Flavor and CP Violation in Higgs Decays

Joachim Kopp

University of Mainz / PRISMA Cluster of Excellence

ERC Workshop Schloss Waldthausen,

November 10, 2014

Based on work done in collaboration with Admir Greljo, Roni Harnik, Jernej Kamenik, Marco Nardecchia and Jure Zupan

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Outline

- PCNC Higgs Couplings to Leptons
- FCNC Higgs Couplings to quarks
- OP Violation in FCNC Higgs Decays

Flavor Mixing in the Higgs Sector

Motivation

Scenario 1: Several sources of EW symmetry breaking

• If fermion masses have more than one origin, they do not need to be aligned with the Yukawa couplings

Simplest example: Type III 2-Higgs-Doublet Model

$$\mathcal{L}_{Y} \supset -Y^{(1)}_{ij} ar{L}^{i} e^{j}_{R} H^{(1)} - Y^{(2)}_{ij} ar{L}^{i} e^{j}_{R} H^{(2)} + h.c.$$

 $\longrightarrow -m_i \bar{e}_L^i e_R^i - Y_{ij}^{\text{eff}} \bar{e}_L^j e_R^j h + \text{couplings to heavier Higgs bosons} + h.c.$

(h = Lightest neutral Higgs boson, $m_h \sim 125 \text{ GeV}$)

Assume heavy Higgs bosons are decoupled.

see for instance Davidson Greiner, arXiv:1001.0434

Similar couplings for quarks

Motivation (2)

Scenario 2: Extra Higgs couplings

Assume existence of heavy new particles, which induce effective operators of the form

$$\Delta \mathcal{L}_{Y} = -\frac{\lambda'_{ij}}{\Lambda^{2}} (\bar{e}^{j}_{L} e^{j}_{R}) H(H^{\dagger} H) + h.c. + \cdots,$$

 \rightarrow after EWSB, new (but misaligned) contributions to mass matrices and Yukawa couplings

Effective Lagrangian is again

$$\mathcal{L}_{Y} \supset -m_{i} \bar{e}_{L}^{i} e_{R}^{i} - Y_{ij}^{\text{eff}} \bar{e}_{L}^{i} e_{R}^{j} h + h.c.$$

see for instance Giudice Lebedev, arXiv:0804.1753

Effective Yukawa Lagrangfian

Effective Yukawa Lagrangian

$$\mathcal{L}_{Y} = -m_{i}\bar{f}_{L}^{i}f_{R}^{i} - Y_{ij}^{a}(\bar{f}_{L}^{i}f_{R}^{j})h^{a} + h.c. + \cdots$$

Previously studied by many authors:

Bjorken Weinberg, PRL 38 (1977) 622 McWilliams Li, Nucl. Phys. B 179 (1981) 62 Shanker, Nucl. Phys. B 206 (1982) 253 Barr Zee, PRL 65 (1990) 21 Babu Nandi, hep-ph/9907213 Diaz-Cruz Toscano, hep-ph/9910233 Han Marfatia, hep-ph/0008141 Arganda Curiel Herrero Temes, hep-ph/0407302 Kanemura Ota Tsumura, hep-ph/0505191 Giudice Lebedev, 0804.1753 Casagrande Goertz Haisch Neubert Pfoh, 0807.4937 Blanke Buras Duling Gori Weiler, 0809.1073 Albrecht Blanke Buras Duling Gemmler, 0903.2415 Aguilar-Saavedra, 0904.2387 Buras Duling Gori, 0905.2318 Agashe Contino, 0906.1542 Azatov Toharia Zhu, 0906.1990 Davidson Greiner, 1001.0434 Goudelis Lebedev Park, 1111.1715 Blankenburg Ellis Isidori, 1202.5704 Wang Huang Li Li Shao Wang, 1208.2902 McKeen Pospelov Ritz, 1208.4597 Arhrib Cheng Kong, 1208.4669

. . .

Effective Yukawa Lagrangfian

Effective Yukawa Lagrangian

$$\mathcal{L}_{\mathbf{Y}} = -m_i \bar{f}_L^i f_R^i - Y_{ij}^a (\bar{f}_L^i f_R^j) h^a + h.c. + \cdots$$

More recent studies:

. . .

Arhrib Cheng Kong, 1210.8241 Atwood Gupta Soni, 1305.2427 Arroyo Diaz-Cruz Diaz Orduz-Ducuara, 1306.2343 Khatibi Najafabadi, 1402.3073 Gorban Haisch, 1404.4873 Arganda Herrero Marcano Weiland, 1405.4300

Dery Efrati Hochberg Nir, 1302.3229 Zhang Maltoni, 1305.7386 Celis Cirigliano Passemar, 1309.3564 Cao Han Wu Yang Zhang, 1404.1241 Crivellin Hoferichter Procura, 1404.7134 Bressler Dery Efrati, 1405.4545

Effective Yukawa Lagrangfian

Effective Yukawa Lagrangian

$$\mathcal{L}_{Y} = -m_{i}\overline{f}_{L}^{i}f_{R}^{i} - Y_{ij}^{a}(\overline{f}_{L}^{i}f_{R}^{j})h^{a} + h.c. + \cdots$$

New in this talk:

- Up-to-date low-energy constraints on FV decays
- LHC limits on $h \rightarrow \mu \tau$, $h \rightarrow e \tau$, $t \rightarrow ch$, $t \rightarrow uh$
- Strategies for future LHC searches
- Possibility of Flavor + CP violation

FCNC Higgs Couplings to Leptons

Low-energy constraints on LFV in the Higgs sector

Joachim Kopp

Flavor and CP Violation in Higgs Decays

Constraints on $h \rightarrow \mu e$

Assumption here:

Diagonal Yukawa couplings unchanged from their SM values.

Harnik JK Zupan, arXiv:1209.1397 see also Blankenburg Ellis Isidori, arXiv:1202.5704 Goudelis Lebedev Park, arXiv:1111.1715

Constraints on $h \rightarrow \tau \mu$ and $h \rightarrow \tau e$

Substantial flavor violation ($BR(h \rightarrow \tau \mu, \tau e) \sim 0.01$) perfectly viable.

Assumption here:

Diagonal Yukawa couplings unchanged from their SM values.

Harnik JK Zupan, arXiv:1209.1397 see also: Blankenburg Ellis Isidori, arXiv:1202.5704 Goudelis Lebedev Park, arXiv:1111.1715 Davidson Greiner, arXiv:1001.0434

$\pmb{h} \rightarrow \tau \mu$ and $\pmb{h} \rightarrow \tau \pmb{e}$ at the LHC

Basic idea:

- $h \rightarrow \tau \ell$ has the same final state as $h \rightarrow \tau \tau_{\ell}$ (but is enhanced by $1/BR(\tau \rightarrow \ell)$)
- Recast $h \rightarrow \tau \tau$ search here: ATLAS, arXiv:1206.5971
- Consider only 2-lepton final states
- Use VBF cuts (much lower BG than gg fusion)

see however Davidson Verdier, arXiv:1211.1248

$h \rightarrow \tau \mu$ and $h \rightarrow \tau e$ at the LHC

Basic idea:

- $h \rightarrow \tau \ell$ has the same final state as $h \rightarrow \tau \tau_{\ell}$ (but is enhanced by $1/BR(\tau \rightarrow \ell)$)
- Recast $h \rightarrow \tau \tau$ search here: ATLAS, arXiv:1206.5971
- Consider only 2-lepton final states
- Use VBF cuts (much lower BG than gg fusion)

see however Davidson Verdier, arXiv:1211.1248

LHC constraints on $h \rightarrow \tau \mu$ and $h \rightarrow \tau e$

Harnik JK Zupan, arXiv:1209.1397

LHC constraints on $h \rightarrow \tau \mu$ and $h \rightarrow \tau e$

Harnik JK Zupan, arXiv:1209.1397

Strategy for a dedicated $h \rightarrow \tau \mu$ and $h \rightarrow \tau e$ search

Possible improvements

- Different invariant mass formula
 - Avoids smearing of signal
 - Shifts $Z \rightarrow \tau \tau$ peak to lower invariant mass
- Include hadronic τ's
- Optimized cuts
 - Use higher lepton p_T in $h \rightarrow \mu \tau$ compared to $h \rightarrow \tau \tau$
 - Use $\Delta \phi$ and M_T cuts
 - Allows inclusion of *gg* fusion events

Harnik JK Zupan, arXiv:1209.1397 Davidson Verdier, arXiv:arXiv:1211.1248

Strategy for a dedicated $h \rightarrow \tau \mu$ and $h \rightarrow \tau e$ search

Possible improvements

Different invariant mass formula

- Avoids smearing of signal
- Shifts $Z \rightarrow \tau \tau$ peak to lower invariant mass
- Include hadronic τ's
- Optimized cuts
 - Use higher lepton p_T in $h \rightarrow \mu \tau$ compared to $h \rightarrow \tau \tau$
 - Use $\Delta \phi$ and M_T cuts
 - Allows inclusion of *gg* fusion events

Harnik JK Zupan, arXiv:1209.1397 Davidson Verdier, arXiv:arXiv:1211.1248

CMS-PAS-HIG-14-005

FCNC Couplings to Quarks

Constraints on Higgs couplings to light quarks

Tight constraints from neutral meson oscillations

Constraints on Higgs couplings to light quarks

- Tight constraints from neutral meson oscillations
- Work in Effective Field Theory:

 $H_{\rm eff} = C_2^{db} (\bar{b}_R d_L)^2 + \tilde{C}_2^{db} (\bar{b}_L d_R)^2 + C_4^{db} (\bar{b}_L d_R) (\bar{b}_R d_L) + \dots$

 Wilson coefficients constrained by UTfit (Bona et al.), arXiv:0707.0636 see also Blankenburg Ellis Isidori, arXiv:1202.5704

Technique	Coupling	Constraint
D ⁰ oscillations	$ Y_{uc} ^2, Y_{cu} ^2 Y_{uc}Y_{cu} $	$< 5.0 imes 10^{-9} \ < 7.5 imes 10^{-10}$
B_d^0 oscillations	$ Y_{db} ^2$, $ Y_{bd} ^2$ $ Y_{db}Y_{bd} $	$< 2.3 imes 10^{-8} \ < 3.3 imes 10^{-9}$
B_s^0 oscillations	$ert egin{array}{c} ert ert egin{array}{c} ert ert ert ert ert ert ert ert$	$< 1.8 imes 10^{-6} \ < 2.5 imes 10^{-7}$
K ⁰ oscillations	$\begin{array}{c} \Re(Y_{ds}^2), \Re(Y_{sd}^2) \\ \Im(Y_{ds}^2), \Im(Y_{sd}^2) \\ \Re(Y_{ds}^*Y_{sd}) \\ \Im(Y_{ds}^*Y_{sd}) \\ \Im(Y_{ds}^*Y_{sd}) \end{array}$	$ \begin{array}{c} [-5.9\ldots 5.6]\times 10^{-10} \\ [-2.9\ldots 1.6]\times 10^{-12} \\ [-5.6\ldots 5.6]\times 10^{-11} \\ [-1.4\ldots 2.8]\times 10^{-13} \end{array} $

But:

Indirect constraints very weak

for FCNC top couplings

 \Rightarrow Discovery potential at the LHC

Multileptons and diphotons from FCNC *t*-*h* couplings

single top + Higgs production

- Only relevant for *tuh* couplings (PDF suppression for charm)
- $\ell + 2\gamma$ or up to 5ℓ
- not included in LHC searches

- Relevant for *tuh* and *tch* couplings (no PDF suppression)
- $\ell + 2\gamma$ or up to 5ℓ

Combined CMS diphoton + multilepton results

Higgs Decay Mode	observed	expected	1σ range
$H \rightarrow WW^*$ ($B = 23.1 \%$)	1.58 %	1.57 %	(1.02–2.22) %
$H \rightarrow \tau \tau$ ($\mathcal{B} = 6.15\%$)	7.01 %	4.99 %	(3.53–7.74)%
$H \rightarrow ZZ^*$ ($B = 2.89\%$)	5.31 %	4.11 %	(2.85–6.45)%
combined multileptons (WW*, $\tau\tau$, ZZ*)	1.28 %	1.17 %	(0.85–1.73)%
$H \rightarrow \gamma \gamma$ ($\mathcal{B} = 0.23$ %)	0.69 %	0.81 %	(0.60–1.17)%
combined multileptons + diphotons	0.56 %	0.65 %	(0.46–0.94)%

 $\mathsf{BR}(t \to c\mathsf{H}) < 0.0056 \qquad \leftrightarrow \qquad \sqrt{|y_{tc}|^2 + |y_{ct}|^2} < 0.14$

multileptons: CMS arXiv:1404.5801; CMS-SUS-13-002 diphotons: CMS-PAS-HIG-13-034, recasting CMS-PAS-HIG-13-025

see also ATLAS $t + (h \rightarrow \gamma \gamma)$ analysis with tailored cuts, slightly worse limit due to unlucky statistical fluctuations

ATLAS arXiv:1403.6293

Future directions

Some ideas for future improvements

- Include *tuh* couplings \rightarrow leads to factor 1.5 improvement
- Optimize cuts
- Other final states → this talk
- η_h as discriminator between *tuh* and *tch* couplings \rightarrow this talk

- Analysis 1: $pp \rightarrow \overline{t}(t \rightarrow hj) \rightarrow$ hadrons
 - ► Tagging SM $t \rightarrow Wb$ decays: HEPTopTagger

Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833 Tagging FCNC $t \rightarrow hq$ decays: Modified HEPTopTagger

- ► Tagging FCNC $t \rightarrow hq$ decays: Modified HEPTopTagger with adapted kinematic cuts
- Require b tags in likely b subjets

- Analysis 1: $pp \rightarrow \overline{t}(t \rightarrow hj) \rightarrow$ hadrons
- Analysis 2: $pp \rightarrow th \rightarrow hadrons$ (single top + Higgs productions)
 - Tagging SM $t \rightarrow Wb$ decays: HEPTopTagger

Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833

- Higgs tagging: Mass drop tagger
 - Butterworth Davison Rubin Salam 0802.2470; Cacciari Salam Soyez 1111.6097
- Require b tags in likely b subjets
- Cuts on m_H (reconstructed Higgs mass) and $|\eta_h|$ (reconstructed Higgs rapidity)

Comparison of current and projected future limits

	$\sqrt{y_{ut}^2 + y_{tu}^2}$	$BR(t \rightarrow hu)$	$\sqrt{y_{ct}^2 + y_{tc}^2}$	$BR(t \to hc)$
New limits from existing da	ta			
Multilepton	< 0.19	< 0.010	< 0.23	< 0.015
Diphoton plus lepton	< 0.12	< 0.0045	< 0.15	< 0.0066
Vector boson plus Higgs	< 0.16	< 0.0070	< 0.21	< 0.012
Projected future limits (13 1	[eV, 100 fb ⁻¹)		
Vector boson plus Higgs	< 0.076	< 0.0015	< 0.084	< 0.0019
Multilepton	< 0.087	< 0.0022	< 0.11	< 0.0033
Fully hadronic	< 0.12	< 0.0036	< 0.13	< 0.0048

Discriminating between tuh and tch couplings

In $ug \rightarrow th$, interaction products tend to be boosted in the direction of the *u* quark.

(Valence quarks carry larger fraction of proton momentum.)

Moreover: In center of mass frame, Higgs boson is emitted preferentially in the direction of the up quark

(angular momentum conservation + chirality flip in *tuh* Yukawa vertex.)

Result (parton level):

Discriminating between tuh and tch couplings

In $ug \rightarrow th$, interaction products tend to be boosted in the direction of the *u* quark. (Valence quarks carry larger fraction of proton momentum.)

Moreover: In center of mass frame, Higgs boson is emitted preferentially

in the direction of the up quark

(angular momentum conservation + chirality flip in *tuh* Yukawa vertex.)

Parton level vs. analysis level:

Discriminating between *tuh* and *tch* couplings (2)

Conclusion: Rapidity $\eta_{\ell\ell}$ of dilepton system from $h \to WW^* \to \ell\ell\nu\nu$ is a good discriminator between *tuh* and *tch* couplings.

Moreover: Final state lepton charges as an additional discriminant.

Result for multilepton search:

For a 5σ discovery, discrimination between *tuh* and *tch* is possible at 2σ .

CP Violation in FCNC Higgs Decays

CP violation in FCNC Higgs decays

Basic idea:

- Interference of tree and loop diagrams leads to CP violation
- Weak phase from non-standard Yukawa couplings
- Strong phase from loop function (since m_ℓ < m_h/2)

JK Nardecchia, arXiv:1406.5303

Example: A Two Higgs-Doublet Model

$$\mathcal{L} \supset -\frac{\sqrt{2}m_i}{v}\delta_{ij}\,\overline{L}_L^i \ell_R^j \Phi_1 - \sqrt{2}Y_{ij}\,\overline{L}_L^i \ell_R^j \Phi_2 + h.c.\,,$$

In the physical basis:

$$\mathcal{L} = -m_i \bar{\ell}_L^i \ell_R^i - \sum_{r=1,2,3} Y_{ij}^{h_r} \bar{\ell}_L^i \ell_R^j h_r + h.c. \qquad (r = 1,2,3)$$

with

$$Y_{ij}^{h_r} = \frac{m_i \delta_{ij}}{v} O_{1r} + Y_{ij} O_{2r} + i Y_{ij} O_{3r},$$

O = SO(3) (real 3 × 3) rotation matrix

Example: A Two Higgs-Doublet Model

$$\mathcal{L} \supset -\frac{\sqrt{2}m_i}{v}\delta_{ij}\,\overline{L}_L^i \ell_R^j \Phi_1 - \sqrt{2}Y_{ij}\,\overline{L}_L^i \ell_R^j \Phi_2 + h.c.\,,$$

Result:

$$\begin{split} \mathcal{A}_{CP}^{\mu\tau} &= \sum_{\alpha=2,3} \frac{1}{4\pi} \frac{|Y_{\tau\mu}|^2 - |Y_{\mu\tau}|^2}{|Y_{\tau\mu}|^2 + |Y_{\mu\tau}|^2} \bigg(|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2 + |Y_{\tau\tau}|^2 \bigg) \\ &\times \mathcal{R}_{\alpha} \times \bigg[g\bigg(\frac{m_h^2}{m_{h_{\alpha}}^2} \bigg) + \frac{m_h^2}{m_h^2 - m_{h_{\alpha}}^2} \bigg] \end{split}$$

with

$$R_{\alpha} = \frac{(O_{3\alpha}O_{21} - O_{2\alpha}O_{31})(O_{2\alpha}O_{21} + O_{3\alpha}O_{31})}{O_{21}^2 + O_{31}^2}$$

... suppressed only by loop factor

JK Nardecchia, arXiv:1406.5303

Sensitivity to CPV in FCNC Higgs decays @ HL-LHC

- Best discovery potential in small Higgs mixing regime
- CP violation visible only at high-luminosity LHC
- Would require a detection of $h \rightarrow \tau \mu$ or $h \rightarrow \tau e$ very soon.

JK Nardecchia, arXiv:1406.5303

Summary

Summary

- Flavor-violating Higgs couplings arise in
 - Models with several sources of electroweak symmetry breaking
 - Models with heavy fields coupled to the Higgs
- In the lepton sector:
 - In the µ−e sector: strong constraints from LFV searches
 - In the τe and $\tau \mu$ sectors: strongest constraints from the LHC
 - ▶ If $h \rightarrow \tau \mu$ or $h \rightarrow \tau e$ is discovered soon: Possibility to look for CP violation in the future.
- In the quark sector:
 - Light quarks: strong constraints from meson mixing
 - Top quark: Limits on $t \rightarrow ch$ from multileptons, diphotons
 - Future improvements:
 - * Include anomalous single-t production for tuh couplings
 - Optimized cuts
 - Other final states (fully hadronic is feasible with jet substructure techniques)
 - Use Higgs rapidity η_h and lepton charges as a discriminator between tuh and tch couplings

Thank you!

CMS event selection for multilepton analysis

At least 3 leptons

(electrons, muons, hadronic tau candidates (" τ_h ")

- Standard p_T and η cuts
 - $p_T^{e,\mu} > 10 \text{ GeV}, |\eta^{e,\mu}| < 2.4$
 - $p_T^{ au_h} > 20 \; {
 m GeV}, \, |\eta^{ au_h}| < 2.3$
 - at least one e or µ must be above 20 GeV
- Isolation criteria
- Lepton tracks required to start close to the primary vertex
- Jets are reconstructed with the anti- k_T algorithm; must have $p_T > 30$ GeV, $|\eta| < 2.5$
- Combined secondary vertex algorithm for *b*-tagging

CMS event classification for multilepton analysis

Events are sorted in non-overlapping categories according to

- Number of leptons (3 or \geq 4)
- **∉**_T
- Number of τ_h candidates
- Number of *b*-tagged jets
- Number of OSSF ("opposite sign, same flavor") lepton pairs
- OSSF pairs on/off the Z-resonance

 \rightarrow A very versatile search that is sensitive to many types of new physics

Backgrounds for CMS multilepton analysis

• Z + jets

(two leptons from Z decay, one lepton from misidentified jet or heavy flavor decay)

- SM WZ or ZZ production
- tt
 triangle production
 (two leptons from W decay, one lepton from semileptonic b decay)
- Internal conversion of photons
- Rare processes (triple boson production, $t\bar{t} + V$ production)

Relative importance of backgrounds varies significantly between event categories.

So do systematic uncertainties.

Results: 3-lepton categories

3 leptons	$m_{\ell^+\ell^-}$	E_{T}^{miss}	$N_{\tau_h} =$	$= 0, N_{\rm b} = 0$	N_{τ_h}	$N_{\tau_{\rm h}} = 1, N_{\rm b} = 0$		$N_{\tau_{\rm h}} = 0, N_{\rm b} \ge 1$		$N_{\tau_{\rm b}} = 1, N_{\rm b} \ge 1$	
$H_{\rm T} > 200 {\rm GeV}$		(GeV)	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	
OSSF0	_	(100,∞)	5	3.7 ± 1.6	35	33 ± 14	1	5.5 ± 2.2	47	61 ± 30	
OSSF0	_	(50, 100)	3	3.5 ± 1.4	34	36 ± 16	8	7.7 ± 2.7	82	91 ± 46	
OSSF0	_	(0, 50)	4	2.1 ± 0.8	25	25 ± 10	1	3.6 ± 1.5	52	59 ± 29	
OSSF1	Above-Z	(100,∞)	5	3.6 ± 1.2	2	10.0 ± 4.8	3	4.7 ± 1.6	19	22 ± 11	
OSSF1	Below-Z	(100,∞)	7	9.7 ± 3.3	18	14.0 ± 6.4	8	9.1 ± 3.4	21	23 ± 11	
OSSF1	On-Z	$(100, \infty)$	39	61 ± 23	17	15.0 ± 4.9	9	14.0 ± 4.4	10	12.0 ± 5.8	
OSSF1	Above-Z	(50, 100)	4	5.0 ± 1.6	14	11.0 ± 5.2	6	6.8 ± 2.4	32	30 ± 15	
OSSF1	Below-Z	(50, 100)	10	11.0 ± 3.8	24	19.0 ± 6.4	10	9.9 ± 3.7	25	32 ± 16	
OSSF1	On-Z	(50, 100)	78	80 ± 32	70	50 ± 11	22	22.0 ± 6.3	36	24.0 ± 9.8	
OSSF1	Above-Z	(0, 50)	3	7.3 ± 2.0	41	33.0 ± 8.7	4	5.3 ± 1.5	15	23 ± 11	
OSSF1	Below-Z	(0, 50)	26	25.0 ± 6.8	110	86 ± 23	5	10.0 ± 2.5	24	26 ± 11	
OSSF1	On-Z	(0, 50)	*135	130 ± 41	542	540 ± 160	31	32.0 ± 6.5	86	75 ± 19	
3 leptons	$m_{\ell^+\ell^-}$	$E_{\rm T}^{\rm miss}$	$N_{\tau_h} =$	$= 0, N_{\rm b} = 0$	$N_{\tau_{h}}$	$= 1, N_{\rm b} = 0$	$N_{\tau_h} =$	= 0, $N_{ m b} \ge 1$	$N_{\tau_h} =$	$= 1, N_{\rm b} \ge 1$	
$H_{\rm T} < 200 {\rm GeV}$		(GeV)	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	
OSSF0	_	(100,∞)	7	11.0 ± 4.9	101	111 ± 54	13	10.0 ± 5.3	87	119 ± 61	
OSSF0	_	(50, 100)	35	38 ± 15	406	402 ± 152	29	26 ± 13	269	298 ± 151	
OSSF0	_	(0, 50)	53	51 ± 11	910	1035 ± 255	29	23 ± 10	237	240 ± 113	
OSSF1	Above-Z	(100,∞)	18	13.0 ± 3.5	25	38 ± 18	10	6.5 ± 2.9	24	35 ± 18	
OSSF1	Below-Z	$(100, \infty)$	21	24 ± 9	41	50 ± 25	14	20 ± 10	42	54 ± 28	
OSSF1	On-Z	$(100, \infty)$	150	150 ± 26	39	48 ± 13	15	14.0 ± 4.8	19	23 ± 11	
OSSF1	Above-Z	(50, 100)	50	46.0 ± 9.7	169	140 ± 48	20	18 ± 8	85	93 ± 47	
OSSF1	D 1 7	(EQ 100)	142	130 ± 27	353	360 ± 92	48	48 ± 23	140	133 ± 68	
	Below-Z	(50, 100)	142						1		
OSSF1	Below-Z On-Z	(50, 100) (50, 100)	*773	780 ± 120	1276	1200 ± 310	56	47 ± 13	81	75 ± 32	
OSSF1 OSSF1	Below-Z On-Z Above-Z	(50, 100) (50, 100) (0, 50)	*773 178	780 ± 120 200 ± 35	1276 1676	$\begin{array}{c} 1200\pm310\\ 1900\pm540 \end{array}$	56 17	$\begin{array}{c} 47\pm13\\ 18.0\pm6.7\end{array}$	81 115	$\begin{array}{c} 75\pm32\\ 94\pm42 \end{array}$	
OSSF1 OSSF1 OSSF1	Below-Z On-Z Above-Z Below-Z	(50, 100) (50, 100) (0, 50) (0, 50)	*773 178 510	780 ± 120 200 ± 35 560 ± 87	1276 1676 9939	$\begin{array}{c} 1200 \pm 310 \\ 1900 \pm 540 \\ 9000 \pm 2700 \end{array}$	56 17 34	$47 \pm 13 \\ 18.0 \pm 6.7 \\ 42 \pm 11$	81 115 226	$75 \pm 32 \\ 94 \pm 42 \\ 228 \pm 63$	

* = channels used for normalization, excluded from new physics searches

Results: 4-lepton categories

\geq 4 leptons	$m_{\ell^+\ell^-}$	E_T^{miss}	N_{τ_h} :	$= 0, N_{\rm b} = 0$	N_{τ_h}	$= 1, N_b = 0$	CTh =	$= 0, N_b \ge 1$	N_{τ_h}	$= 1, N_b \ge 1$
$H_{\rm T}>200{\rm GeV}$		(GeV)	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.
OSSF0	_	(100,∞)	0	$0.01^{+0.03}_{-0.01}$	0	$0.01^{+0.06}_{-0.01}$	0	$0.02^{+0.04}_{-0.02}$	0	0.11 ± 0.08
OSSF0	_	(50, 100)	0	$0.00^{+0.02}_{-0.00}$	0	$0.01^{+0.06}_{-0.01}$	0	$0.00^{+0.03}_{-0.00}$	0	0.12 ± 0.07
OSSF0	_	(0,50)	0	$0.00^{+0.02}_{-0.00}$	0	$0.07^{+0.10}_{-0.07}$	0	$0.00^{+0.02}_{-0.00}$	0	0.02 ± 0.02
OSSF1	Off-Z	(100,∞)	0	$0.01^{+0.02}_{-0.01}$	1	0.25 ± 0.11	0	0.13 ± 0.08	0	0.12 ± 0.12
OSSF1	On-Z	(100,∞)	1	0.10 ± 0.06	0	0.50 ± 0.27	0	0.42 ± 0.22	0	0.42 ± 0.19
OSSF1	Off-Z	(50, 100)	0	0.07 ± 0.06	1	0.29 ± 0.13	0	0.04 ± 0.04	0	0.23 ± 0.13
OSSF1	On-Z	(50, 100)	0	0.23 ± 0.11	1	0.70 ± 0.31	0	0.23 ± 0.13	1	0.34 ± 0.16
OSSF1	Off-Z	(0, 50)	0	$0.02^{+0.03}_{-0.02}$	0	0.27 ± 0.12	0	$0.03^{+0.04}_{-0.03}$	0	0.31 ± 0.15
OSSF1	On-Z	(0, 50)	0	0.20 ± 0.08	0	1.3 ± 0.5	0	0.06 ± 0.04	1	0.49 ± 0.19
OSSF2	Off-Z	(100,∞)	0	$0.01^{+0.02}_{-0.01}$	—	_	0	$0.01^{+0.06}_{-0.01}$	_	_
OSSF2	On-Z	(100,∞)	1	$0.15^{+0.16}_{-0.15}$	_	_	0	0.34 ± 0.18	_	_
OSSF2	Off-Z	(50, 100)	0	0.03 ± 0.02	—	_	0	0.13 ± 0.09	_	_
OSSF2	On-Z	(50, 100)	0	0.80 ± 0.40	—	_	0	0.36 ± 0.19	_	_
OSSF2	Off-Z	(0, 50)	1	0.27 ± 0.13	—	_	0	0.08 ± 0.05	-	_
OSSF2	On-Z	(0, 50)	5	7.4 ± 3.5	_	_	2	0.80 ± 0.40	—	_
\geq 4 leptons	$m_{\ell^+\ell^-}$	E_{T}^{miss}	N_{τ_h} :	$= 0, N_{\rm b} = 0$	N_{τ_h}	$= 1, N_{\rm b} = 0$	N_{τ_h}	$= 0, N_{\rm b} \ge 1$	N_{τ_h} :	$= 1, N_b \ge 1$
\geq 4 leptons $H_{\rm T}$ < 200 GeV	$m_{\ell^+\ell^-}$	E _T ^{miss} (GeV)	N_{τ_h} = Obs.	= 0, N _b = 0 Exp.	N_{τ_h} : Obs.	$= 1, N_b = 0$ Exp.	N_{τ_h} Obs.	$= 0, N_b \ge 1$ Exp.	$N_{\tau_h} = Obs.$	$= 1, N_b \ge 1$ Exp.
\geq 4 leptons $H_{\rm T} <$ 200 GeV OSSF0	<i>m</i> _{ℓ+ℓ} -	E_T^{miss} (GeV) (100, ∞)	N_{τ_h} : Obs. 0	$= 0, N_b = 0$ Exp. 0.11 ± 0.08	N_{τ_h} Obs. 0	$= 1, N_b = 0$ Exp. 0.17 ± 0.10	N_{τ_h} Obs. 0	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}_{-0.03}$	$N_{\tau_h} = Obs.$	$ = 1, N_b \ge 1 Exp. 0.04 \pm 0.04 $
\geq 4 leptons $H_{\rm T} < 200 {\rm GeV}$ OSSF0 OSSF0	<i>m</i> _{ℓ+ℓ} -	$E_{\rm T}^{\rm miss}$ (GeV) (100, ∞) (50, 100)	$N_{\tau_h} = Obs.$ 0 0	$= 0, N_b = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$	N_{τ_h} Obs. 0 2	$= 1, N_b = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33	N_{τ_h} Obs. 0 0	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}_{-0.03}$ $0.00^{+0.02}_{-0.00}$	$N_{\tau_h} = Obs.$ 0 0	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16
$\frac{\geq 4 \text{ leptons}}{H_{T} < 200 \text{ GeV}}$ OSSF0 OSSF0 OSSF0 OSSF0	<i>m</i> _{ℓ+ℓ} -	$E_{\rm T}^{\rm miss}$ (GeV) (100, ∞) (50, 100) (0, 50)	$N_{\tau_h} = 0$ 0 0 0 0	$= 0, N_b = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.03}_{-0.01}$	N_{τ_h} Obs. 0 2 1	$= 1, N_b = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3	N_{τ_h} Obs. 0 0 0	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}_{-0.03}$ $0.00^{+0.02}_{-0.00}$ $0.00^{+0.02}_{-0.00}$	$N_{\tau_h} = Obs.$ 0 0 0	$= \begin{array}{c} 1, N_b \geq 1 \\ Exp. \\ \hline 0.04 \pm 0.04 \\ 0.28 \pm 0.16 \\ 0.13 \pm 0.08 \end{array}$
$\begin{array}{r l} \geq & 4 \ \text{leptons} \\ H_T < 200 \ \text{GeV} \\ \hline & \text{OSSF0} \\ & \text{OSSF0} \\ & \text{OSSF0} \\ & \text{OSSF0} \\ & \text{OSSF1} \\ \end{array}$	<i>m</i> _{ℓ+ℓ−} — — Off-Z	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \end{array}$	$N_{T_h} = 0$	$= 0, N_b = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.02}_{-0.01}$ 0.06 ± 0.04	N _{Th} Obs. 0 2 1 3	$= 1, N_{b} = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24	N_{τ_h} Obs. 0 0 0 0	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}_{-0.03}$ $0.00^{+0.02}_{-0.00}$ $0.00^{+0.02}_{-0.00}$ $0.02^{+0.04}_{-0.02}$	$N_{\tau_h} = Obs.$ 0 0 0 0 0	
$\begin{array}{r} \geq \!$	<i>m</i> _{ℓ+ℓ} - — — Off-Z On-Z	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \end{array}$	$N_{\tau_h} = 0$ 0 0 0 0 1	$= 0, N_b = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.02}_{-0.01}$ 0.06 ± 0.04 0.50 ± 0.18	N _{Th} : Obs. 0 2 1 3 2	$= 1, N_b = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24 2.5 ± 0.5	N_{τ_h} Obs. 0 0 0 0 1	$= 0, N_b \ge 1 \\ Exp. \\ 0.03^{+0.04}_{-0.03} \\ 0.00^{+0.02}_{-0.00} \\ 0.00^{+0.02}_{-0.00} \\ 0.02^{+0.04}_{-0.02} \\ 0.38 \pm 0.20 \\ \end{bmatrix}$	$N_{\tau_h} = Obs.$ 0 0 0 0 0 0 0	$= \begin{array}{c} 1, N_b \geq 1 \\ Exp. \\ \hline 0.04 \pm 0.04 \\ 0.28 \pm 0.16 \\ 0.13 \pm 0.08 \\ 0.32 \pm 0.20 \\ 0.21 \pm 0.10 \end{array}$
$\begin{array}{r} \geq \!$	<i>m</i> _{ℓ+ℓ} - — — Off-Z Off-Z	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \\ (50, 100) \end{array}$	$egin{array}{c} N_{ au_h} : \\ Obs. \end{array} \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}$	$= 0, N_b = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.02}_{-0.01}$ 0.06 ± 0.04 0.50 ± 0.18 0.18 ± 0.06	N_{τ_h} Obs. 0 2 1 3 2 4	$= 1, N_b = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24 2.5 ± 0.5 2.1 ± 0.5	N_{τ_h} Obs. 0 0 0 0 1 0	$= 0, N_b \ge 1 \\ Exp. \\ 0.03^{+0.04}_{-0.03} \\ 0.00^{+0.02}_{-0.00} \\ 0.00^{+0.02}_{-0.00} \\ 0.02^{+0.04}_{-0.00} \\ 0.02^{+0.04}_{-0.02} \\ 0.38 \pm 0.20 \\ 0.16 \pm 0.08 \\ \end{bmatrix}$	$N_{\tau_h} = Obs.$ 0 0 0 0 0 0 1	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24
$\begin{array}{r} \geq 4 \text{ leptons} \\ H_{T} < 200 \text{ GeV} \\ \hline \text{OSSF0} \\ \hline \text{OSSF0} \\ \hline \text{OSSF0} \\ \hline \text{OSSF1} \\ \hline \text{OSSF1} \\ \hline \text{OSSF1} \\ \hline \text{OSSF1} \\ \hline \end{array}$	<i>m</i> _{ℓ+ℓ} - — Off-Z Off-Z Off-Z On-Z	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \\ (50, 100) \\ (50, 100) \end{array}$	$egin{array}{c} N_{ au_h} & : \\ Obs. & 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 2 \end{array}$	$= 0, N_b = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.02}_{-0.01}$ 0.06 ± 0.04 0.50 ± 0.18 0.18 ± 0.06 1.2 ± 0.3	N_{τ_h} Obs. 0 2 1 3 2 4 9	$= 1, N_b = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24 2.5 ± 0.5 2.1 ± 0.5 9.6 ± 1.6	N_{τ_h} Obs. 0 0 0 0 1 0 2	$= 0, N_b \ge 1 \\ Exp. \\ 0.03^{+0.04}_{-0.03} \\ 0.00^{+0.02}_{-0.00} \\ 0.00^{+0.02}_{-0.00} \\ 0.02^{+0.04}_{-0.02} \\ 0.38 \pm 0.20 \\ 0.16 \pm 0.08 \\ 0.42 \pm 0.23$	$N_{\tau_h} = Obs.$ 0 0 0 0 0 0 1 0	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24 0.50 ± 0.16
$\begin{array}{r} \geq 4 \text{ leptons} \\ H_{\mathrm{T}} < 200 \mathrm{GeV} \\ \hline \text{OSSF0} \\ \hline \text{OSSF0} \\ \hline \text{OSSF0} \\ \hline \text{OSSF1} \end{array}$	<i>m</i> _{ℓ+ℓ} - — Off-Z Off-Z Off-Z Off-Z Off-Z	$\begin{array}{c} E_{\rm TMS}^{\rm max} \\ ({\rm GeV}) \\ \hline (100,\infty) \\ (50,100) \\ (0,50) \\ (100,\infty) \\ (100,\infty) \\ (50,100) \\ (50,100) \\ (0,50) \end{array}$	$N_{\tau_h} = 0$	$= 0, N_b = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.03}_{-0.01}$ 0.06 ± 0.04 0.50 ± 0.18 0.18 ± 0.06 1.2 ± 0.3 0.46 ± 0.18	$N_{\tau_h} = 0$ 0 2 1 3 2 4 9 15	$= 1, N_b = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24 2.5 ± 0.5 2.1 ± 0.5 9.6 ± 1.6 7.5 ± 2.0	N_{τ_h} Obs. 0 0 0 0 1 0 2 0	$= 0, N_b \ge 1 \\ Exp. \\ 0.03^{+0.04}_{-0.02} \\ 0.00^{+0.02}_{-0.02} \\ 0.00^{+0.02}_{-0.02} \\ 0.02^{+0.04}_{-0.02} \\ 0.38 \pm 0.20 \\ 0.16 \pm 0.08 \\ 0.42 \pm 0.23 \\ 0.09 \pm 0.06 \\ \end{bmatrix}$	$N_{\overline{\tau}_h} = Obs.$ 0 0 0 0 0 0 1 0 0 0	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24 0.50 ± 0.16 0.70 ± 0.31
$\begin{array}{r} \geq 4 \text{ leptons} \\ H_{\mathrm{T}} < 200 \mathrm{GeV} \\ \hline \text{OSSF0} \\ \text{OSSF0} \\ \text{OSSF1} \\ \text{OSSF1} \\ \hline \text{OSSF1} \\ \text{OSSF1} \\ \text{OSSF1} \\ \text{OSSF1} \\ \text{OSSF1} \\ \hline \text{OSSF1} \\ \hline \text{OSSF1} \\ \hline \end{array}$	<i>m</i> _{ℓ+ℓ} - — Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z On-Z	$\begin{array}{c} E_{\rm TMS}^{\rm max} \\ ({\rm GeV}) \\ \hline (100,\infty) \\ (50,100) \\ (0,50) \\ (100,\infty) \\ (100,\infty) \\ (50,100) \\ (50,100) \\ (0,50) \\ (0,50) \end{array}$	$egin{array}{c} N_{\overline{ au}_h} &= \ Obs. \end{array}$	$\begin{array}{c} = 0, N_b = 0 \\ Exp. \\ 0.11 \pm 0.08 \\ 0.01 {+} {0.03} \\ 0.01 {+} {0.03} \\ 0.01 {+} {0.03} \\ 0.06 \pm 0.04 \\ 0.50 \pm 0.18 \\ 0.18 \pm 0.06 \\ 1.2 \pm 0.3 \\ 0.46 \pm 0.18 \\ 3.0 \pm 0.8 \end{array}$	$N_{\tau_h} = 0$ 0 0 1 3 2 4 9 15 41	$= \begin{array}{l} 1, N_b = 0 \\ Exp. \\ 0.17 \pm 0.10 \\ 0.70 \pm 0.33 \\ 0.7 \pm 0.3 \\ 0.60 \pm 0.24 \\ 2.5 \pm 0.5 \\ 2.1 \pm 0.5 \\ 9.6 \pm 1.6 \\ 7.5 \pm 2.0 \\ 40 \pm 10 \end{array}$	$egin{array}{c} N_{ au_{ m h}} & \ 0 & \ 0 & \ 0 & \ 0 & \ 0 & \ 0 & \ 0 & \ 1 & \ 0 & \ 2 & \ 0 & \ 1 & \ 1 & \ 0 & \ 1 & \ 0 & \ 1 & \ 0 & \ 1 & \ 0 & \ 1 & \ 0 & \ 0 & \ 1 & \ 0 & \$	$\begin{array}{c} = 0, N_b \geq 1 \\ Exp. \\ 0.03 \substack{+0.04\\-0.08} \\ 0.00 \substack{+0.02\\-0.02} \\ 0.00 \substack{+0.02\\-0.02} \\ 0.02 \substack{+0.04\\-0.02} \\ 0.038 \pm 0.20 \\ 0.16 \pm 0.08 \\ 0.42 \pm 0.23 \\ 0.09 \pm 0.06 \\ 0.31 \pm 0.15 \end{array}$	$rac{N_{ au_h}}{0}$ = 0 0 0 0 0 0 0 1 0 0 1 0 0 2	$= \frac{1}{N_b} \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24 0.50 ± 0.16 0.70 ± 0.31 1.50 ± 0.47
$\begin{array}{r} \geq 4 \text{ leptons} \\ H_{\mathrm{T}} < 200 \mathrm{GeV} \\ \mathrm{OSSF0} \\ \mathrm{OSSF0} \\ \mathrm{OSSF0} \\ \mathrm{OSSF1} \\ \mathrm{OSSF2} \end{array}$	<i>m</i> _{ℓ+ℓ} - — Off-Z On-Z Off-Z On-Z Off-Z On-Z Off-Z	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ \hline (100,\infty) \\ (50,100) \\ (0,50) \\ (100,\infty) \\ (100,\infty) \\ (50,100) \\ (50,100) \\ (0,50) \\ (0,50) \\ (100,\infty) \end{array}$	$egin{array}{c} N_{\overline{ au}_h} &= \ Obs. \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	$= \underbrace{0, N_b = 0}_{Exp.}$ 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.02}_{-0.01}$ 0.06 ± 0.04 0.50 ± 0.18 0.18 ± 0.06 1.2 ± 0.3 0.46 ± 0.18 3.0 ± 0.8 0.04 ± 0.03	$N_{\tau_h} = 0$ 0 2 1 3 2 4 9 15 41 	$= \frac{1}{N_b} = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.30 0.7 ± 0.3 0.60 ± 0.24 2.5 ± 0.5 2.1 ± 0.5 9.6 ± 1.6 7.5 ± 2.0 40 ± 10	$egin{array}{c} N_{ au_{ m h}} & \ 0 & \ 0 & \ 0 & \ 0 & \ 0 & \ 0 & \ 0 & \ 1 & \ 0 & \ 2 & \ 0 & \ 1 & \ 0 & \ 1 & \ 0 & \ 1 & \ 0 & \ 0 & \ 1 & \ 0 & \$	$\begin{array}{c} = 0, N_b \geq 1 \\ Exp. \\ 0.03 \pm 0.04 \\ 0.00 \pm 0.02 \\ 0.00 \pm 0.02 \\ 0.00 \pm 0.02 \\ 0.016 \pm 0.08 \\ 0.42 \pm 0.23 \\ 0.03 \pm 0.03 \\ 0.016 \pm 0.03 \\ 0.03 \pm 0.16 \\ 0.03 \pm 0.16 \\ 0.03 \pm 0.04 \\ \end{array}$	$N_{\overline{\tau}_h} = Obs.$ 0 0 0 0 0 0 1 0 2 	$= \frac{1, N_b \ge 1}{Exp.}$ 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.00 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24 0.50 ± 0.16 0.70 ± 0.31 1.50 ± 0.47
$\begin{array}{r} \geq 4 \text{ leptons} \\ H_T < 200 \text{ GeV} \\ \hline OSSF0 \\ OSSF0 \\ OSSF1 \\ OSSF2 \\ OSSF2 \\ OSSF2 \end{array}$	<i>m</i> ℓ+ℓ- — Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z	$\begin{array}{c} F_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100,\infty) \\ (50,100) \\ (0,50) \\ (100,\infty) \\ (100,\infty) \\ (50,100) \\ (50,100) \\ (0,50) \\ (0,50) \\ (100,\infty) \\ (100,\infty) \end{array}$	$egin{array}{c} N_{\overline{\tau}_h} & = \ Obs. \end{array}$	$\begin{array}{c} = 0, N_b = 0 \\ Exp. \\ 0.11 \pm 0.08 \\ 0.01 \pm 0.03 \\ 0.01 \pm 0.01 \\ -0.01 \\ -0.01 \\ 0.06 \pm 0.04 \\ 0.50 \pm 0.18 \\ 0.18 \pm 0.03 \\ 0.12 \pm 0.3 \\ 0.46 \pm 0.18 \\ 3.0 \pm 0.8 \\ 0.04 \pm 0.03 \\ 0.34 \pm 0.15 \end{array}$	$N_{\tau_h} = 0$ Obs. 0 2 1 3 2 4 9 15 41 		$N_{\overline{r_{h}}}$ Obs. 0 0 0 0 0 1 0 2 0 1 0 0 1 0 0	$\begin{array}{c} = 0, N_b \geq 1 \\ Exp. \\ 0.03^{+0.03}_{-0.03} \\ 0.00^{+0.02}_{-0.00} \\ 0.00^{+0.02}_{-0.02} \\ 0.02^{+0.04}_{-0.02} \\ 0.38 \pm 0.20 \\ 0.16 \pm 0.08 \\ 0.42 \pm 0.23 \\ 0.09 \pm 0.06 \\ 0.31 \pm 0.15 \\ 0.05 \pm 0.04 \\ 0.46 \pm 0.25 \end{array}$	$N_{\tau_h} = Obs.$ 0 0 0 0 0 0 1 0 0 2 	$ \begin{array}{c} = 1, N_b \geq 1 \\ Exp. \\ 0.04 \pm 0.04 \\ 0.28 \pm 0.04 \\ 0.28 \pm 0.08 \\ 0.32 \pm 0.20 \\ 0.21 \pm 0.10 \\ 0.45 \pm 0.24 \\ 0.50 \pm 0.16 \\ 0.70 \pm 0.31 \\ 1.50 \pm 0.47 \\ \end{array} $
$\begin{array}{r} \geq 4 \ \text{leptons} \\ \hline H_{1} < 200 \ \text{GeV} \\ \hline \text{OSSF0} \\ \hline \text{OSSF0} \\ \hline \text{OSSF0} \\ \hline \text{OSSF1} \\ \hline \text{OSSF2} \\ \hline \text{OSSF2} \\ \hline \end{array}$	<i>m</i> ℓ+ℓ- — Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z	$\begin{array}{c} F_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100,\infty) \\ (50,100) \\ (0,50) \\ (100,\infty) \\ (100,\infty) \\ (50,100) \\ (50,100) \\ (0,50) \\ (0,50) \\ (100,\infty) \\ (100,\infty) \\ (50,100) \end{array}$	$egin{array}{c} N_{\overline{\tau}_h} & = \ Obs. \end{array}$	$\begin{array}{c} = 0, N_b = 0 \\ Exp. \\ 0.11 \pm 0.08 \\ 0.01 \substack{+0.03 \\ -0.01 \\ -0.01 \\ 0.01 \\ -0.01 \\ 0.01 \pm 0.01 \\ 0.06 \pm 0.04 \\ 0.50 \pm 0.18 \\ 0.18 \pm 0.03 \\ 0.46 \pm 0.18 \\ 0.04 \pm 0.03 \\ 0.34 \pm 0.15 \\ 0.18 \pm 0.13 \end{array}$	N_{τ_h} Obs. 0 2 1 3 2 4 9 15 41 	$= 1, N_b = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24 2.5 ± 0.5 2.1 ± 0.5 9.6 ± 1.6 7.5 ± 2.0 40 ± 10	$N_{\overline{r_{b}}}$ Obs. 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0	$\begin{array}{c} = 0, N_b \geq 1 \\ Exp. \\ 0.03^{+0.03}_{-0.03} \\ 0.00^{+0.02}_{-0.02} \\ 0.00^{+0.02}_{-0.02} \\ 0.02^{+0.04}_{-0.02} \\ 0.38 \pm 0.20 \\ 0.16 \pm 0.08 \\ 0.42 \pm 0.23 \\ 0.09 \pm 0.06 \\ 0.31 \pm 0.15 \\ 0.05 \pm 0.04 \\ 0.46 \pm 0.25 \\ 0.02^{+0.03}_{-0.02} \\ \end{array}$	$N_{\tau_h} = Obs.$ 0 0 0 0 0 0 0 1 0 0 2 	
≥4 leptons Hr < 200 GeV OSSF0 OSSF0 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF2 OSSF2 OSSF2	<i>m</i> ℓ+ℓ- — Off-Z On-Z Off-Z On-Z Off-Z On-Z Off-Z On-Z Off-Z	$\begin{array}{c} F_{\rm T}^{\rm mas} \\ ({\rm GeV}) \\ (100,\infty) \\ (50,100) \\ (0,50) \\ (100,\infty) \\ (100,\infty) \\ (50,100) \\ (0,50) \\ (0,50) \\ (100,\infty) \\ (100,\infty) \\ (50,100) \\ (50,100) \end{array}$	$\begin{array}{c} N_{\overline{\tau}_{h}} & \\ Obs. \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 2 \\ 2 \\ 4 \\ 0 \\ 0 \\ 2 \\ 4 \\ \end{array}$	$\begin{array}{l} = 0, N_b = 0 \\ Exp. \\ 0.11 \pm 0.08 \\ 0.01 \substack{+0.03 \\ -0.01} \\ 0.06 \pm 0.04 \\ 0.50 \pm 0.18 \\ 0.12 \pm 0.3 \\ 0.18 \pm 0.06 \\ 1.2 \pm 0.3 \\ 0.46 \pm 0.18 \\ 3.0 \pm 0.8 \\ 0.04 \pm 0.03 \\ 0.34 \pm 0.15 \\ 0.18 \pm 0.13 \\ 3.9 \pm 2.5 \end{array}$	$N_{\tau_{h}}$ Obs. 0 2 1 3 2 4 9 15 41 		$N_{\overline{r_{b}}}$ Obs. 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{l} = 0, N_b \geq 1 \\ Exp. \\ 0.03^{+0.04} \\ 0.00^{+0.02} \\ 0.00^{+0.02} \\ 0.00^{+0.02} \\ 0.00^{+0.02} \\ 0.00^{+0.02} \\ 0.00^{+0.02} \\ 0.03 \pm 0.20 \\ 0.31 \pm 0.15 \\ 0.05 \pm 0.04 \\ 0.46 \pm 0.25 \\ 0.02^{+0.03} \\ 0.50 \pm 0.21 \end{array}$	$N_{\tau_h} = Obs.$ 0 0 0 0 0 0 0 1 0 0 2 	
$\begin{array}{r} \geq 4 \ \text{leptons} \\ \hline P \leq 200 \ \text{GeV} \\ \hline \text{OSSF0} \\ \hline \text{OSSF0} \\ \hline \text{OSSF0} \\ \hline \text{OSSF1} \\ \hline \text{OSSF2} \\ \hline \text{OSSF2} \\ \hline \text{OSSF2} \\ \hline \ \text{OSSF2} \\ \hline \end{array}$	<i>m</i> _{ℓ+ℓ-} — Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z	$\begin{array}{c} E_{\rm T}^{\rm mas} \\ ({\rm GeV}) \\ (100,\infty) \\ (50,100) \\ (0,50) \\ (100,\infty) \\ (100,\infty) \\ (50,100) \\ (50,100) \\ (0,50) \\ (100,\infty) \\ (100,\infty) \\ (50,100) \\ (50,100) \\ (50,100) \\ (50,50) \end{array}$	$\begin{array}{c} N_{\tau_{h}} \\ Obs. \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 2 \\ 4 \\ 0 \\ 0 \\ 2 \\ 4 \\ 7 \\ \end{array}$	$\begin{array}{c} = 0, N_b = 0 \\ Exp. \\ 0.11 \pm 0.08 \\ 0.01^{+0.03} \\ 0.01^{+0.03} \\ 0.01^{+0.02} \\ 0.06 \pm 0.04 \\ 0.50 \pm 0.18 \\ 0.18 \pm 0.06 \\ 1.2 \pm 0.3 \\ 0.46 \pm 0.18 \\ 3.0 \pm 0.8 \\ 3.0 \pm 0.8 \\ 0.04 \pm 0.03 \\ 0.34 \pm 0.15 \\ 0.18 \pm 0.13 \\ 3.9 \pm 2.5 \\ 8.9 \pm 2.4 \end{array}$	$N_{\tau_{h}}$ Obs. 0 2 1 3 2 4 9 15 41 		$egin{array}{c} N_{ au_{ m h}} & \cdot & \cdot \\ Obs. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	$\begin{array}{l} = 0, N_b \geq 1 \\ Exp. \\ 0.03^{+000} \\ 0.00^{-0.00} \\ 0.00^{-0.00} \\ 0.00^{+0.00} \\ 0.02^{+0.04} \\ 0.03 \pm 0.20 \\ 0.03 \pm 0.20 \\ 0.09 \pm 0.06 \\ 0.01 \pm 0.15 \\ 0.05 \pm 0.04 \\ 0.06 \pm 0.25 \\ 0.02^{+0.00} \\ 0.23 \pm 0.09 \\ 0.23 \pm 0.09 \end{array}$	$N_{\tau_h} = Obs.$ 0 0 0 0 0 0 0 1 0 0 2 	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24 0.50 ± 0.16 0.70 ± 0.31 1.50 ± 0.47 $-$ $-$ $-$

The most sensitive channels in the $t \rightarrow cH$ search

Relevant are mostly the two lowest $\not\!\!\!E_T$ bins.

$t \rightarrow cH$: CMS Constraints

Higgs D	ecay Mode	obs	exp	1σ range
$h \to WW^*$	(BR = 23.1 %)	1.58 %	1.57 %	(1.02-2.22)%
h ightarrow au au	$h \rightarrow \tau \tau$ (BR = 6.15 %)		4.99 %	(3.53–7.74)%
$h \to ZZ^*$	(BR = 2.89 %)	5.31 %	4.11 %	(2.85–6.45)%
con	1.28 %	1.17 %	(0.85–1.73)%	

 $BR(t \rightarrow cH) < 0.013$

 $\sqrt{|y_{tc}|^2 + |y_{ct}|^2} < 0.21$

Diphoton + lepton — Backgrounds

Background from sideband fit at $m_{\gamma\gamma}$ < 120 GeV and $m_{\gamma\gamma}$ > 130 GeV.

CMS-PAS-HIG-13-034, recasting CMS-PAS-HIG-13-025

$t \rightarrow cH$ search in the diphoton + lepton channel

Requirements:

- One isolated lepton ($p_T > 10 \text{ GeV}, |\eta| < 2.4$)
- Two photons (p_{T1} > 40 GeV, p_{T1} > 20 GeV, $|\eta|$ < 2.5)
- 120 GeV $< m_{\gamma\gamma} <$ 130 GeV

Events are classified according to

- **∉**_T
- b-tagged jets
- τ_h candidates

CMS-PAS-HIG-13-034, recasting CMS-PAS-HIG-13-025

Diphoton + lepton — Results

$N_{\tau_{had}}$	$E_{\rm T}^{\rm miss}$ [GeV]	N _{b-jets}	data	background	signal	efficiency [10 ⁻⁵]
0	50-100	≥ 1	1	2.3 ± 1.2	2.88 ± 0.39	3.1 ± 0.4
0	30-50	≥ 1	2	1.1 ± 0.6	2.16 ± 0.30	2.4 ± 0.3
0	0-30	≥ 1	2	2.1 ± 1.1	1.76 ± 0.24	1.9 ± 0.3
0	50-100	0	7	9.5 ± 4.4	2.22 ± 0.31	2.4 ± 0.3
0	> 100	≥ 1	0	0.5 ± 0.4	0.92 ± 0.14	1.0 ± 0.2
0	> 100	0	1	2.2 ± 1.0	0.94 ± 0.17	1.0 ± 0.2
0	30-50	0	29	21 ± 10	1.51 ± 0.22	1.6 ± 0.2
1	30-50	≥ 1	2	2.1 ± 1.2	0.43 ± 0.09	0.5 ± 0.1
1	0-30	≥ 1	6	6.4 ± 3.3	0.48 ± 0.12	0.5 ± 0.1
1	50-100	≥ 1	1	1.5 ± 0.8	0.30 ± 0.08	0.3 ± 0.1

Most sensitive channel has one *b*-jet, medium $\not\!\!\!E_T$, no τ_h .

CMS-PAS-HIG-13-034, recasting CMS-PAS-HIG-13-025

ATLAS $t + (h \rightarrow \gamma \gamma)$ analysis

- Includes diphoton + lepton and diphoton + jets final states
- Requires b-jets
- Imposes criteria on invariant masses $m_{\gamma\gamma j}$, $m_{\ell\nu j}$, m_{jjj}
- Uses $m_{\gamma\gamma}$ as discrimination variable

(slightly worse than CMS combined limit BR($t \rightarrow cH$) < 0.0056, $\sqrt{|y_{tc}|^2 + |y_{ct}|^2} < 0.14$) ATLAS arXiv:1403.6293

Diphoton analysis from ATLAS

- Diphoton + lepton analysis: cuts similar to CMS, but in addition:
 - ▶ Require m_{T,ℓν} > 30 GeV
 - Consider two leading jets (2nd jet replaced by 3rd/4th if 3rd/4th is b-tagged)
 - Require one b-jet
 - ► Define $m_1 = m_{\gamma\gamma j}$ and $m_2 = m_{\ell\nu j}$ such that either m_1 or m_2 (or both) are close to m_t

ATLAS arXiv:1403.6293

Diphoton analysis from ATLAS

- Diphoton + lepton analysis: cuts similar to CMS, but in addition:
- Diphoton + jets analysis ۰
 - Require two photons as before
 - In addition, four jets, at least one b-jet
 - Define $m_1 = m_{\gamma\gamma i}$ and $m_2 = m_{iji}$ such that either m_1 or m_2 (or both) are close to mt

ATLAS arXiv:1403.6293

 4.2 ± 0.1

 4.0 ± 0.1

43

Couplings involving top quarks (anno 2012)

Constraints from

CDF 0812.3400, DØ 1006.3575 ATLAS 1203.0529

• $t \rightarrow hq$

Craig et al. 1207.6794 based on CMS multilepton search 1204.5341

Not sensitive

•
$$t \rightarrow Zq$$

CMS 1208.0957

• Recast the CMS multilepton search including also $gq \rightarrow th$:

• Recast the CMS multilepton search including also $gq \rightarrow th$:

• Result (multileptons)

	OSSF pair	N _{b-jets}	$H_T(\text{GeV})$	$E_T^{miss}(\text{GeV})$	$N(t \rightarrow hj)$	N(th)	N _{obs}	N _{exp}
1.	below Z	<u>≥ 1</u>	\leq 200	50 - 100	10.8	6.7	48	48 ± 23
2.	no OSSF	\geq 1	\leq 200	50 - 100	4.4	3.0	29	26 ± 13
З.	below Z	\geq 1	\leq 200	\leq 50	6.8	3.8	34	42 ± 11
4.	no OSSF	\geq 1	\leq 200	\leq 50	4.2	2.5	29	23 ± 10
5.	below Z	\geq 1	> 200	50 - 100	2.5	0.6	10	9.9 ± 3.7
6.	below Z	\geq 1	> 200	\leq 50	2.0	0.4	5	10 ± 2.5
7.	below Z	0	\leq 200	50 - 100	9.2	5.1	142	125 ± 27
8.	no OSSF	0	\leq 200	50 - 100	4.0	2.5	35	38 ± 15
9.	above Z	\geq 1	\leq 200	\leq 50	1.9	1.2	17	18 ± 6.7

(signal predictions are for $BR(t \rightarrow hu) = 0.01$)

Most sensitive channels have 3 leptons, low H_T , one *b*-jet

• Recast the CMS multilepton search including also $gq \rightarrow th$:

- Result (multileptons): Limit on Yukawa couplings $y_{tu}^2 + y_{ut}^2$ is a factor of 1.5 stronger than limit on $y_{tc}^2 + y_{ct}^2$
- Specifically:

 $\mathsf{BR}(t o hc) < 0.015$ $\mathsf{BR}(t o hu) < 0.010$

Limit on BR($t \rightarrow hu$) is a factor 1.5 better than limit on BR($t \rightarrow hc$).

(Our limits are slightly worse than CMS limits because τ_h channels are omitted.)

• Recast the CMS multilepton search including also $gq \rightarrow th$:

• Result (multileptons): Limit on Yukawa couplings $y_{tu}^2 + y_{ut}^2$ is a factor of 1.5 stronger than limit on $y_{tc}^2 + y_{ct}^2$

Result (diphoton+lepton)

	N _{b-jets}	$E_T^{miss}(\text{GeV})$	$N(t \rightarrow hj)$	N(th)	Nobs	N _{exp}
1.	<u>≥ 1</u>	50 - 100	3.2	1.3	1	$\textbf{2.3} \pm \textbf{1.2}$
2.	\geq 1	30 - 50	2.2	0.92	2	1.1 ± 0.6
З.	\geq 1	\leq 30	1.9	0.83	2	$\textbf{2.1} \pm \textbf{1.1}$
4.	0	50 - 100	2.4	1.1	7	9.5 ± 4.4
5.	\geq 1	> 100	0.82	0.49	0	$\textbf{0.5}\pm\textbf{0.4}$
6.	0	> 100	0.87	0.52	1	2.2 ± 1.0
7.	0	30 - 50	1.6	0.64	29	21 ± 10

• Recast the CMS multilepton search including also $gq \rightarrow th$:

- Result (multileptons): Limit on Yukawa couplings $y_{tu}^2 + y_{ut}^2$ is a factor of 1.5 stronger than limit on $y_{tc}^2 + y_{ct}^2$
- Result (diphoton+lepton): Limit on Yukawa couplings $y_{tu}^2 + y_{ut}^2$ is a factor of 1.5 stronger than limit on $y_{tc}^2 + y_{ct}^2$
- Specifically:

 $\mathsf{BR}(t
ightarrow hc) < 0.0066$ $\mathsf{BR}(t
ightarrow hu) < 0.0045$

Optimized cuts

Example: recast CMS search for V + H production

CMS-PAS-HIG-12-053 Greljo Kamenik JK, 1404.1278

Cuts:

- Exactly two same-sign light leptons (→ suppress Z backgrounds)
- One hadronic au
- Veto *ee* events (→ suppress fake leptons)
- Veto *b* jets (→ not optimal for *tuh* and *tch* search!)

Optimized cuts

Example: recast CMS search for V + H production

Result:

	$\sqrt{y_{ut}^2 + y_{tu}^2}$	$BR(t \rightarrow hu)$	$\sqrt{y_{ct}^2 + y_{tc}^2}$	$BR(t \rightarrow hc)$
Multilepton	< 0.19	< 0.01	< 0.23	< 0.015
Diphoton plus lepton	< 0.12	< 0.0045	< 0.15	< 0.0066
Vector boson plus Higgs	< 0.16	< 0.0070	< 0.21	< 0.012

- Analysis 1: $pp \rightarrow \overline{t}(t \rightarrow hj) \rightarrow$ hadrons
 - Tagging SM $t \rightarrow Wb$ decays: HEPTopTagger
 - Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833
 - Cluster "fat jets" (R = 1.5)
 - Uncluster to find three subjets most likely to originate from top decay based on their invariant mass m₁₂₃
 - Along the way, use filtering to remove pile-up and underlying event contamination
 - * Impose cuts on invariant masses of subjet pairs to require one pair to be $\sim m_W$

- Analysis 1: $pp \rightarrow \overline{t}(t \rightarrow hj) \rightarrow$ hadrons
 - Tagging SM $t \rightarrow Wb$ decays: HEPTopTagger
 - Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833 Tagging FCNC $t \rightarrow hq$ decays: Modified HEPTopTagger
 - ► Tagging FCNC t → hq decays: Modified HEPTopTagger with adapted kinematic cuts

- Analysis 1: $pp \rightarrow \overline{t}(t \rightarrow hj) \rightarrow hadrons$
 - Tagging SM $t \rightarrow Wb$ decays: HEPTopTagger

Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833

- ► Tagging FCNC t → hq decays: Modified HEPTopTagger with adapted kinematic cuts
- Require b tags in likely b subjets
- Dominant backgrounds:
 - ∗ tī
 - ★ single top
 - ACD

Background				$\sqrt{y_{ut}^2 + y_{ut}^2}$	$v_{tu}^2 = 0.1$	$\sqrt{y_{ct}^2+y_{ct}^2$	$v_{tc}^2 = 0.1$
	tī	single-t	QCD	$t \rightarrow hu$	t + h	$t \rightarrow hc$	t + h
Analysis 1: th tag +	top tag						
loose <i>th</i> tags	3510	5.5	125	70	4.0	69	0.57
tight th tags	324	0.52	85	28	1.1	26	0.15

- Analysis 1: $pp \rightarrow \overline{t}(t \rightarrow hj) \rightarrow$ hadrons
- Analysis 2: $pp \rightarrow th \rightarrow hadrons$ (single top + Higgs productions)
 - ► Tagging SM t → Wb decays: HEPTopTagger
 - Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833
 - Higgs tagging: Mass drop tagger
 - Butterworth Davison Rubin Salam 0802.2470; Cacciari Salam Soyez 1111.6097
 - Require b tags in likely b subjets
 - Cuts on m_H (reconstructed Higgs mass) and $|\eta_h|$ (reconstructed Higgs rapidity)

- Analysis 1: $pp \rightarrow \overline{t}(t \rightarrow hj) \rightarrow$ hadrons
- Analysis 2: $pp \rightarrow th \rightarrow hadrons$ (single top + Higgs productions)
 - Tagging SM $t \rightarrow Wb$ decays: HEPTopTagger

Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833

- Higgs tagging: Mass drop tagger
 - Butterworth Davison Rubin Salam 0802.2470; Cacciari Salam Soyez 1111.6097
- Require b tags in likely b subjets
- Cuts on m_H (reconstructed Higgs mass) and $|\eta_h|$ (reconstructed Higgs rapidity)

	В	ackground	I	$\sqrt{y_{ut}^2 + y}$	$\frac{1}{2}{t_u} = 0.1$	$\sqrt{y_{ct}^2 + y_{ct}^2}$	$\frac{1}{tc} = 0.1$
	tī	single-t	QCD	$t \rightarrow hu$	t + h	$t \rightarrow hc$	t + h
Analysis 1: th tag +	top tag						
loose <i>th</i> tags	3510	5.5	125	70	4.0	69	0.57
tight <i>th</i> tags	324	0.52	85	28	1.1	26	0.15
Analysis 2: Higgs ta	ag + top t	ag					
preselection	14800	113	4125	152	120	209	14.0
final cuts	450	2.3	71	6.9	32.6	8.4	1.1

Example: Effective Field Theory

$$\mathcal{L}_{\text{EFT}} \supset -m_i \overline{\ell}_L^i \ell_R^i - Y^h_{ij} (\overline{\ell}_L^i \ell_R^j) h + h.c. \, ,$$

Result:

$$\begin{split} A_{CP}^{\mu\tau} &= \frac{\Gamma(h \to \mu^{-}\tau^{+}) - \Gamma(h \to \mu^{+}\tau^{-})}{\Gamma(h \to \mu^{-}\tau^{+}) + \Gamma(h \to \mu^{+}\tau^{-})} \\ &= \frac{1 - \log 2}{8\pi} \frac{\operatorname{Im} \left[Y_{\tau\tau}^{h} \left(Y_{e\mu}^{h} Y_{e\tau}^{h*} Y_{\mu\tau}^{h*} - Y_{\mu e}^{h} Y_{\tau e}^{h*} Y_{\tau\mu}^{h*} \right) \right]}{\left| Y_{\mu\tau}^{h} \right|^{2} + \left| Y_{\tau\mu}^{h} \right|^{2}} \\ &+ \frac{1}{8\pi} \frac{m_{\tau}^{2}}{m_{h}^{2}} \frac{\left| Y_{\mu\tau}^{h} \right|^{2} - \left| Y_{\tau\mu}^{h} \right|^{2}}{\left| Y_{\mu\tau}^{h} \right|^{2} + \left| Y_{\tau\mu}^{h} \right|^{2}} \operatorname{Im} \left[(Y_{\tau\tau}^{h})^{2} \right] \,. \end{split}$$

... suppressed by m_{τ}^2/m_h^2 and $Y_{e\mu}^h$, $Y_{\mu e}^h$.