EFT for Jets with Massive Quarks

André H. Hoang

University of Vienna

EFT ERC Workshop Mainz, November 10-13, 2014

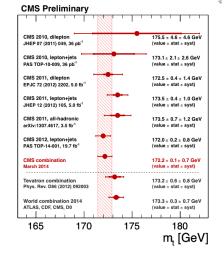
Why complete mass dependence for jets?

<u>Aims:</u>

- Full quark mass dependence of jet observables.
 - Theory description for all kinematic regions ("decoupling limit" ⇔ "massless limit")
 - Understanding factorization with quark masses
 - Account for initial state and final state jets

Possible applications:

- Quark mass effects in precision QCD analyses
 - e.g. Event shapes in e⁺e⁻ (bottom effects for low Q data)
 - Top quark mass measurements in reconstruction
- Understanding of Monte-Carlo top mass parameter
- Role of massive quark vacuum polarization effects
- Intrinsic charm ?



<u>This talk:</u> I will mostly talk about final state jets. Show that SCET (+ extensions) is a good framework to address the problem of quark masses.

Outline

- Motivation and Aims
- Factorization for massless quarks
- Effective theories including massive quark effects
- Flavor number dependent renormalization
- Rapidity logs
- Running short-distance mass scheme
- Conclusions & Outlook

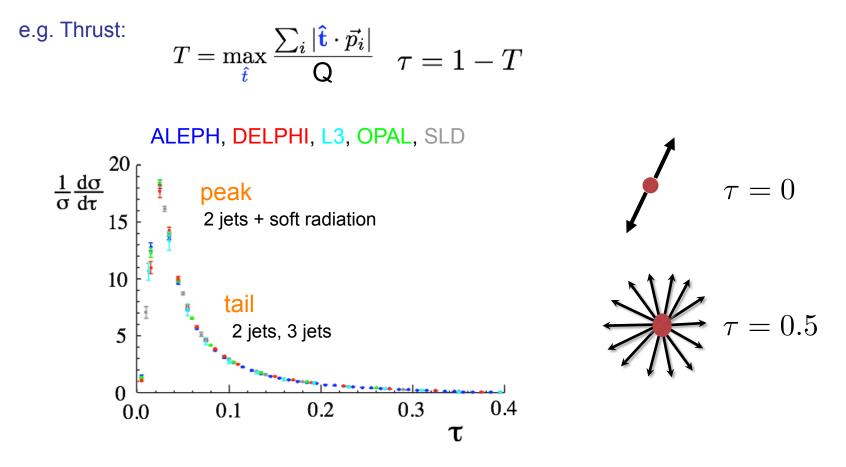
* In collaboration with: P. Pietrulewicz, V. Mateu, I. Jemos, S. Gritschacher

B. Dehnadi, M. Butenschön

arXiv:1302.4743 (PRD 88, 034021 (2013)) arXiv:1309.6251 (PRD 89, 014035 (2013)) arXiv:1405.4860 (PRD ..) More to come ...

Thrust

 \rightarrow consider: dijet in e⁺e⁻ annihilation

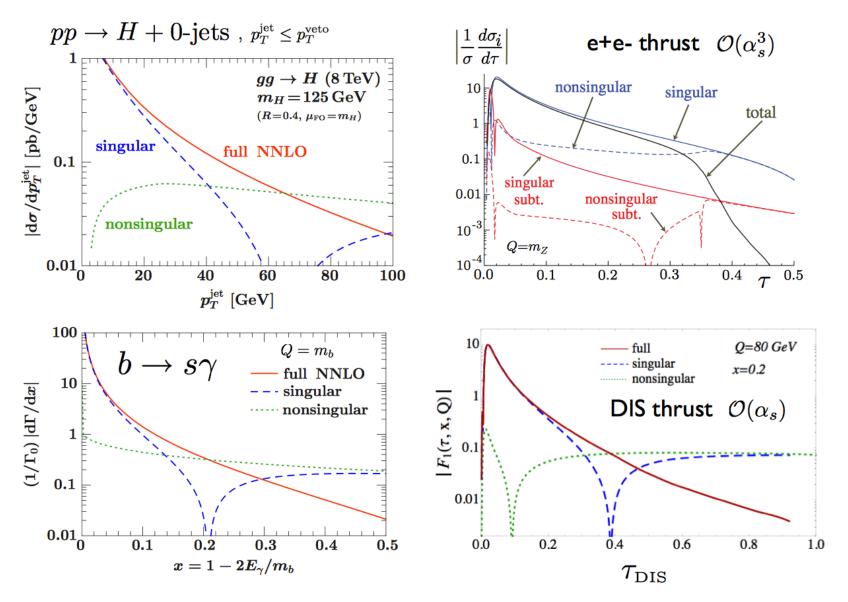


- \rightarrow Mass mode treatment of this talk applicable to any SCET-1-type observable
- \rightarrow We use thrust to be definite and as a first important application.

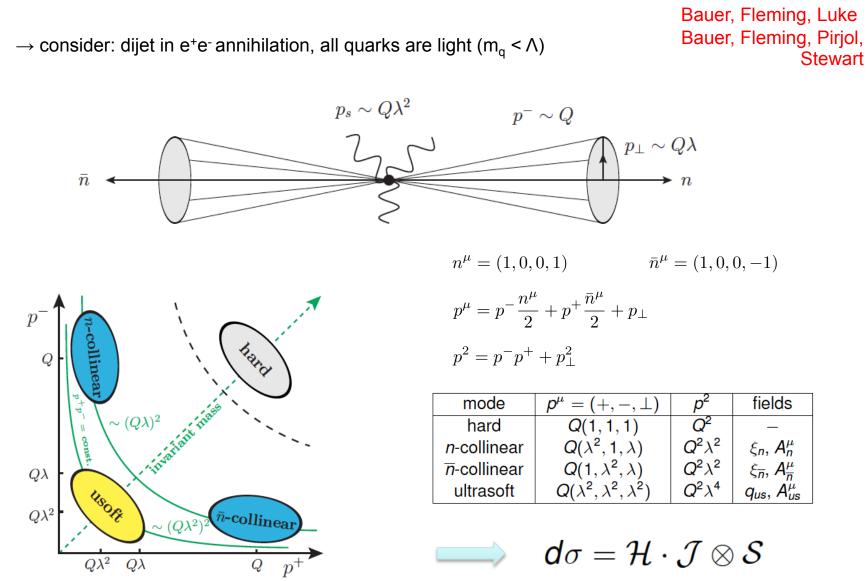
Massless Quark Thrust in FO

$$\frac{1}{\sigma_{\text{tot}}^{\text{Born}}} \frac{d\sigma}{d\tau} = \delta(\tau) + \frac{C_F \alpha_s}{\pi} \left[\left(\frac{\pi^2}{6} - \frac{1}{2} \right) \delta(\tau) + \frac{-3 + 9\tau + 3\tau^2 - 9\tau^3}{2\tau(1-\tau)} - \frac{2 - 3\tau + 3\tau^2}{(1-\tau)} \left(\frac{\ln(\frac{\tau}{1-2\tau})}{\tau} \right)_+ \right]$$
$$= \delta(\tau) + \frac{C_F \alpha_s}{\pi} \left[\left(\frac{\pi^2}{6} - \frac{1}{2} \right) \delta(\tau) - \frac{3}{2} \left(\frac{1}{\tau} \right)_+ - 2 \left(\frac{\ln(\tau)}{\tau} \right)_+ \right] + \left\{ \text{non-sing. terms} \right\} \right]$$
singular terms

Singular vs. Non-singular



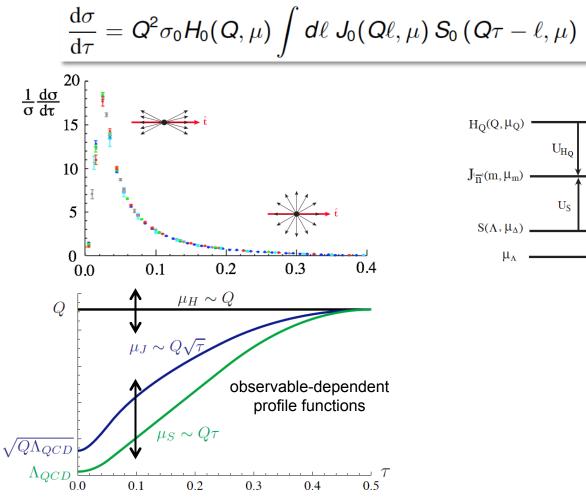
Massless Quark SCET



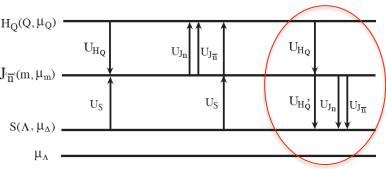
Korchemsky, Sterman

EFT ERC Workshop Mainz, November 10-13, 2014

Factorization for Massless Quarks



Schwartz Fleming, AH, Mantry, Stewart Bauer, Fleming, Lee, Sterman

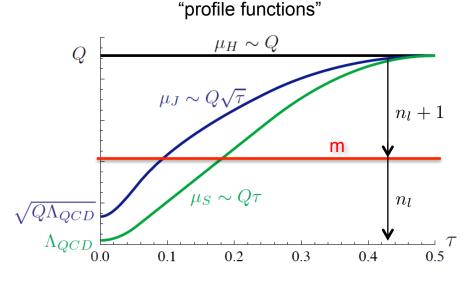


- \rightarrow evolution with n_I light quark flavors
- → consistency conditions w.r. to different evolution choices
- \rightarrow top-down evolution considered in the following

$$\left(\frac{d\sigma}{d\tau}\right)_{\text{part}}^{\text{sing}} \sim \sigma_0 H(Q,\mu_Q) U_H(Q,\mu_Q,\mu_s) \int d\ell d\ell' U_J(Q\tau-\ell-\ell',\mu_Q,\mu_s) J_T(Q\ell',\mu_j) S_T(\ell-\Delta,\mu_s)$$

Final State Jets with a Massive Quark

- \rightarrow consider: dijet in e⁺e⁻ annihilation, n_l light quarks \oplus one massive quark
- \rightarrow obvious: (n₁+1)-evolution for $\mu \gtrsim m$ and (n₁)-evolution for $\mu \lesssim m$
- \rightarrow obvious: different EFT scenarios w.r. to mass vs. Q J S scales



- \rightarrow Deal with collinear and soft "mass modes"
- ightarrow Additional power counting parameter $\lambda_m = m/Q$

mode	${\pmb ho}^\mu = (+,-,\perp)$	<i>p</i> ²
<i>n</i> -coll MM	$Q(\lambda_m^2, 1, \lambda_m)$	m^2
soft MM	$Q(\lambda_m, \lambda_m, \lambda_m)$	m^2

Aims:

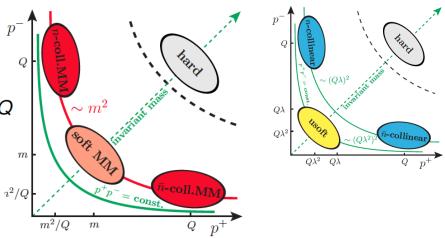
 Full mass dependence (little room for any strong hierarchies): decoupling, massless limit

Gritschacher, AH,

Jemos, Pietrulewicz

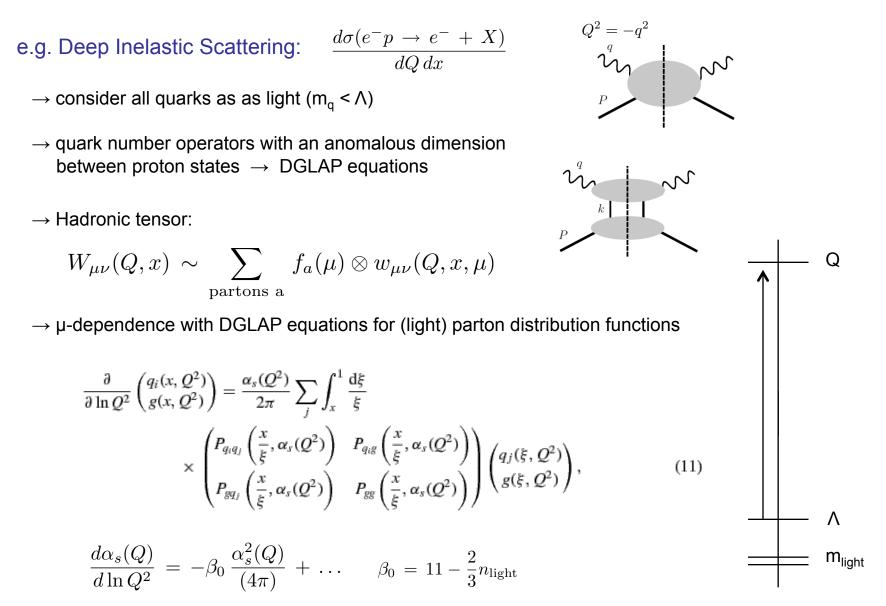
- Smooth connections between different EFTs
- Determination of flavor matching for current-, jet- and soft-evolution
- Reconcile problem of SCET₂-type rapidity divergences

"Variable Flavor Number Scheme" (VFNS)



universität

VFNS for Hadron Collisions



VFNS for Hadron Collisions

- $\frac{d\sigma(e^-p \to e^- + X)}{dQ \, dx}$ \rightarrow realistic case: massive quarks with Q > m > Λ (charm, bottom [top]) \rightarrow Hadronic tensor: ACOT scheme: DGLAP evolution for n_l flavors for $\mu \leq m$ (only light guarks) DGLAP evolution for n₁+1 flavors for $\mu \ge m$ (light quarks + massive quark) • Flavor matching for α_s and the pdfs at $\mu_m \sim m$ $f_{q,g,Q}^{(n_l+1)}(\mu_m) = \sum F_{q,g,Q|a}(m,\mu_m) \otimes f_a^{(n_l)}(\mu_m)$ a=q,q \rightarrow hard coefficient w_{\mu\nu}(m,Q,x) approaches massless w_{\mu\nu}(Q,x) for m ${\rightarrow}0$ \rightarrow calculations of $w_{\mu\nu}(m,Q,x)$ involves subtraction of pdf IR mass singularities
 - \rightarrow full dependence on m/Q without any large logarithms

e.g. Deep Inelastic Scattering:

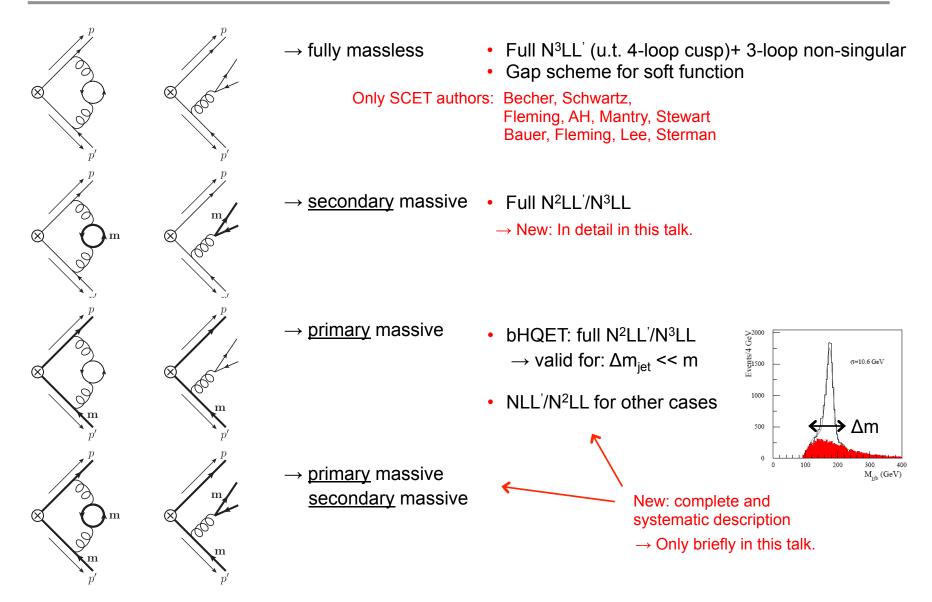
Q

m

Λ

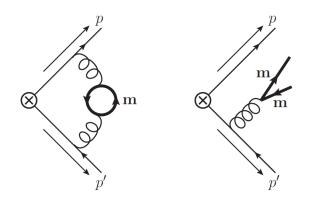
m_{light}

Fully Massive Thrust

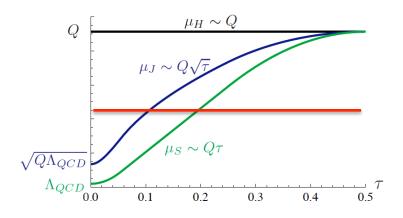


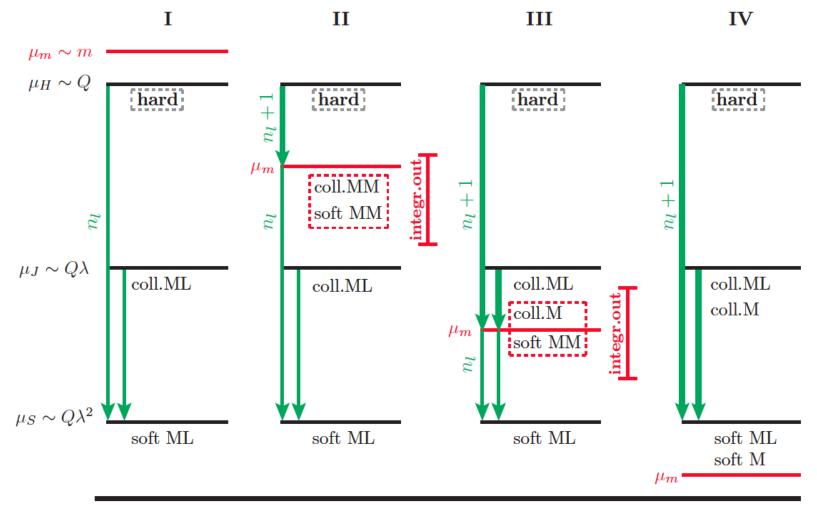
Simplest non-trivial case to study:

→ massless primary quark dijet production in e^+e^- annihilation: n_l light quarks \oplus one massive quark arise only through secondary production



- → does not lead to bHQET-type theory when the jet scale approaches the quark mass
- \rightarrow only SCET-type theories

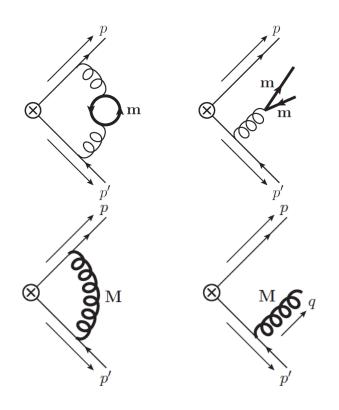




MM = mass-mode, ML = massless, M = massive

Simplest non-trivial case to study:

→ massless primary quark dijet production in e^+e^- annihilation: n_l light quarks \oplus one massive quark arise only through secondary production



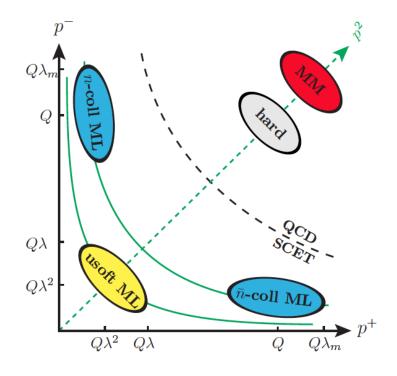
- \rightarrow field theory: close relation to the problem of massive gauge boson radiation
- → dispersion relation: massive quark results can be obtained directly from massive gluon calculations when quark pair treated inclusively (e.g. hard coefficient, jet function)

$$\underbrace{\overset{q}{\longrightarrow}}_{\text{cocc}} \bigoplus_{q} \underbrace{\overset{q}{\longrightarrow}}_{4m^2} \underbrace{\overset{q}{\longrightarrow}}_{M^2} \underbrace{\overset{q}{\longrightarrow}}_{M} \xrightarrow{q} \underbrace{\mathrm{Im}}_{q} \underbrace{\overset{q}{\longrightarrow}}_{m} \underbrace{\mathrm{Im}}_{q^2 \to M^2} \underbrace{$$

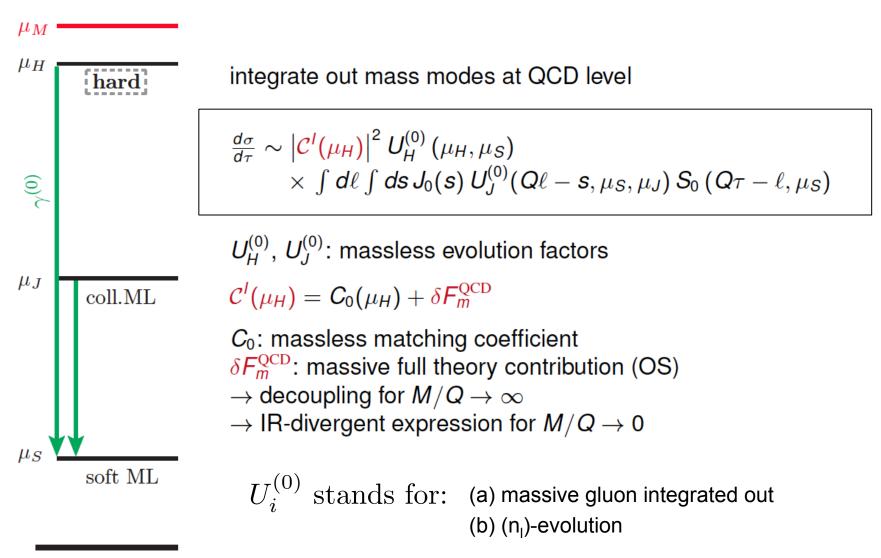
- \rightarrow separation of conceptual issues to be resolved and calculations issues related to gluon splitting.
- → explicit two-loop calculation needed when quarks are treated exclusively
 - (e.g. soft function \rightarrow hemisphere prescription)

Gritschacher, AH, Jemos, Pietrulewicz 2013

<u>Scenario 1:</u> $\lambda_m > 1 > \lambda > \lambda^2$ (m > Q > J > S)

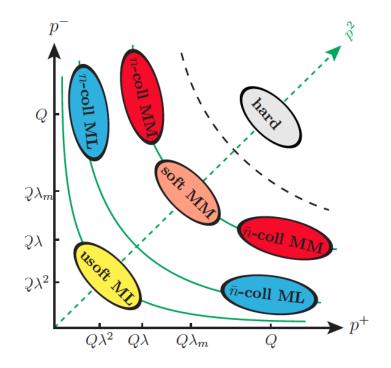


- EFT only contains light quarks
- Massive quark only in current matching coeff.
- Decoupling for $m/Q \rightarrow \infty$



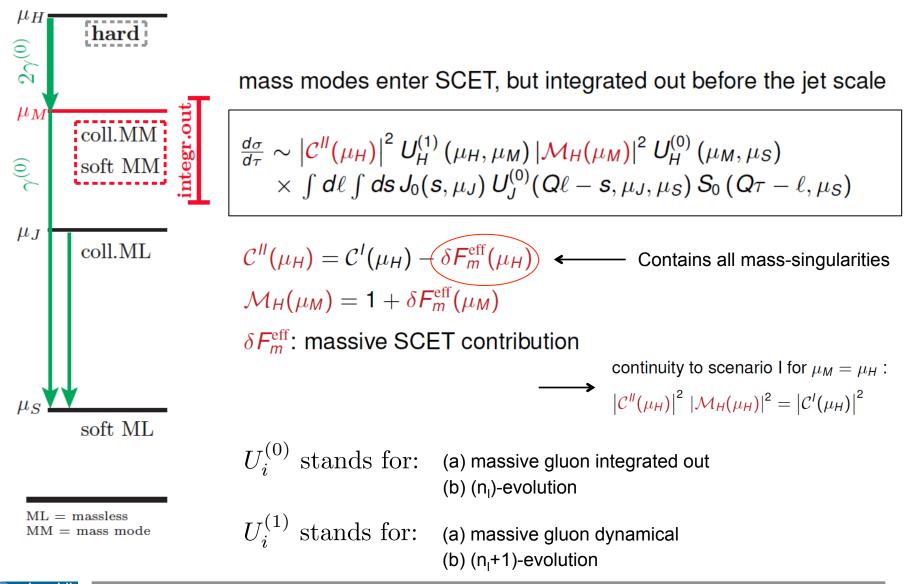
ML = massless

<u>Scenario 2</u>: $1 > \lambda_m > \lambda > \lambda^2$ (Q > m > J > S)



- Massive modes only virtual
- Jet and soft function as in massless case
- Hard coefficient must have massless limit
- Known Sudakov problem for massive gauge boson

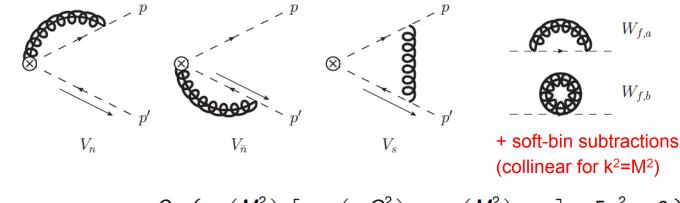
Chiu, Golf, Kelley, Manohar Chiu, Führer, Hoang, Kelley



) universität wien

EFT ERC Workshop Mainz, November 10-13, 2014

Scenario 2: mass mode SCET calculation



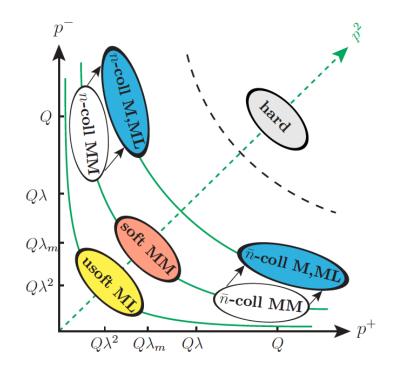
$$\delta F_m^{\text{eff}}(Q, M, \mu) = \frac{\alpha_s C_F}{4\pi} \left\{ \ln\left(\frac{M^2}{\mu^2}\right) \left[2\ln\left(\frac{-Q^2}{\mu^2}\right) - \ln\left(\frac{M^2}{\mu^2}\right) - 3 \right] - \frac{5\pi^2}{6} + \frac{9}{2} \right\}$$

Chiu, Golf, Kelley, Manohar (2008) Chiu, Fuhrer, Hoang, Kelley, Manohar (2009) rapidity logarithms

large logarithm $\ln\left(\frac{M^2}{\mu_H^2}\right)$ cancels between C' and δF_m^{eff} correct massless limit for $C''(\mu_H)$:

$$\mathcal{C}^{\prime\prime}(Q,M,\mu_{H}) = \mathcal{C}^{\prime}(Q,M,\mu_{H}) - \delta \mathcal{F}_{m}^{\mathrm{eff}}(Q,M,\mu_{H}) \xrightarrow{M \to 0} 2\mathcal{C}_{0}(Q,\mu_{H})$$

<u>Scenario 3</u>: $1 > \lambda > \lambda_m > \lambda^2$ (Q > J > m > S)



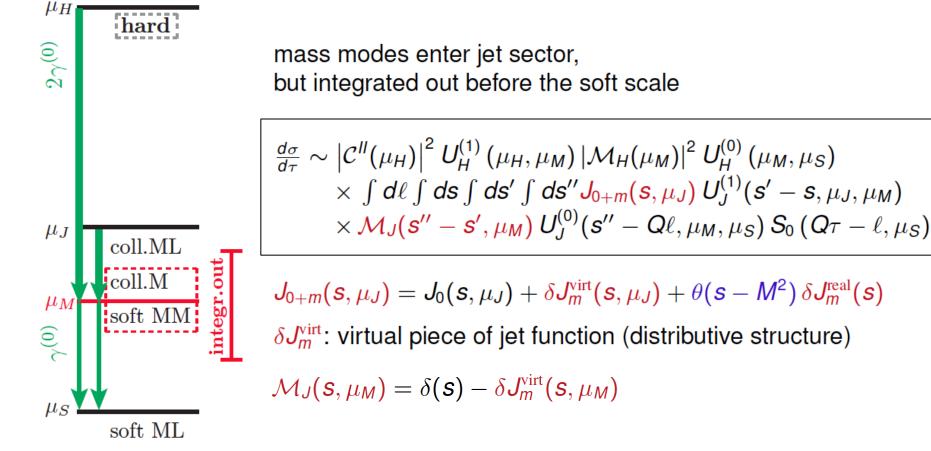
- Current evolution unchanged w.r. to Scen. 2
- Hard coefficient must have massless limit
- Jet function has massless limit
- Massive and massless collinear in same sector
- Collinear mass modes integrated out at m

 μ_H hard $2\gamma^{(0)}$ mass modes enter jet sector, but integrated out before the soft scale $\frac{d\sigma}{d\tau} \sim \left| \mathcal{C}^{\prime\prime}(\mu_{H}) \right|^{2} U_{H}^{(1)}(\mu_{H},\mu_{M}) \left| \mathcal{M}_{H}(\mu_{M}) \right|^{2} U_{H}^{(0)}(\mu_{M},\mu_{S})$ $\times \int d\ell \int ds \int ds' \int ds'' J_{0+m}(s,\mu_J) U_J^{(1)}(s'-s,\mu_J,\mu_M)$ $\times \mathcal{M}_J(s''-s',\mu_M) U_J^{(0)}(s''-Q\ell,\mu_M,\mu_S) S_0 (Q\tau-\ell,\mu_S)$ μ_J coll.ML coll.M $J_{0+m}(s,\mu_J) = J_0(s,\mu_J) + \delta J_m^{\text{virt}}(s,\mu_J) + \theta(s-M^2) \,\delta J_m^{\text{real}}(s)$ μ_M soft M δJ_m^{virt} : virtual piece of jet function (distributive structure) Soft-bin subtraction Rapidity singularities cancel UV divergences agree with massless case soft ML δJ_m^{real} : real radiation piece of jet function (function) finite sum of virtual and real: rapidity logs cancel ML = massless

- sum of virtual and real: approaches massless jet function for $m \rightarrow 0$

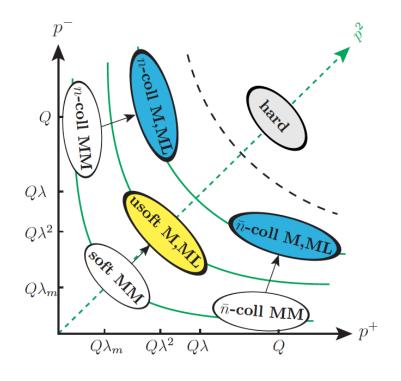
MM = mass mode

M = massive

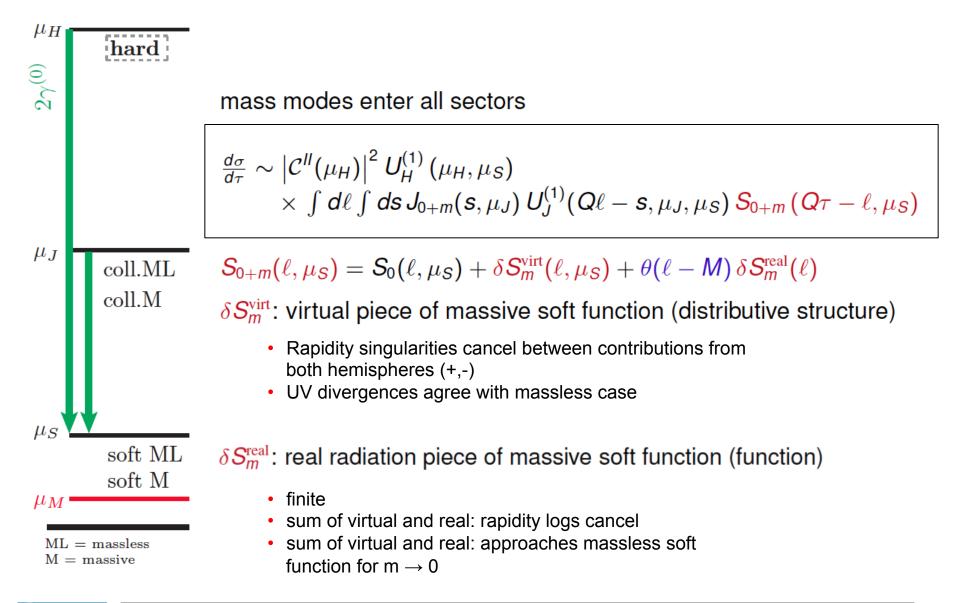


ML = masslessMM = mass modeM = massive continuity to scenario II for $\mu_M = \mu_J$ ($\mu_M \le M$): $J_{0+m}(s, \mu_J) \mathcal{M}_J(s, \mu_J) = J_0(s, \mu_J)$

<u>Scenario 4</u>: $1 > \lambda > \lambda^2 > \lambda_m$ (Q > J > S > m)



- Current evolution unchanged w.r. to Scen. 2
- Jet function and evolution as in Scen. 2
- Massive and massless coll. modes same sector
- Massive and massless soft modes same sector
- Hard coefficient, jet and soft function must have massless limit
- All RG-evolution for (n_l+1) flavors



Consistency Conditions: Threshold Corrections

Important role of consistency relation: soft - jet - hard for scenario III



alternative description in bottom-up running ($\mu \sim \mu_H$):

$$egin{aligned} rac{d\sigma}{d au} &\sim \left|\mathcal{C}^{\prime\prime}(\mu_{H})
ight|^{2} \int d\ell \int d\ell' \int d\ell'' \int ds \int ds' \ & imes U_{J}^{(1)}(s-s',\mu_{J},\mu_{H}) \, J_{0}(s',\mu_{J}) \, U_{S}^{(1)}(\ell''-s/Q,\mu_{M},\mu_{H}) \ & imes \mathcal{M}_{S}(\ell'-\ell'',\mu_{M}) \, U_{S}^{(0)}(\ell-\ell',\mu_{S},\mu_{M}) \, S_{0}\left(Q au-\ell,\mu_{S}
ight) \end{aligned}$$

 $\mathcal{M}_{\mathcal{S}}(\ell,\mu_{\mathcal{M}}) = \delta(\ell) + \delta S^{\mathrm{virt}}_{m}(\ell,\mu_{\mathcal{M}})$

consistency relation: $\mathcal{M}_{\mathcal{S}}(\ell, \mu_{\mathcal{M}}) = Q |\mathcal{M}_{\mathcal{H}}(\mu_{\mathcal{M}})|^2 \mathcal{M}_{\mathcal{J}}(Q\ell, \mu_{\mathcal{M}})$

similarly:
$$U_{S}^{(1)}(\ell, \mu_{S}, \mu_{M}) = Q U_{H}^{(1)}(\mu_{M}, \mu_{S}) U_{J}^{(1)}(Q\ell, \mu_{M}, \mu_{S})$$

VFN Scheme: Threshold Corrections

The calculation of the mass mode matching corrections for current, jet and soft function can be carried out by matching the factorization theorem to a full QCD calculation.

But there is a more efficient method based on the fact that current, jet and soft functions are gauge-invariant quantities that can be renormalized separately.

- Evolution with VFN and matching can be related to the use of different renormalization conditions within a single effective theory.
- Use scenario 4 effective theory where the massive quark is contained in hard, collinear and soft sectors.

Example: Jet function
$$J^{\text{bare}} = Z_J^{OS} \otimes J^{OS} = Z_J^{\overline{\text{MS}}} \otimes J^{\overline{\text{MS}}}$$

<u>On-shell condition</u>: decoupling for $m \rightarrow \infty$: (n_l -flavor scheme)

$$J^{\mathrm{OS}}(\boldsymbol{s},\boldsymbol{m},\boldsymbol{\mu}) = J^{(n_l)}(\boldsymbol{s},\boldsymbol{\mu}) + \theta(\boldsymbol{s} - \boldsymbol{4}\boldsymbol{m}^2)\delta J^{\mathrm{real}}_{\boldsymbol{m}}(\boldsymbol{s},\boldsymbol{m}) \stackrel{\boldsymbol{m} \gg \boldsymbol{s}}{\longrightarrow} J^{(n_l)}(\boldsymbol{s},\boldsymbol{\mu})$$

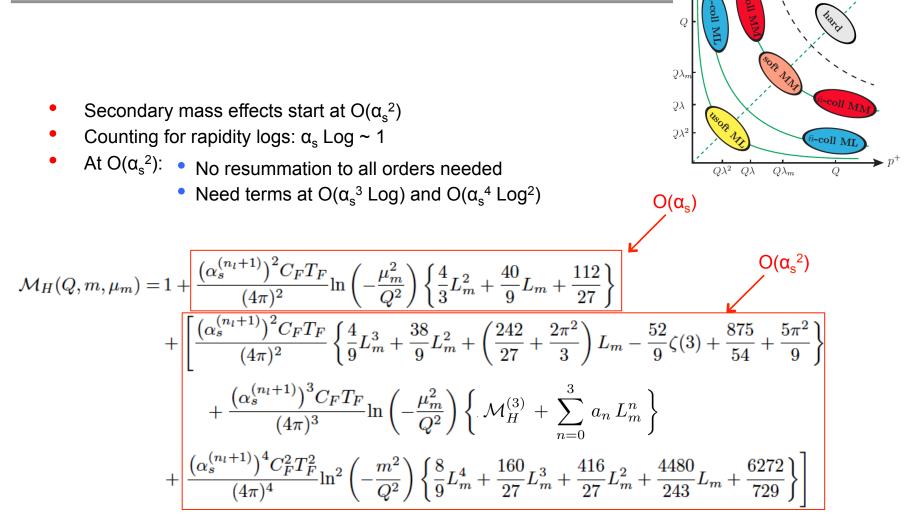
<u>MS condition</u>: massless limit for $m \rightarrow 0$: ((n₁+1)-flavor scheme)

$$J^{\overline{\text{MS}}}(\boldsymbol{s},\boldsymbol{m},\mu) = J^{(n_l+1)}(\boldsymbol{s},\mu) + \delta J^{\text{dist}}_{\boldsymbol{m}}(\boldsymbol{s},\boldsymbol{m},\mu) + \theta(\boldsymbol{s}-4\boldsymbol{m}^2)\delta J^{\text{real}}_{\boldsymbol{m}}(\boldsymbol{s},\boldsymbol{m}) \quad \overset{\boldsymbol{m}\ll\boldsymbol{s}}{\longrightarrow} J^{(n_l+1)}(\boldsymbol{s},\mu)$$

$$\square \hspace{-1.5cm} \searrow \hspace{-1.5cm} \mathcal{M}_J(\boldsymbol{s},\boldsymbol{m},\mu) = \boldsymbol{J}^{\overline{\mathrm{MS}}}(\boldsymbol{s},\boldsymbol{m},\mu) \otimes (\boldsymbol{J}^{\mathrm{OS}}(\boldsymbol{s},\boldsymbol{m},\mu))^{-1}$$

 Renormalization approach automatically implies (perturbative) continuity of the evolution through the MM threshold → no scale hierarchies are involved/needed anywhere!

Rapidity Logarithms

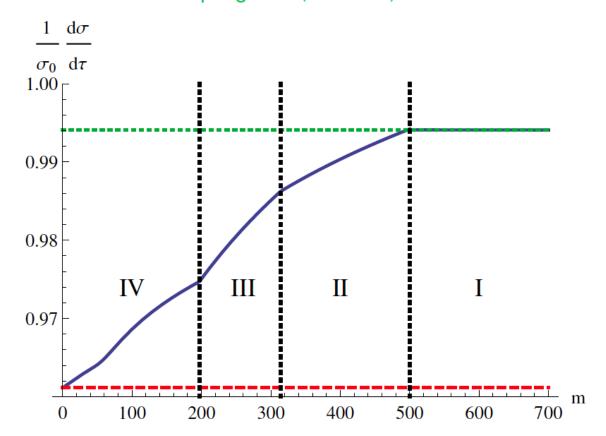


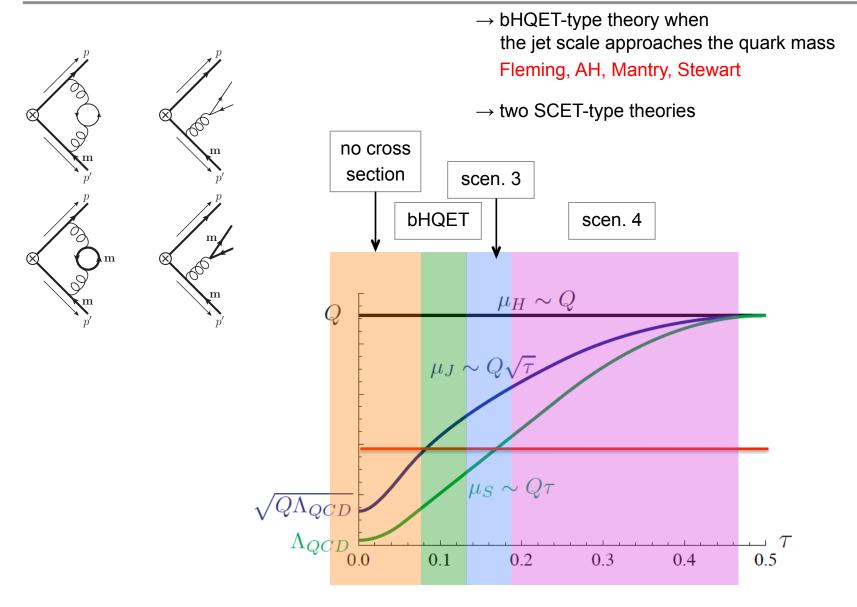
$$L_M = \ln\left(\frac{m^2}{\mu_m^2}\right)$$

VFN Scheme for Final State Jets

Consistency check: continuous transition and correct limiting behaviour

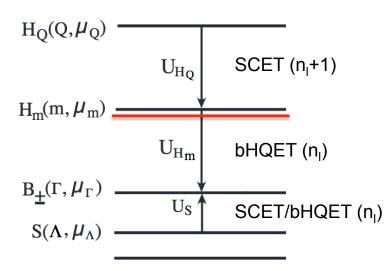
Thrust distribution: Q = 500 GeV, $\tau = 0.15$ fixed, vary mass massless limit (6 flavors): dashed decoupling limit (5 flavors): dotted





Fleming, AH, Mantry, Stewart (2007)

<u>SCET/bHQET</u>: Q >> J ~ m > Δm > m/Q Δm

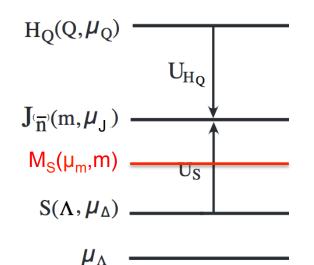


- Small components of massive quark integrated out at μ_m~m
- bHQET current evolution for μ < m
- SCET current evolution for µ > m
- Soft function identical to primary massless case (boosted massive quarks)

All two-loop FO input now known! N²LL'/N³LL

$$\begin{aligned} \left| \frac{1}{\sigma_0} \frac{\mathrm{d}\hat{\sigma}(\tau)}{\mathrm{d}\tau} \right|^{\mathrm{bHQET}} &= Q \, H_Q^{(n_f)}(Q,\mu_Q) \, U_{H_Q}^{(n_f)}(Q,\mu_Q,\mu_m) \, H_m^{(n_f)}(\overline{m}^{(n_f)},\mu_m) \, U_{H_m}^{(n_l)} \left(\frac{Q}{\overline{m}^{(n_l)}},\mu_m,\mu_B \right) \\ &\int \mathrm{d}s \int \mathrm{d}k \, B^{(n_l)} \left(\frac{s}{m_J^{(n_l)}},\mu_B,m_J^{(n_l)} \right) \, U_S^{(n_l)} \left(k,\mu_B,\mu_S \right) \, S_{\mathrm{part}}^{(n_l)} \left(Q \, \tau - Q \, \tau_{\mathrm{MIN}} - \frac{s}{Q} - k,\mu_S \right) \end{aligned}$$

<u>SCET scen. 3</u>: Q >> J > m > S

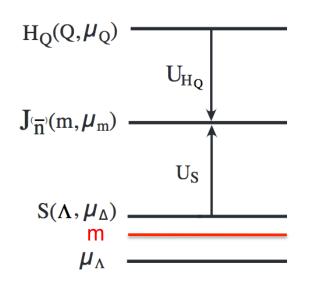


• Same as scenario 3 for primary massless, but with massive jet function

N²LL'/N³LL up to two-loop massive SCET jet function.

$$\begin{aligned} \left| \frac{1}{\sigma_0} \frac{d\hat{\sigma}(\tau)}{d\tau} \right|^{\text{SCET-III}} &= Q H_Q^{(n_f)}(Q, \mu_Q) U_{H_Q}^{(n_f)}\left(Q, \mu_Q, \mu_J\right) \int ds \int dk \, dk' \, dk'' \, J^{(n_f)}(s, \mu_J, \overline{m}^{(n_f)}(\mu_J)) \, U_S^{(n_f)}(k, \mu_J, \mu_m) \\ & \mathcal{M}_S^{(n_f)}(k' - k, \overline{m}^{(n_f)}(\mu_m), \mu_m, \mu_s) U_S^{(n_l)}(k'' - k', \mu_m, \mu_S) \, S_{\text{part}}^{(n_l)}\left(Q\tau - Q\tau_{\min} - \frac{s}{Q} - k'', \mu_S\right) \\ & n_f = n_\ell + 1 \end{aligned}$$

<u>SCET scen. 4</u>: Q >> J > S > m



• Same as scenario 4 for primary massless, but with massive jet function

N²LL'/N³LL up to two-loop massive SCET jet function.

 Consistency relations: Evolution factors and mass mode threshold corrections
 Perturbative continuity

$$\left|\frac{1}{\sigma_0} \frac{d\hat{\sigma}(\tau)}{d\tau}\right|^{\text{SCET-IV}} = Q H_Q^{(n_f)}(Q, \mu_Q) U_{H_Q}^{(n_f)}(Q, \mu_Q, \mu_J) \int ds \int dk J^{(n_f)}(s, \mu_J, \overline{m}^{(n_f)}(\mu_J))$$
$$U_S^{(n_f)}(k, \mu_J, \mu_S) S_{\text{part}}^{(n_f)}(Q \tau - Q \tau_{\min} - \frac{s}{Q} - k, \mu_S)$$
$$n_f = n_\ell + 1$$

Short-Distance Masses

- Mass dependence in all FO components of all factorization theorems
- Most relevant quark mass dependence contains in the jet functions (SCET & bHQET)
- Mass definition must be close with the scale of the respective functions (\rightarrow profile functions)

$\mu \ge m$: MSbar mass (n₁+1)

$$\bar{m}(\mu) = m_{\text{pole}} - \bar{m}(\mu) \sum_{n=1}^{\infty} \sum_{k=0}^{n} a_{nk} \left(\frac{\alpha_s(\mu)}{4\pi}\right)^n \ln^k \frac{\mu}{\bar{m}}$$

 \rightarrow usual MSbar RG-evolution

μ < m: R-scale short-distance mass (n_l)

Jet mass: from bHQET jet function

MSR mass: derived from MSbar mass coefficients

Many others possible

Jain, Scimemi, Stewart 08

Jain, Scimemi, Stewart, AH 08

$$m(R) = m_{\text{pole}} - \delta m(R) \qquad \delta m(R) = R \sum_{n=1}^{\infty} \left(\frac{\alpha_s(R)}{4\pi}\right)^{n_{180}} \prod_{n=0}^{n_{180}} \frac{1}{m(m)}$$

$$R \frac{d}{dR} m(R) = -\frac{d}{d\ln R} \delta m(R) = R \sum_{n=0}^{\infty} \gamma_n^R \left[\frac{\alpha_s(R)}{4\pi}\right]^{n+1} \qquad 170$$

$$m(R_1) - m(R_0) = \int_{R_0}^{R_1} \frac{dR}{R} R \gamma^R [\alpha_s(R)] \qquad 160$$

 $\mu_m \sim m$: matching: \rightarrow pert. renormalons-free relation through pole mass

MC vs. SCET: Primary Bottom Production

Preliminary !!

Denahdi, AHH, Mateu

Compare MC with SCET (pQCD, summation, hadronization effects) @ NNLL for Thrust

- Take central values for α_s and Ω_1 from our earlier NNLL thrust analysis for data on all-flavor production (=massless quarks) $\alpha_s(M_Z) = 0.1192 \pm 0.006$ $\Omega_1 = 0.276 \pm 0.155$
- Compare with Pythia (m_b^{Pythia}=4.8 GeV) for consistency and mass sensitivity
- Which mass does m_b^{Pythia}=4.8 GeV correspond to for a field theoretic bottom mass?

order	$\overline{\Omega}_1$ ($\overline{\mathrm{MS}}$)	Ω_1 (R-gap)	order	$lpha_s(m_Z) \; (ext{with} \; ar{\Omega}_1^{\overline{ ext{MS}}})$	$lpha_s(m_Z)~({ m with}~\Omega_1^{ m Rgap})$
\mathbf{NLL}'	0.264 ± 0.213	0.293 ± 0.203	NLL'	0.1203 ± 0.0079	0.1191 ± 0.0089
NNLL	0.256 ± 0.197	0.276 ± 0.155	NNLL	0.1222 ± 0.0097	0.1192 ± 0.0060
\mathbf{NNLL}'	0.283 ± 0.097	0.316 ± 0.072	\mathbf{NNLL}'	0.1161 ± 0.0038	0.1143 ± 0.0022
$N^{3}LL$	0.274 ± 0.098	0.313 ± 0.071	$N^{3}LL$	0.1165 ± 0.0046	0.1143 ± 0.0022
$N^{3}LL'$ (full)	0.252 ± 0.069	0.323 ± 0.045	$N^{3}LL'$ (full)	0.1146 ± 0.0021	0.1135 ± 0.0009
$\mathrm{N}^{3}\mathrm{LL'}_{(\mathrm{QCD}+m_{b})}$	0.238 ± 0.070	0.310 ± 0.049	$\mathrm{N}^{3}\mathrm{LL'}_{(\mathrm{QCD}+m_b)}$	0.1153 ± 0.0022	0.1141 ± 0.0009
${ m N}^3 { m LL'}_{({ m pure QCD})}$	0.254 ± 0.070	0.332 ± 0.045	$ m N^3LL'_{(pure QCD)}$	0.1152 ± 0.0021	0.1140 ± 0.0008

Abbate, Fickinger, AHH, Mateu, Stewart 2010

MC vs. SCET: Primary Bottom Production

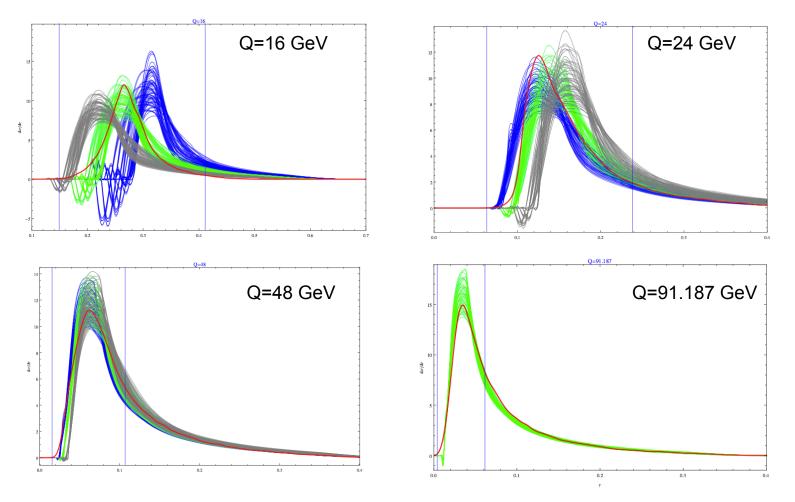
Preliminary !! (no fit yet) all NNLL+NLO **Pythia**: $m_b^{\text{Pythia}} = 4.8 \text{ GeV}$ QCD calc.: $\overline{m}_b(\overline{m}_b) = 4.2 \text{ GeV}$ $\alpha_s(M_Z) = 0.1192$ $\Omega_1 = 0.276 \text{ GeV}$ Q=16 GeV Q=24 GeV 0.2 0.3 0.3 0 = 91.18Q=48 GeV Q=91.187 GeV 0.1 0.3 0.2 0.4

EFT ERC Workshop Mainz, November 10-13, 2014

MC vs. SCET: Primary Bottom Production

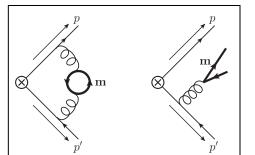
Preliminary !! (No fit yet)

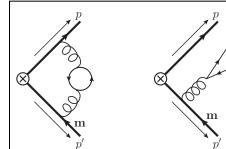
 $\overline{m}_b(\overline{m}_b) = 3.7, 4.2, 4.7 \text{ GeV}$ $\alpha_s(M_Z) = 0.1192$ $\Omega_1 = 0.276 \text{ GeV}$

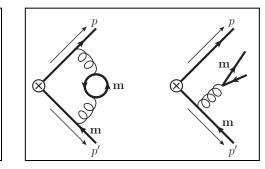


Outlook & Conclusion

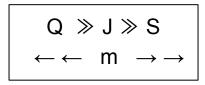
→ VFN Scheme for final state jets with massive quarks







- \rightarrow Sums all large logarithms including those involving m
- \rightarrow Accounts for full mass dependence



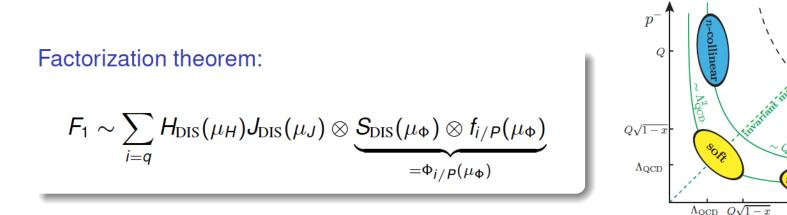
- \rightarrow Fully consistent with VFNS scheme for PDFs, beam fcts, ...
- \rightarrow Allows simplified VFNS implementation in special cases.
- → Needs non-trivial mass-dependent ME calculations if mass is of order of another scale
- \rightarrow Interesting applications are coming up.

Consistency with VFNS in DIS ($x \rightarrow 1$)

- x → 1: experimentally barely accessible (small pdfs!) but: nontrivial factorization setup → interesting as a showcase for concepts
- quite a lot of SCET literature

```
Manohar (2003), Becher, Neubert, Pecjak (2006),
Chay, Kim (2006, 2010, 2013), Fleming, Zhang (2013), ...
```

• here: $1 - x \sim \Lambda_{QCD}/Q$, conveniently: Breit frame

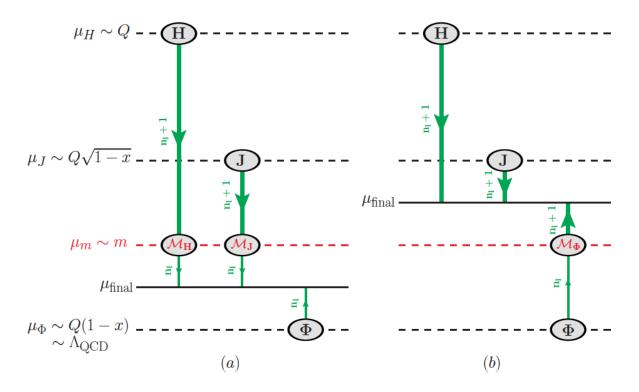


Ingredients:

- at $\mu_H \sim Q$: hard function $H_{\text{DIS}}(\mu_H) = |C(\mu_H)|^2$
- at $\mu_J \sim Q\sqrt{1-x}$: final state jet function $J_{\text{DIS}}(\mu_J)$
- at μ_Φ ~ Λ_{QCD}: pdf Φ_{q/P}(μ_Φ)
 ↔ in SCET II: collinear initial state function f_{q/P}(μ_Φ) ⊗ soft function S_{DIS}(μ_Φ)

-collinea

Consistency with VFNS in DIS ($x \rightarrow 1$)



physical cross section independent of $\mu_{\rm final} \to$ (a) and (b) equivalent \to relation between evolution factors

$$U_H^{(n_f)} \times U_J^{(n_f)} = \left(U_{\Phi}^{(n_f)}\right)^{-1}$$
 for $n_f = n_l, n_l + 1$

 \rightarrow relation between matching conditions

$$\mathcal{M}_H imes \mathcal{M}_J = \mathcal{M}_\Phi$$

Gap Parameter

- Remove O(Λ) renormalon in partonic soft function
- Gap matching in R-evolution at mass scale
- Subtraction for finite mass not strictly needed, but included to have smooth behavior for massless limit
- R-evolution mass dependent at $O(\alpha_s^2)$

 $S(\ell,\mu) = \int d\ell' S_{\text{part}}(\ell - \ell',\mu) S_{\text{model}}(\ell - \Delta)$ $\Delta = \bar{\Delta}(R,\mu) + \delta(R,\alpha_s,\mu)$ renormalon-free $S(\ell,\mu) = \int d\ell' S_{\text{part}}(\ell - \ell' + \delta,\mu) S_{\text{model}}(\ell - \bar{\Delta})$

$$\delta(R,\mu) = \left. \frac{Re^{\gamma_E}}{2} \frac{d}{d\ln(ix)} \left[\ln \tilde{S}_{\tau,\text{part}}(x,\mu) \right] \right|_{x = (iRe^{\gamma_E})^{-1}}$$
Kluth, AH 10

 $\mu_m \sim m$: matching:

Gritschacher, AH, Jemos, Pietrulewicz 2013

$$\bar{\Delta}^{(n_{\ell})}(R,\mu) - \bar{\Delta}^{(n_{\ell}+1)}(R,m,\mu) = e^{\gamma_{E}} R \left[\left(\frac{\alpha_{s}(\mu)}{4\pi} \right)^{2} (\delta_{2,m}(R,m,\mu) + \frac{4}{3} T_{F} \, \delta_{1} \, \ln \frac{\mu^{2}}{m^{2}}) \right]$$

