Higgs-boson pair production in the D=6 extension of the Standard Model

ERC workshop "Effective Field Theories for Collider Physics, Flavor Phenomena and Electroweak Symmetry Breaking"

Mainz, 10.11.2014

Florian Goertz

CERN

arXiv: 1410.3471 FG, Papaefstathiou, Yang, Zurita

Is it the SM-Higgs Boson? Scale of New Physics?

Very important test: Higgs potential self couplings

$$V(h) = \frac{1}{2}m_h^2 h^2 + \lambda_{hhh} v h^3 + \frac{1}{4}\lambda_{hhhh} h^4 \qquad (D < 4)$$

$$V(h) = \frac{1}{2}m_h^2 h^2 + \lambda_{hhh} v h^3 + \frac{1}{4}\lambda_{hhhh} h^4$$

• In the SM:
$$\lambda_{hhh}^{SM}=\lambda_{hhhh}^{SM}=rac{m_h^2}{2v^2}pprox 0.13$$

Very important test: Higgs potential self couplings

$$V(h) = \frac{1}{2} \prod_{h=1}^{2} h^{2} + \lambda_{hhh} v h^{3} + \frac{1}{4} \lambda_{hhhh} h^{4}$$

 $m_h\simeq 125\,{\rm GeV}$ established @LHC

Very important test: Higgs potential self couplings

$$V(h) = \frac{1}{2}m_h^2 h^2 + \lambda_{hhh} v h^3 + \frac{1}{4}\lambda_{hhhh} h^4$$

Triple Higgs production: extremely challenging @(V)LHC 0.06 fb @ LHC14; 9.45 fb @ VLHC (200 TeV)

Plehn, Rauch, ph/0507321

HH Production @ LHC

• Most important mechanism: $\lg \rightarrow hh$

Eboli, Marques, Novaes, Natale, PLB 197(1987)269 Glover, van der Bij, NPB 309(1988)282 Dawson, Dittmaier, Spira, PRD 58(1998)115012 Grigo, Hoff, Melnikov, Steinhauser, 1305.7340 de Florian, Mazzitelli, 1305.5206, 1309.6594 see also Maltoni, Vryonidou, Zaro, 1408.6542

 $\sigma(gg \to hh)_{\rm LO} \sim 17 \,{\rm fb}$ $\sigma(gg \to hh)_{\rm NLO} \sim 33 \,{\rm fb}$ $\sigma(gg \to hh)_{\rm NNLO} \sim 40 \,{\rm fb}$

Theoretical error (NNLO): $f_{th} \sim 10\%$ (scale) + 10\% (pdf+ α_s) + 10% (m_t^{-1})

LHC@14TeV m_h~125 GeV

HH Production @ LHC

• Most important mechanism: $\lg \rightarrow hh$

Eboli, Marques, Novaes, Natale, PLB 197(1987)269 Glover, van der Bij, NPB 309(1988)282 Dawson, Dittmaier, Spira, PRD 58(1998)115012 Grigo, Hoff, Melnikov, Steinhauser, 1305.7340 de Florian, Mazzitelli, 1305.5206, 1309.6594 see also Maltoni, Vryonidou, Zaro, 1408.6542

 $\sigma(gg \to hh)_{\rm LO} \sim 17 \,{\rm fb}$ $\sigma(gg \to hh)_{\rm NLO} \sim 33 \,{\rm fb}$ $\sigma(gg \to hh)_{\rm NNLO} \sim 40 \,{\rm fb}$

Conservative assumption for analysis: $f_{th} = 30\%$

LHC@14TeV m_h~125 GeV

HH Production @ LHC

• Most important mechanism: $\lg \rightarrow hh$

HH Production @ LHC

• Other production channels $qq' \rightarrow hhqq', Vhh, t\bar{t}hh$ ~10-30 times smaller (neglect in the following)

See [e.g.] Baglio, Djouadi, Grober, Muhlleitner, Quevillon, Spira, 1212.5581, and refs. therein

Decay Channels

• Discovery potential at LHC studied in different channels

hadronic modes dominate

Decay Channels

Significance @ 600 fb⁻¹

 $hh \rightarrow bb\gamma\gamma$

Baur, Plehn, Rainwater, hep-ph/0310056

 $\leq 2\sigma$ (S/B=6/12)

 $hh \rightarrow b\bar{b}\tau^+\tau^-$

Dolan, Englert, Spannowsky, 1206.5001

 $\sim 4.5\sigma$

(S/B=57/119)

Rubin, Salam, 0802.2470

 $hh \to b\bar{b}W^+W^-$

 $\sim 3\sigma$

(S/B=12/8)

Papaefstathiou, Yang, Zurita, 1209.1489

Theorists' analyses!

HH in D=6 SM

Decay Channels

 $hh \rightarrow bb\gamma\gamma$

Baur, Plehn, Rainwater, hep-ph/0310056

 $hh \to b\bar{b}\tau^+\tau^-$

Dolan, Englert, Spannowsky, 1206.5001

FG, Papaefstathiou, Yang, Zurita, 1309.3805

 $hh \rightarrow b\bar{b}W^+W^-$ Papaefstathiou, Yang, Zurita, 1209.1489

• Expected constraints on $\lambda \equiv \lambda_{hhh}/\lambda_{hhh}^{\rm SM}$ @LHC

from FG, Papaefstathiou, Yang, Zurita, 1301.3492

Process	$600 \text{ fb}^{-1} (2\sigma)$	$600 \text{ fb}^{-1} (1\sigma)$	$3000 \text{ fb}^{-1} (2\sigma)$	$3000 \text{ fb}^{-1} (1\sigma)$
$b\overline{b}\tau^+\tau^-$	(0.22,4.70)	(0.57,1.64)	(0.42,2.13)	(0.69, 1.40)
$b\bar{b}W^+W^-$	(0.04, 4.88)	(0.46, 1.95)	(0.36, 4.56)	(0.65, 1.46)
$b \overline{b} \gamma \gamma$	(-0.56, 5.48)	(0.09, 4.83)	(0.08, 4.84)	(0.48, 1.87)

- Add single D=6 coefficient / consistency test of SM
- Assumed $\lambda_{\mathrm{true}} = 1$
- Reduce error by employing ratio $C_{hh} = \frac{\sigma(gg \rightarrow hh)}{\sigma(gg \rightarrow h)} \equiv \frac{\sigma_{hh}}{\sigma_h}$

→ reduction of scale uncertainty + cancellation of common systematics (to some extend)

Combination yields ~ 30% accuracy with 3000 fb^{-1}

Full Analysis of SM + D=6

Higgs Boson EFT

• Assume (unspecified) New Physics at a scale Λ >>v \rightarrow leading effects: D=6 operators built of SM content

Buchmuller, Wyler, NPB 268(1986)621-653

Grzadkowski, Iskrzunski, Misiak, Rosiek, 1008.4884

Here:

$$\begin{aligned} \mathcal{L} &= \mathcal{L}_{\rm SM} + \frac{c_H}{2\Lambda^2} (\partial^{\mu} |H|^2)^2 - \frac{c_6}{\Lambda^2} \lambda |H|^6 \\ &- \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \text{h.c.} \right) \\ &+ \frac{\alpha_s c_g}{4\pi\Lambda^2} |H|^2 G^a_{\mu\nu} G^{\mu\nu}_a + \frac{\alpha' c_\gamma}{4\pi\Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu} \\ &+ \frac{ig c_{HW}}{16\pi^2\Lambda^2} (D^{\mu} H)^{\dagger} \sigma_k (D^{\nu} H) W^k_{\mu\nu} + \frac{ig' c_{HB}}{16\pi^2\Lambda^2} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{ig c_W}{2\Lambda^2} (H^{\dagger} \sigma_k \overleftrightarrow{D}^{\mu} H) D^{\nu} W^k_{\mu\nu} + \frac{ig' c_B}{2\Lambda^2} (H^{\dagger} \overleftrightarrow{D}^{\mu} H) \partial^{\nu} B_{\mu\nu} \quad (+\mathcal{L}_{\rm CP} + \mathcal{L}_{\rm 4f}) \end{aligned}$$

Higgs Boson EFT

• Assume (unspecified) New Physics at a scale Λ >>v \rightarrow leading effects: D=6 operators built of SM content

Buchmuller, Wyler, NPB 268(1986)621–653

Grzadkowski, Iskrzynski, Misiak, Rosiek, 1008.4884

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{c_H}{2\Lambda^2} (\partial^{\mu} |H|^2)^2 - \frac{c_6}{\Lambda^2} \lambda |H|^6 - \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \text{h.c.}\right)$$

$$- \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \text{h.c.}\right)$$

$$+ \frac{\alpha_s c_g}{4\pi \Lambda^2} |H|^2 G^a_{\mu\nu} G^{\mu\nu}_a + \frac{\alpha' c_\gamma}{4\pi \Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu} + \frac{ig' c_{HB}}{16\pi^2 \Lambda^2} (D^{\mu} H)^{\dagger} \sigma_k (D^{\nu} H) W^k_{\mu\nu} + \frac{ig' c_{HB}}{16\pi^2 \Lambda^2} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} + \frac{ig c_W}{2\Lambda^2} (H^{\dagger} \sigma_k \overleftrightarrow{D}^{\mu} H) D^{\nu} W^k_{\mu\nu} + \frac{ig' c_B}{2\Lambda^2} (H^{\dagger} \overleftrightarrow{D}^{\mu} H) \partial^{\nu} B_{\mu\nu} (+\mathcal{L}_{\rm CP} + \mathcal{L}_{\rm 4f})$$

For non-linear realization, see e.g. Grinstein, Trott 0704.1505; Contino, Grojean, Moretti, Piccinini, Rattazzi 1002.1011

0---

Higgs Boson EFT

$$\begin{aligned} \mathcal{L} &= \mathcal{L}_{\rm SM} + \frac{c_H}{2\Lambda^2} (\partial^{\mu} |H|^2)^2 - \frac{c_6}{\Lambda^2} \lambda |H|^6 \\ &- \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \text{h.c.} \right) \\ &+ \frac{\alpha_s c_g}{4\pi\Lambda^2} |H|^2 G^a_{\mu\nu} G^{\mu\nu}_a + \frac{\alpha' c_\gamma}{4\pi\Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu} \\ &+ \frac{ig c_{HW}}{16\pi^2 \Lambda^2} (D^{\mu} H)^{\dagger} \sigma_k (D^{\nu} H) W^k_{\mu\nu} + \frac{ig' c_{HB}}{16\pi^2 \Lambda^2} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{ig c_W}{2\Lambda^2} (H^{\dagger} \sigma_k \overleftrightarrow{D}^{\mu} H) D^{\nu} W^k_{\mu\nu} + \frac{ig' c_B}{2\Lambda^2} (H^{\dagger} \overleftrightarrow{D}^{\mu} H) \partial^{\nu} B_{\mu\nu} \end{aligned}$$

• Neglected operators that are strongly constrained from precision tests See e.g.: Elias-Miro, Espinosa, Masso, Pomarol, 1308.1879; Pomarol, Riva, 1308.2803; Corbett, Eboli, Gonzalez-Fraile, Gonzalez-Garcia 1207.1344, 1211.4580, 1304.1151; Falkowski, Riva, Urbano, 1303.1812; Contino, Ghezzi, Grojean, Muhlleitner, Spira, 1303.3876; Dumont, Fichet, von Gersdorff 1304.3369; Falkowski, Riva, 1411.0669

Higgs Boson EFT

$$\begin{aligned} \mathcal{L} &= \mathcal{L}_{\rm SM} + \frac{c_H}{2\Lambda^2} (\partial^{\mu} |H|^2)^2 - \frac{c_6}{\Lambda^2} \lambda |H|^6 \\ &- \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \text{h.c.} \right) \\ &+ \frac{\alpha_s c_g}{4\pi\Lambda^2} |H|^2 G^a_{\mu\nu} G^{\mu\nu}_a + \frac{\alpha' c_\gamma}{4\pi\Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu} \\ &+ \frac{ig c_{HW}}{16\pi^2 \Lambda^2} (D^{\mu} H)^{\dagger} \sigma_k (D^{\nu} H) W^k_{\mu\nu} + \frac{ig' c_{HB}}{16\pi^2 \Lambda^2} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{ig c_W}{2\Lambda^2} (H^{\dagger} \sigma_k \overleftarrow{D}^{\mu} H) D^{\nu} W^k_{\mu\nu} + \frac{ig' c_B}{2\Lambda^2} (H^{\dagger} \overleftarrow{D}^{\mu} H) \partial^{\nu} B_{\mu\nu} \end{aligned}$$

• Precision tests also lead to the approximate relation (EOM consistent)

Higgs Boson EFT

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\rm SM} + \frac{c_H}{2\Lambda^2} (\partial^{\mu} |H|^2)^2 - \frac{c_6}{\Lambda^2} \lambda |H|^6 \text{ Pure Higgs} \\ &= \left(- \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \text{h.c.} \right) \\ &+ \frac{\alpha_s c_g}{4\pi \Lambda^2} |H|^2 G^a_{\mu\nu} G^{\mu\nu}_a + \frac{\alpha' c_\gamma}{4\pi \Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu} \right) \\ &+ \frac{ig c_{HW}}{16\pi^2 \Lambda^2} (D^{\mu} H)^{\dagger} \sigma_k (D^{\nu} H) W^k_{\mu\nu} + \frac{ig' c_{HB}}{16\pi^2 \Lambda^2} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{ig c_W}{2\Lambda^2} (H^{\dagger} \sigma_k \overleftarrow{D}^{\mu} H) D^{\nu} W^k_{\mu\nu} + \frac{ig' c_B}{2\Lambda^2} (H^{\dagger} \overleftarrow{D}^{\mu} H) \partial^{\nu} B_{\mu\nu} \end{split}$$

• Precision tests also lead to the approximate relation (EOM consistent)

Higgs Boson EFT

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\rm SM} + \frac{c_H}{2\Lambda^2} (\partial^{\mu} |H|^2)^2 - \frac{c_6}{\Lambda^2} \lambda |H|^6 \text{ Pure Higgs} \\ &- \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \text{h.c.} \right) \\ &+ \frac{\alpha_s c_g}{4\pi \Lambda^2} |H|^2 G^a_{\mu\nu} G^{\mu\nu}_a + \frac{\alpha' c_\gamma}{4\pi \Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu} \\ &+ \frac{ig c_{HW}}{16\pi^2 \Lambda^2} (D^{\mu} H)^{\dagger} \sigma_k (D^{\nu} H) W^k_{\mu\nu} + \frac{ig' c_{HB}}{16\pi^2 \Lambda^2} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{ig c_W}{2\Lambda^2} (H^{\dagger} \sigma_k \overleftarrow{D}^{\mu} H) D^{\nu} W^k_{\mu\nu} + \frac{ig' c_B}{2\Lambda^2} (H^{\dagger} \overleftarrow{D}^{\mu} H) \partial^{\nu} B_{\mu\nu} \end{split}$$

What about light-quark Yukawas

 → can assume MFV, but even should be
 negligible on more general grounds: FCNCs

 $\rightarrow hh$ 99

Relevant Terms:

$$\mathcal{L}_{hh} = -\frac{m_h^2}{2v} \left(1 - \frac{3}{2}c_H + c_6 \right) h^3 + \frac{\alpha_s c_g}{4\pi} \left(\frac{h}{v} + \frac{h^2}{2v^2} \right) G^a_{\mu\nu} G^{\mu\nu}_a - \left[\frac{m_t}{v} \left(1 - \frac{c_H}{2} + c_t \right) \bar{t}_L t_R h + \frac{m_b}{v} \left(1 - \frac{c_H}{2} + c_b \right) \bar{b}_L b_R h + \text{h.c.} \right] - \left[\frac{m_t}{v^2} \left(\frac{3c_t}{2} - \frac{c_H}{2} \right) \bar{t}_L t_R h^2 + \frac{m_b}{v^2} \left(\frac{3c_b}{2} - \frac{c_H}{2} \right) \bar{b}_L b_R h^2 + \text{h.c.} \right]$$

$$c_i \to c_i \Lambda^2 / v^2, \ H = \exp\left(-i\frac{T\cdot\xi}{v}\right) \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\v+h \end{pmatrix}, \quad h \to \left(1 - \frac{c_H v^2}{2\Lambda^2}\right) h - \frac{c_H v}{2\Lambda^2} h^2 - \frac{c_H}{6\Lambda^2} h^3$$

non-linear redefinition: removes momentum-dependent interactions

(**1A**)

HH in D=6 SM

Florian Goertz

(**1B**)

 $99 \rightarrow hh$

HH in D=6 SM

00000000

λhhh VS λhhhh

$$\mathcal{L} \supset -\frac{m_h^2}{2v} \left(1 - \frac{3}{2}c_H + c_6 \right) h^3 - \frac{m_h^2}{8v^2} \left(1 - \frac{25}{3}c_H + 6c_6 \right) h^4$$

$$\lambda_{hhh} = \frac{m_h^2}{2v^2} \left(1 + \Delta\right) \neq \lambda_{hhhh} = \frac{m_h^2}{2v^2} \left(1 + 6\Delta + \frac{2}{3}c_H\right)$$

$$\Delta = c_6 - 3c_H/2$$

Cross Section in SM (LO)

Cross Section in D=6 EFT

Higgs Decays in D=6 EFT

Mode	tree	1 loop QCD	1 loop
$h \rightarrow bb$	c_H, c_b	c_H, c_b	c_H, c_b, c_t, c_6, c_W
$h \to \tau \tau$	$c_H,c_{ au}$	-	c_H, c_τ, c_6, c_W
$h\to\gamma\gamma$	c_γ	-	$c_H, c_b, c_t, c_\tau, c_W$
$h \rightarrow WW$	c_H, c_{HW}, c_W	-	$c_H, c_W, c_b, c_t, c_\tau, c_6$
$gg \rightarrow hh$	c_g	c_t, c_b	c_t,c_b,c_H,c_6
$gg \to h$	c_g	c_t,c_b,c_H	c_t,c_b,c_H

Table 1: Operators that modify the various decays of the Higgs boson at the tree level (second column), at the one-loop level, considering only QCD corrections (third column), as well as at the full one-loop level (fourth column). For completeness, we also include the operators entering $gg \rightarrow h$ and $gg \rightarrow hh$. The operators that are highlighted in bold text are included in the treatment of the present paper in the corresponding topology.

Higgs Decays in D=6 EFT

Mode	tree	$1 \log QCD$	1 loop
h ightarrow bb	c_H,c_b	$-c_H, c_b$	c_H, c_b, c_t, c_6, c_W
$h \to \tau \tau$	$c_H,c_{ au}$	-	$c_H, c_{ au}, c_6, c_W$
$h\to\gamma\gamma$	c_{γ} Loop + Λ^2 sup	pressed wrt SM	$c_H, c_b, c_t, c_\tau, c_W$
$h \to WW$	c_H, c_{HW}, c_W	-	$c_H, c_W, c_b, c_t, c_\tau, c_6$
$gg \rightarrow hh$	c_g	c_t,c_b	c_t, c_b, c_H, c_6
$gg \to h$	c_g	c_t,c_b,c_H	c_t,c_b,c_H
Included via eHDEC	'ΑΥ:		Сни Сн

Contino, Ghezzi, Grojean, Muhlleitner, Spira, 1403.3381

 $c_W = -c_B = -\frac{c_{HW}}{16\pi^2} = \frac{c_{HB}}{16\pi^2}$

6 Parameters: $\{c_6, c_H, c_t, c_b = c_\tau, c_g, c_\gamma\}$ Unique accessibility in hh production!

HH in D=6 EFT

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\rm SM} + \frac{c_H}{2\Lambda^2} (\partial^{\mu} |H|^2)^2 - \frac{c_6}{\Lambda^2} \lambda |H|^6 \text{ Pure Higgs} \\ &\quad \left[-\left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \text{h.c.} \right) \\ &\quad \left[+ \frac{\alpha_s c_g}{4\pi\Lambda^2} |H|^2 G_{\mu\nu}^a G_a^{\mu\nu} + \frac{\alpha' c_\gamma}{4\pi\Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu} \right] \end{split}$$

6 Parameters:
$$\{c_6, c_H, c_t, c_b = c_\tau, c_g, c_\gamma\}$$

Unique accessibility in hh production!

Analysis

• Focus on $hh \rightarrow b\bar{b}\tau^+\tau^-$ @LHC14

Dolan, Englert, Spannowsky, 1206.5001 Baglio, Djouadi, Grober, Muhlleitner, Quevillon; 1212.5581 Barr, Dolan, Englert, Spannowsky,, 1309.6318 Maierhoefer, Papaefstathiou, 1401.0007

• Main backgrounds: • $pp \rightarrow t\bar{t} \rightarrow b\bar{b}\tau^+\tau^- (+E_{mis})$

Generated with aMC@NLO (+ HERWIG++)

Frixione et. al.,, 1010.0568 Frederix et. al., 1104.5613 Alwall et. al., 1405.0301

- $pp \to ZZ \to b\bar{b}\tau^+\tau^-$
- $pp \to hZ \to b\bar{b}\tau^+\tau^-$

Analysis: $hh \rightarrow b\bar{b}\tau^+\tau^-$

- Main backgrounds: $pp \rightarrow t\bar{t} \rightarrow b\bar{b}\tau^+\tau^- (+E_{mis})$
 - Generated with aMC@NLO (+ HERWIG++)

Frixione et. al.,, 1010.0568 Frederix et. al., 1104.5613 Alwall et. al., 1405.0301

- $777 \cdot 1\overline{1} + -$
- $pp \to ZZ \to b\bar{b}\tau^+\tau^-$
- $pp \to hZ \to b\bar{b}\tau^+\tau^-$

Cuts:

- Two τ -tagged jets with $p_{\perp} > 20 \,\text{GeV}$
- one fat jet with R = 1.4 (CA), two hardest sub-jets b-tagged ($|\eta| < 2.5$) Butterworth, Davison, Rubin, Salam, 0802.2470
- $m_{\tau^+\tau^-}, m_{\text{fat}} \in [m_h 25 \,\text{GeV}, m_h + 25 \,\text{GeV}]$
- $p_{\perp}^{\text{fat}}, p_{\perp}^{\tau\tau} > 100 \text{ GeV}, \ \Delta R(h,h) > 2.8, \ p_{\perp}^{hh} < 80 \text{ GeV}$

 b,τ -tagging efficiencies: 70 %

see: Dolan, Englert, Spannowsky, 1206.5001; Maierhoefer, Papaefstathiou, 1401.0007

Results

hh Cross Section

MSTW2008nlo_nf4 PDF

• Effect of varying individual Wilson coefficients

Dashed: parameter-range excluded from h data at the LHC
 → used HiggsBounds, HiggsSignals on cross sections calculated via eHDECAY

Bechtle et.al., 1311.0055, 1305.1933

hh Cross Section

$$+ C_{\Box}F_{\Box}(1 - c_{H} + 2c_{t}) + 2c_{g}C_{\Box}\Big|^{2} + \Big|C_{\Box}G_{\Box}\Big|^{2}\Big\}$$

hh after cuts

Efficiency

Cross Section

MC generator important for analysis \rightarrow describe distributions, which determine efficiencies $\epsilon(c_i)$

Full Analysis

- Start with model where only $c_6 \neq 0$ (unconstrained from single h) \searrow Vary only λ as done in previous studies (\rightarrow BRs unchanged)
 - $S(c_6)$ signal + B background events @ given L_{int}
 - $N(c_6) = S(c_6) + B$, $\delta N^2 = \delta S^2 + \delta B^2$

Full Analysis

- Start with model where only $c_6 \neq 0$ (unconstrained from single h) \searrow Vary only λ as done in previous studies (\rightarrow BRs unchanged)
 - $S(c_6)$ signal + B background events @ given L_{int}
 - $N(c_6) = S(c_6) + B$, $\delta N^2 = \delta S^2 + \delta B^2 + S^2 f_{\rm th}^2$

$$\delta N^2 = N + S^2 f_{\rm th}^2$$

Full Analysis

- Start with model where only $c_6
 eq 0$ (unconstrained from single h) \searrow Vary only λ as done in previous studies (\Rightarrow BRs unchanged) $\delta N^2 = N + S^2 f_{
 m th}^2$
- Expected constraint on c_6 , assuming the SM to be true ($c_6=0$):

Compute how many standard deviations $\delta N(c_6)$ away a given $N(c_6)$, as predicted from theory, is from $N(c_6 = 0)$.

Full Analysis

 $c_6^{1\sigma}(600 \text{ fb}^{-1}) \in (-0.4, 0.5), \ c_6^{1\sigma}(3000 \text{ fb}^{-1}) \in (-0.3, 0.3), \ f_{\text{th}} = 0$ $c_6^{1\sigma}(600 \text{ fb}^{-1}) \in (-0.5, 0.8), \ c_6^{1\sigma}(3000 \text{ fb}^{-1}) \in (-0.4, 0.4), \ f_{\text{th}} = 0.3$

 $(c_6 > 0)$ -region more challenging as cross section reduced \rightarrow larger uncertainty

Full D=6 Theory

- Similar as before, assume SM ($c_i=0$) to be true and calculate distance of predicted $N(c_6, \ldots, c_b)$ from $N(c_6 = 0, \ldots, c_b = 0)$ in units of $\delta N(c_6, \ldots, c_b)$.
- Show results in 2D grids (c_6, c_i) , $i=H,g,\gamma,t,b$
- Marginalize over other directions, varying the coefficients in the 95% CL allowed regions, obtained from HiggsBounds/Signals (with a Gaussian weight)

Scan of the Parameter Space

- Show results in 2D grids (c_6, c_i) , $i=H,g,\gamma,t,b$
- Marginalize over other directions, varying the coefficients in the 95% CL allowed regions, obtained from HiggsBounds/Signals (with a Gaussian weight)

$$p(c_i, c_6) = \frac{\bar{p}(c_i, c_6)}{\max(\bar{p}(c_i, c_6))}, \quad \bar{p}(c_i, c_6) = \sum_{\{c_f\}} p(c_6, c_i, \{c_f\}) \times p_{\text{Gauss.}}(\{c_f\})$$
$$p_{\text{Gauss.}}(\{c_f\}) = \prod_f \frac{1}{\sigma_f \sqrt{2\pi}} \exp\left\{-\frac{(x_f - \mu_f)^2}{2\sigma_f^2}\right\}$$

• Draw iso-contours corresponding to probability-drop of 1σ

Results: ct-c6

• Clear correlation visible: Enhanced hh cross section due to negative c_t can be compensated by reduction due to positive c_6

6+-6

• Better knowledge on 'top Yukawa' c_t helpful to improve the range for c_6

• On the other hand, could also obtain meaningful information on c_t in hh

HH in D=6 SM

Lg

• Again compensation of effects from different operators possible \rightarrow range for c_6 depends significantly on other coefficients

• As expected very weak correlation: only indirectly through dependence of allowed range in c_g on value of c_γ

CH-C6

 $(c_b = c_\tau)$ -06

• Reduced BR due $(c_b=c_\tau)<0$ to can be compensated by enhanced production cross section due to negative c_6 and vice versa

Full Marginalization $\rightarrow c_6$

Final Results

Expected 1σ constraints at the 14 TeV LHC, assuming $f_{th} = 30\%$

model	$L = 600 \text{ fb}^{-1}$	$L = 3000 \text{ fb}^{-1}$
c_6 -only	$c_6 \in (-0.5, 0.8)$	$c_6 \in (-0.4, 0.4)$
full	$c_6 \gtrsim -1.3$	$c_6 \in (-1.2, 2.4)$

Conclusions and Outlook

Analysis of hh productions can offer viable additional information on the D=6 extension of the SM

Some Future Directions:

- Optimize analysis for different regions of parameter space
- Break degeneracy $c_b = c_{\tau}/consider$ different projections
- Include other decay channels
- Consider distributions to improve bounds

Backup: Hbounds/Signals Ranges

$\operatorname{coefficient}$	μ_f	σ_{f}
c_H	-0.035	0.225
c_t	-0.04	0.17
Сь	0.0	0.18
c_g	-0.01	0.06
c_{γ}	-0.25	0.62