θW
√

1− δΠ(2)
ZZ

[

1 + eδΠ(2)
γZ

]

[1 + δg1,Z ] ,

κZ;eff =
gL cos θW
√

1− δΠ(2)
ZZ

[

1 + eδΠ(2)
γZ

]

[1 + δκZ ] . (22)

This accounts for the correction to the WW production cross section due to oblique corrections
to the propagators of electroweak gauge bosons and Z-γ mixing, while vertex corrections are
accounted for in the definition of g$W ;eff and geZ;eff. In the presence of dimension-6 operators the
shift of the effective TGCs is given by

δg1,Z;eff

gL cos θW
≡ δĝ1,Z =

(

g2L + g2Y
)

[

cWB + cB − cHW

g2L
−

cT
4g2Y
−

ĉHL − cll/4

g2L − g2Y

]

,

δκγ;eff

e
≡ δκ̂γ = cWB − cHW − cHB,

λZ = −c3W , (23)

δg1,γ;eff = 0,
δκZ,eff

gL cos θW
= δĝ1,Z −

g2Y
g2L

δκ̂γ, λγ = λZ . (24)

We can see that the WW production is sensitive to 3 new combinations of dimension-6 operators
appearing in δĝ1,Z , δκ̂γ , and λZ in Eq. (23). At the dimension-6 level, all other new physics
corrections can be expressed either by these three combinations (δκZ,eff and δλγ;efff in Eq. (24))
or by the combinations that enter in the pole observables (δg$W,L;eff, δg$Z,L;eff , and δg$Z,R;eff). For
vanishing oblique and vertex corrections, the shifts of our effective TGCs in Eq. (23) reduce to
the usual anomalous TGCs defined by Eq. (10), which are commonly used in the literature to
parameterize the vector boson pair production. However, our formulation is more general and
is also valid in the presence of oblique and vertex corrections. It can be used with any basis of
dimension-6 operators, also when some anomalous TGCs do not appear in that basis. For example,
in the Warsaw basis of Ref. [4], the anomalous TGC δg1,Z does not receive direct contributions
from new physics. Instead, a combination of vertex and oblique corrections has exactly the same
effect as δg1,Z , which is captured by our formalism. The analogous formalism applies to the WW
production at the LHC, with δg$W ;eff, δg$Z;eff replaced by the W and Z couplings to quarks.
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WW production amplitude depends on the 
same effective couplings gZeff and gWeff as 
the pole observables 

It also depends on effective electromagnetic 
couplings which does not change in the 
presence of dimension-6 operators 

Finally, it depends on 3 effective triple gauge 
couplings whose shift in the presence of 
dimension-6 operators is different than for 
pole observables

e+e-→W+W-  nuts and bolts
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Effective TGCs are not 
the same as TGCs in the 

Lagrangian ! 



11 parameters affecting WW and WZ production at linear level (previous 10 plus 
O3W which affects only TGCs)  

However, 8 combinations of these 11 parameters are already constrained by pole 
measurements 

Precision of WW measurements is only O(1)%  in LEP and O(10%) in LHC, 
compared with O(0.1%) precision of LEP measurement of leptonic vertex 
corrections and oblique corrections 

Thus, these 8 EFT directions constrained by pole measurements  are hardly 
relevant for WW and WZ measurements, given existing constraints

We can use a simplified treatment of WW and WZ production, with only 3 free 
parameters  

VV production constraints



These 3 EFT directions are EQUIVALENT to the 
usual 3 dimensional  TGC parameterization

cT, cS, c3W can be mapped to g1Z, κγ and λZ

Constraining these 3 TGCs gives a decent 
approximation of the constraints on EFT 
parameters cT, cS, c3W

Constraint on vertex corrections can be obtained, 
again to a decent accuracy, assuming c-hats are 
zero

Simplified EFT for VV production



Total and differential WW production cross 
section at different energies of LEP-2

Single W production cross section at different 
energies of LEP-2

Constraints from VV production

√s (GeV)

σ
W

W
 (p

b)

YFSWW and RacoonWW

LEP
 

0

10

20

160 180 200

16

17

18

190 195 200 205

0

10

20

30

160 180 200
√s (GeV)

σ
W

W
 (p

b)

YFSWW/RacoonWW
no ZWW vertex (Gentle)
only νe exchange (Gentle)

LEP
 

Figure 5.1: Measurements of the W-pair production cross-section, compared to the predictions
of RACOONWW [168] and YFSWW [161, 167]. The shaded area represents the uncertainty
on the theoretical predictions, estimated as ±2% for

√
s < 170 GeV and ranging from 0.7 to

0.4% above 170 GeV. The W mass is fixed at 80.35 GeV; its uncertainty is expected to give a
significant contribution only at threshold energies.91

Fitting to following data:
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Figure 1.4: Feynman diagrams (CC03) for the process e+e− → W+W− at the Born level.
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Figure 1.5: Feynman diagrams (NC02) for the process e+e− → ZZ at the Born level.
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Figure 1.6: Feynman diagrams for the process e+e− → WWγ and WWZ at the Born level
involving quartic electroweak-gauge-boson vertices.
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Figure 1.7: Vector-boson fusion diagrams for the single W/Z/γ process at the Born level.
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Total and differential WW production cross 
section at different energies of LEP-2

Single W production cross section at different 
energies of LEP-2

Constraints from VV production
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√
s Single-W hadronic cross-section (pb)

(GeV) ALEPH DELPHI L3 LEP

182.7 0.44 + 0.29
− 0.24 0.11 + 0.31

− 0.14 0.58 + 0.23
− 0.20 0.42± 0.15

188.6 0.33 + 0.16
− 0.15 0.57 + 0.21

− 0.20 0.52 + 0.14
− 0.13 0.47± 0.09

191.6 0.52 + 0.52
− 0.40 0.30 + 0.48

− 0.31 0.84 + 0.44
− 0.37 0.56± 0.25

195.5 0.61 + 0.28
− 0.25 0.50 + 0.30

− 0.27 0.66 + 0.25
− 0.23 0.60± 0.14

199.5 1.06 + 0.30
− 0.27 0.57 + 0.28

− 0.26 0.37 + 0.22
− 0.20 0.65± 0.14

201.6 0.72 + 0.39
− 0.33 0.67 + 0.40

− 0.36 1.10 + 0.40
− 0.35 0.82± 0.20

204.9 0.34 + 0.24
− 0.21 0.99 + 0.33

− 0.31 0.42 + 0.25
− 0.21 0.54± 0.15

206.6 0.64 + 0.21
− 0.19 0.81 + 0.23

− 0.22 0.66 + 0.20
− 0.18 0.69± 0.12

Table 5.10: Single-W hadronic production cross-section from the LEP experiments and com-
bined values for the eight energies between 183 and 207 GeV, in the hadronic decay channel of
the W boson. The χ2/dof of the combined fit is 13.2/16.
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Figure 5.7: Measurements of the single-W production cross-section in the hadronic decay
channel of the W boson, compared to the predictions of WTO [198], WPHACT [195] and
grc4f [187]. The shaded area represents the ±5% uncertainty on the predictions.
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The limits are rather weak, in part due to an accidental flat direction of 
LEP-2 constraints along λz ≈ -δg1Z

This implies that dimension-6 operator coefficients are constrained at the 
O(1) level  

In fact, the limits are sensitive to whether terms quadratic in dimension-6 
operator are included or not 

This in turn implies that the limits can be affected by dimension-8 
operators if, as expected from EFT counting,  c8∼c6^2  

Constraints from WW production

see also
1405.1617

Central values and 1 sigma errors: 
AA,Riva

1411.0669

http://arxiv.org/abs/arXiv:1405.1617
http://arxiv.org/abs/arXiv:1405.1617
http://arxiv.org/abs/arXiv:1405.1617
http://arxiv.org/abs/arXiv:1405.1617


These limits can be affected by dimension-8 operators if, as expected from 
EFT counting,  c8∼c6^2  

Still, they are useful to constrain specific BSM models that predict TGCs 
away from the flat direction

In particular, many models predict λZ<< δg1Z, κγ, because the 
corresponding operator O3W can be generated only at the loop level

For  λZ=0 much stronger limits follow:

Constraints from WW production
Central values and 1 sigma errors: 



One can include constraints from high pT 
tails of WW and WZ production at LHC 
(standard TGC probe)

These tails are dominated by quadratic 
terms in dimension-6 operators (or in 
aTGCs), rather than by linear interference 
terms as in the case of LEP-2 

For the magnitude of TGCs being probed by 
LHC, operators with dimensions higher than 
6 are expected to contribute comparably or 
more, if these operators have natural 
coefficients from the EFT point of view 

In other words, in the regime where LHC 
currently probes the TGCs, the EFT 
expansion is not valid

Comments on LHC constraints



Another constraint on CP conserving higher 
derivative Higgs couplings to γγ, Zγ, ZZ and 
WW (effectively, 2 parameters for 4 
couplings)

For any model predicting c3W≈0, constraints 
on custodial symmetry violation of Higgs 
couplings to W and Z: 
-0.06 < cw-cz < 0.24 at 95% CL 

has to rescale the Higgs boson field as h ! (1 � cH)h . After the rescaling, the

Lagrangian describing the single Higgs boson couplings to two SM particles has the

form

Lh = Lh,g + Lh,f . (3.21)

The first term stands for couplings to the SM gauge bosons,

Lh,g =
h

v

�
2cwm

2
WW+

µ W�
µ + czm

2
ZZµZµ

+
g2s
4
cggG

a
µ⌫G

a
µ⌫ �

g2L
2
cwwW

+
µ⌫W

�
µ⌫ �

e2

4
c��Aµ⌫Aµ⌫ � g2L

4 cos2 ✓W
czzZµ⌫Zµ⌫ � egL

2 cos ✓W
cz�Aµ⌫Zµ⌫

+
g2s
4
c̃ggG

a
µ⌫G̃

a
µ⌫ �

g2L
2
c̃wwW

+
µ⌫W̃

�
µ⌫ �

e2

4
c̃��Aµ⌫Ãµ⌫ � g2L

4 cos2 ✓W
c̃zzZµ⌫Z̃µ⌫ � egL

2 cos ✓W
c̃z�Aµ⌫Z̃µ⌫

�
,

(3.22)

The dictionary between these couplings and the parameters in the dimension 6

Lagrangian Eq. (3.2) is the following:

cw = 1� cH ,

cz = 1� cH � cT ,

cgg = 4cGG,

c�� = �4 (cWW � cWB + cBB) ,

cz� = � 2

g2L + g2Y

�
2g2LcWW � (g2L � g2Y )cWB � 2g2Y cBB

�
,

czz = � 4

(g2L + g2Y )
2

�
g4LcWW + 2g2Lg

2
Y cWB + g4Y cBB

�
,

cww = �4cWW . (3.23)

Note that 7 Higgs couplings map to only 6 parameters of the dimension 6 Lagrangians

One finds that couplings satisfy the following relation:

cww = czz +
2g2Y cz�
g2L + g2Y

+
g4Y

(g2L + g2Y )
2
c��. (3.24)
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Consequences for Higgs physics

4



To take away
There are strong constraints on certain combinations 
of dimension-6 operators from the pole observables 
measured at LEP-1 and other colliders

WW production process is extremely important, 
because it lifts flat directions of the pole observables 

Current model independent LEP-2 constrain are weak, 
due to an accidental flat directions

Better probes of dimension-6 operators in WW 
production should be designed for future e+e- 
colliders



Outlook

Better probes of dimension-6 operators in VV 
production at the LHC?

Drop the assumption of flavor blindness 
(MFV? SU(2)?)

Full set of precision constraints, including 
off-pole observables   


