Non-Cancellation of Electroweak Logarithms in High-Energy Scattering

Sascha Turczyk

Work in collaboration with A. Manohar, B. Shotwell and Ch. Bauer

[arXiv:1409.1918]

ERC workshop Schloss Waldthausen, October 13th 2014

Sascha Turczyk

Introduction

Motivation

Example of $pp(\text{later } qq) \rightarrow t\bar{t}$

[hep-ex/1406.7830]

Current Status

- Analysis extends to high energies
- $\sigma(t\bar{t})$: NNLO QCD, NNLL soft gluon resummation: top++2.0

Events/12 GeV 10⁶

10

10⁴

10

10 10

bata/Pre-

ATLAS

= 8 TeV, 20.3 fb

iets 2 b-tags

[hep-ex/1410.4103]

W_n(1.75 TeV)×5

iets dibosons

Uncertaint

Baernreuther, Cacciari, Czakon, Fiedler, Mangano, Mitov, Nason; Beneke, Falgari, Klein, Schwinn

- No clear sign of New Physics (yet?)
- Electroweak effects become important for precision predictions

Appearance of Sudakov Logs

Example of e^+e^- quarks (\rightarrow KLN Theorem)

- Regularize individual contributions
- Virtual corrections are IR divergent $\propto \log^2 \frac{M^2}{s} + 3\log \frac{M^2}{s}$
- Real emission is IR divergent $\propto -(\log^2 \frac{M^2}{s} + 3\log \frac{M^2}{s})$
 - $\Rightarrow~$ Fully inclusive rate is not IR sensitive: $1+\alpha_s/\pi$
 - $\Rightarrow\,$ Applying phase-space cuts, Sudakov logs may survive

Sudakov Logs for Electroweak Corrections [Ciafalon et al., Kuhn et al., Denner et al.

- Presence of Sudakov double logs $\alpha_W \log^2 s/M^2$ regularized by $M_{W,Z}$
- Arise from collinear and soft infrared divergences
- Known to survive for
 - Phase-space cuts [Bell, Kuhn, Rittinger]
 - On SU(2)-Singlet initial state [Ciafaloni, Comelli]
- Here: Restrict specific gauge boson emission

Appearance of Sudakov Logs

Example of e^+e^- quarks (\rightarrow KLN Theorem)

- Regularize individual contributions
- Virtual corrections are IR divergent $\propto \log^2 \frac{M^2}{s} + 3\log \frac{M^2}{s}$
- Real emission is IR divergent $\propto -(\log^2 \frac{M^2}{s} + 3\log \frac{M^2}{s})$
 - $\Rightarrow~$ Fully inclusive rate is not IR sensitive: $1+\alpha_s/\pi$
 - $\Rightarrow\,$ Applying phase-space cuts, Sudakov logs may survive

Sudakov Logs for Electroweak Corrections [Ciafalon et.al., Kuhn et.al., Denner et.al.]

- Presence of Sudakov double logs $\alpha_W \log^2 s/M^2$ regularized by $M_{W,Z}$
- Arise from collinear and soft infrared divergences
- Known to survive for
 - Phase-space cuts [Bell, Kuhn, Rittinger]
 - Non SU(2)-Singlet initial state [Ciafaloni, Comelli]

• Here: Restrict specific gauge boson emission

Appearance of Sudakov Logs

Example of e^+e^- quarks (\rightarrow KLN Theorem)

- Regularize individual contributions
- Virtual corrections are IR divergent $\propto \log^2 \frac{M^2}{s} + 3\log \frac{M^2}{s}$
- Real emission is IR divergent $\propto -(\log^2 \frac{M^2}{s} + 3\log \frac{M^2}{s})$
 - $\Rightarrow~$ Fully inclusive rate is not IR sensitive: $1+\alpha_s/\pi$
 - $\Rightarrow\,$ Applying phase-space cuts, Sudakov logs may survive

Sudakov Logs for Electroweak Corrections [Ciafalon et.al., Kuhn et.al., Denner et.al.]

- Presence of Sudakov double logs $\alpha_W \log^2 s/M^2$ regularized by $M_{W,Z}$
- Arise from collinear and soft infrared divergences
- Known to survive for
 - Phase-space cuts [Bell, Kuhn, Rittinger]
 - Non SU(2)-Singlet initial state [Ciafaloni, Comelli]
- Here: Restrict specific gauge boson emission

Motivation Electroweak Corrections and SCET

Simplifying Assumptions

• Consider gauge singlett current $J \rightarrow q\bar{q}$

$$\sigma_T = \frac{\alpha_W}{2\pi} \left(G_R - G_V \right) \widehat{\sigma}_0 \left\{ \ln^2 M_W^2 / s + 3 \ln M_W^2 / s + \ldots \right\}$$

Fully inclusive rate

- Any fermion, no gauge boson
- I fermion, and gauge bosons
- 🕘 1 fermion, no gauge bosons
- 2 fermions, and gauge bosons
- 6 2 fermions, and no gauge bosons
- 🕖 Any fermion, specific gauge boson

1	NCF	NCF	
		NCF	$-NC_F$
4			
		NCF	$1 - \frac{N^2}{2}$

Relevant for EW Corrections

Motivation Electroweak Corrections and SCET

Simplifying Assumptions

• Consider gauge singlett current $J \rightarrow q\bar{q}$

$$\sigma_T = \frac{\alpha_W}{2\pi} \left(G_R - G_V \right) \widehat{\sigma}_0 \left\{ \ln^2 M_W^2 / s + 3 \ln M_W^2 / s + \ldots \right\}$$

Fully inclusive rate

- Any fermion, no gauge boson
- I fermion, and gauge bosons
- I fermion, no gauge bosons
- 9 2 fermions, and gauge bosons
- 6 2 fermions, and no gauge bosons
- Any fermion, specific gauge boson

Case	G _R	G _V	$G_R - G_V$
1	NCF	NCF	0
2	0	NCF	-NC _F
3	C _F	C _F	0
4	0	C _F	$-C_F$
5	$\frac{1}{2} - \frac{1}{2N}\delta_{ij}$	$C_F \delta_{ij}$	$\frac{1}{2} - \frac{N}{2}\delta_{ij}$
6	0	$C_F \delta_{ij}$	$-C_F\delta_{ij}$
7	$\frac{1}{2}$	NC _F	$1 - \frac{N^2}{2}$

Relevant for EW Corrections

Motivation Electroweak Corrections and SCET

Necessity for Resummation

•
$$\frac{\alpha_{\rm EW}}{4\pi\sin^2\theta_W}\log^2 s/M_W^2 \sim 0.15$$
 for $\sqrt{s} = 4$ TeV

- Power corrections are less important than logarithmic ones
- \Rightarrow We have advantages to use an EFT approach: SCET
 - Amplitude expansion structure
 - Fixed order: Row
 - Resummation: Column

- Exponentiated Amplitude
- Natural EFT result

 \Rightarrow Non-trivial relation

$$A = \begin{pmatrix} 1 & & & \\ \alpha L^2 & \alpha L & \alpha & \\ \alpha^2 L^4 & \alpha^2 L^3 & \alpha^2 L^2 & \alpha^2 L & \alpha^2 \\ \alpha^3 L^6 & & \dots & \\ \vdots & & & \end{pmatrix} \log A = \begin{pmatrix} \alpha L^2 & \alpha L & \alpha & \\ \alpha^2 L^3 & \alpha^2 L^2 & \alpha^2 L & \alpha^2 \\ \alpha^3 L^4 & \alpha^3 L^3 & \alpha^3 L^2 & \alpha^3 L & \alpha^3 \\ \alpha^4 L^5 & & \dots & \\ \vdots & & & \\ \vdots & & & \\ 0 \text{ Leading Log } Log (LL) \text{ Regime: } L \sim \frac{1}{\alpha} \\ \bullet \text{ Leading Log squared } (LL^2) \text{ Regime: } L \sim \frac{1}{\sqrt{\alpha}} \end{cases}$$

Sascha Turczyk

Motivation Electroweak Corrections and SCET

Necessity for Resummation

•
$$\frac{\alpha_{\rm EW}}{4\pi\sin^2\theta_W}\log^2 s/M_W^2\sim 0.15$$
 for $\sqrt{s}=4$ TeV

- Power corrections are less important than logarithmic ones
- \Rightarrow We have advantages to use an EFT approach: SCET
 - Amplitude expansion structure
 - Fixed order: Row
 - Resummation: Column

- Exponentiated Amplitude
- Natural EFT result
- \Rightarrow Non-trivial relation

$$A = \begin{pmatrix} 1 & & & \\ \alpha L^2 & \alpha L & \alpha & & \\ \alpha^2 L^4 & \alpha^2 L^3 & \alpha^2 L^2 & \alpha^2 L & \alpha^2 \\ \alpha^3 L^6 & & & \\ \vdots & & & \\ \end{array} \quad \log A = \begin{pmatrix} \alpha L^2 & \alpha L & \alpha & & \\ \alpha^2 L^3 & \alpha^2 L^2 & \alpha^2 L & \alpha^2 \\ \alpha^3 L^4 & \alpha^3 L^3 & \alpha^3 L^2 & \alpha^3 L & \alpha^3 \\ \alpha^4 L^5 & & & \\ \vdots & & \\ \vdots & & \\ \end{bmatrix}$$

• Leading Log (*LL*) Regime: $L \sim \frac{1}{\alpha}$
• Leading Log squared (*LL*²) Regime: $L \sim \frac{1}{\sqrt{\alpha}}$

Sascha Turczyk

Motivation Electroweak Corrections and SCET

Comparing Fixed Order vs EFT

Legend

- Red: Real radiation
- Blue: Virtual corrections
- Black: Sum of contributions
- Solid: Full result
- Dashed: EFT result

Motivation Electroweak Corrections and SCET

Scales of the Problem

- Needed: High-Scale matching C
 - No large logs!

Known analytic results

- Collinear running γ in SCET_{EW, γ} for all fields within the SM
- Soft running γ in SCET_{EW,γ} for all field representations within the SM
- Soft matching D at weak scale ⇒ symmetry breaking effects
- Collinear matching D at weak scale
- ⇒ Corrections are available analytically for an arbitrary process (up to high scale matching)

[Chiu, Fuhrer, Kelley, Manohar, 0909.0012[hep-ph]]

Motivation Electroweak Corrections and SCET

The Wilson Coefficient

Matrices for EW Corrections in SCET [Chiu, Fuhrer, Kelley, Manohar, Hoang, Golf]

$$\mathcal{M}_{\text{low}} = \exp\left[\int_{\mu}^{M_z} \frac{d\mu}{\mu} R_{U(1)_{\text{EM}}}^{\text{soft+col}}\right]$$
$$\mathcal{M}_{\text{col}} = \exp\left[M_{U(1)_{Y}\otimes SU(2)_{W}}^{\text{col}}\right] \exp\left[\int_{M_z}^{\sqrt{s}} \frac{d\mu}{\mu} R_{U(1)_{Y}\otimes SU(2)_{W}}^{\text{col}}\right]$$
$$\mathcal{M}_{\text{soft}} = \exp\left[\int_{M_z}^{\sqrt{s}} \frac{d\mu}{\mu} R_{U(1)_{Y}}^{\text{soft}}\right] M_{SU(2)}^{\text{break}} \exp\left[\int_{M_z}^{\sqrt{s}} \frac{d\mu}{\mu} R_{SU(2)_{W}}^{\text{soft}}\right]$$

- R is running matrix (anomalous dimension)
- *M* is a matching matrix

$$\mathbf{C}_{\mathsf{low}} = \mathcal{M}_{\mathsf{low}} \, \mathcal{M}_{\mathsf{col}} \, \mathcal{M}_{\mathsf{soft}} \, \mathbf{C}_{\mathsf{high}} \, \mathcal{M}_{SU(3)}^{\mathsf{T}}$$

Sascha Turczyk

Motivation Electroweak Corrections and SCET

The Wilson Coefficient

Matrices for EW Corrections in SCET [Chiu, Fuhrer, Kelley, Manohar, Hoang, Golf]

$$\begin{split} \mathcal{M}_{\text{low}} &= \exp\left[\int_{\mu}^{M_z} \frac{\mathrm{d}\mu}{\mu} R_{U(1)_{\text{EM}}}^{\text{soft+col}}\right] \\ \mathcal{M}_{\text{col}} &= \exp\left[M_{U(1)_Y \otimes SU(2)_W}^{\text{col}}\right] \exp\left[\int_{M_z}^{\sqrt{s}} \frac{\mathrm{d}\mu}{\mu} R_{U(1)_Y \otimes SU(2)_W}^{\text{col}}\right] \\ \mathcal{M}_{\text{soft}} &= \exp\left[\int_{M_z}^{\sqrt{s}} \frac{\mathrm{d}\mu}{\mu} R_{U(1)_Y}^{\text{soft}}\right] M_{SU(2)}^{\text{break}} \exp\left[\int_{M_z}^{\sqrt{s}} \frac{\mathrm{d}\mu}{\mu} R_{SU(2)_W}^{\text{soft}}\right] \end{split}$$

- *R* is running matrix (anomalous dimension)
- *M* is a matching matrix

$$\mathbf{C}_{\mathsf{low}} = \mathcal{M}_{\mathsf{low}} \, \mathcal{M}_{\mathsf{col}} \, \mathcal{M}_{\mathsf{soft}} \, \mathbf{C}_{\mathsf{high}} \, \mathcal{M}_{\mathcal{SU}(3)}^{\mathsf{T}}$$

Application to $gg \rightarrow t\bar{t}$, $b\bar{b}$

Goals

- \Rightarrow Numerical estimate for $t\bar{t}$ production
 - Effect for final state gauge bosons larger $C_F \rightarrow C_A$
 - Enhancement by phase-space cuts and non-singlet initial states
 - Consider three scenarios for the top

- 2 q = t, b with $m_b = 100$ GeV and $m_t = 173$ GeV
- q = t, b with $m_b = 4.7 \text{ GeV}$ and $m_t = 173 \text{ GeV}$.

Simplifications

- Partonic level
- Unbroken SU(2) theory
- Singlet initial state $\Rightarrow gg \rightarrow t\bar{t}$
- No Decay, shower or hadronization effects
- To avoid t-channel singularity demand
 -) $|\eta| < 1,3$ for highest transverse momentum particle
 - $|\eta| < 5$ for second highest transverse momentum particle

Application to $gg \rightarrow t\bar{t}$, $b\bar{b}$

Goals

- \Rightarrow Numerical estimate for $t\bar{t}$ production
 - Effect for final state gauge bosons larger $C_F \rightarrow C_A$
 - Enhancement by phase-space cuts and non-singlet initial states
 - Consider three scenarios for the top

- 2 q = t, b with $m_b=100$ GeV and $m_t = 173$ GeV
- q = t, b with m_b =4.7 GeV and $m_t = 173$ GeV.

Simplifications

- Partonic level
- Unbroken SU(2) theory
- Singlet initial state $\Rightarrow gg \rightarrow t\overline{t}$
- No Decay, shower or hadronization effects
- To avoid t-channel singularity demand
 -) $|\eta| < 1,3$ for highest transverse momentum particle
 - $|\eta| < 5$ for second highest transverse momentum particle

Application to $gg \rightarrow t\bar{t}$, $b\bar{b}$

Goals

- \Rightarrow Numerical estimate for $t\bar{t}$ production
 - Effect for final state gauge bosons larger $C_F \rightarrow C_A$
 - Enhancement by phase-space cuts and non-singlet initial states
 - Consider three scenarios for the top

- 2 q = t, b with $m_b=100$ GeV and $m_t = 173$ GeV
- q = t, b with $m_b = 4.7 \text{ GeV}$ and $m_t = 173 \text{ GeV}$.

Simplifications

- Partonic level
- Unbroken *SU*(2) theory
- Singlet initial state $\Rightarrow gg \rightarrow t\overline{t}$
- No Decay, shower or hadronization effects
- To avoid *t*-channel singularity demand
 - **(**) $|\eta| < 1, 3$ for highest transverse momentum particle
 - 2 $|\eta| < 5$ for second highest transverse momentum particle

Virtual and Real Corrections

Virtual Corrections

- We use the results obtained in SCET
- Expand out to order α_W to demonstrate cancellation

$$\sigma_V(gg \to t\bar{t}) = \sigma_{0,t} \{ v_W + 3v_t + v_b \}$$

$$\sigma_V(gg \to b\bar{b}) = \sigma_{0,b} \{ v_W + v_t + 3v_b \}$$

$$v_W = \frac{C_F \alpha_W}{4\pi} \left[-L^2 + 3L \right], \quad v_t = -\frac{y_t^2}{32\pi^2} L, \quad v_b = -\frac{y_b^2}{32\pi^2} L$$

Real Radiation

• To our considered order: Tree Level process

 \Rightarrow We use MadGraph5_aMC@NLO for calculating this numerically

Analysis of the Contributions Numerics and Discussion

Subtlety for Decaying Top

• Usually done: Narrow width approximation

$$\frac{1}{p^2 - m_t^2 + i\epsilon} \to \frac{1}{p^2 - m_t^2 + im_t\Gamma_t}$$

• Equivalent to sum all imaginary part of \xrightarrow{W}_{t} + \xrightarrow{S}_{t} + \xrightarrow{S}_{t} + ...

- Same as one cut of the $J \rightarrow t\bar{t}$ example
- \Rightarrow Cuts cannot be treated separately
- \Rightarrow Not gauge invariant
- \Rightarrow Mixes different orders in α_W : Γ_t is $\mathcal{O}(\alpha_W m_t)$
 - If $t \to Wb$ is kinematically allowed: $\mathcal{O}(\alpha_W)$ piece is wrong

Analysis of the Contributions Numerics and Discussion

Subtlety for Decaying Top

• Usually done: Narrow width approximation

$$\frac{1}{p^2 - m_t^2 + i\epsilon} \to \frac{1}{p^2 - m_t^2 + im_t\Gamma_t}$$

Equivalent to sum all imaginary part of

- Same as one cut of the $J \rightarrow t\bar{t}$ example
- \Rightarrow Cuts cannot be treated separately
- \Rightarrow Not gauge invariant
- \Rightarrow Mixes different orders in α_W : Γ_t is $\mathcal{O}(\alpha_W m_t)$
 - If $t \to Wb$ is kinematically allowed: $\mathcal{O}(\alpha_W)$ piece is wrong

Analysis of the Contributions Numerics and Discussion

Subtlety for Decaying Top

• Usually done: Narrow width approximation

$$\frac{1}{p^2 - m_t^2 + i\epsilon} \to \frac{1}{p^2 - m_t^2 + im_t\Gamma_t}$$

- Same as one cut of the $J \rightarrow t\bar{t}$ example
- \Rightarrow Cuts cannot be treated separately
- \Rightarrow Not gauge invariant
- \Rightarrow Mixes different orders in α_W : Γ_t is $\mathcal{O}(\alpha_W m_t)$
 - If $t \to Wb$ is kinematically allowed: $\mathcal{O}(\alpha_W)$ piece is wrong

Analysis of the Contributions Numerics and Discussion

Subtlety for Decaying Top

• Usually done: Narrow width approximation

$$\frac{1}{p^2 - m_t^2 + i\epsilon} \to \frac{1}{p^2 - m_t^2 + im_t\Gamma_t}$$

• Equivalent to sum all imaginary part of \xrightarrow{W}_{t} + \xrightarrow{S}_{t} + \xrightarrow{S}_{t} + ...

- Same as one cut of the $J \rightarrow t\bar{t}$ example
- \Rightarrow Cuts cannot be treated separately
- \Rightarrow Not gauge invariant
- \Rightarrow Mixes different orders in α_W : Γ_t is $\mathcal{O}(\alpha_W m_t)$
 - If $t \to Wb$ is kinematically allowed: $\mathcal{O}(\alpha_W)$ piece is wrong

Subtlety for Decaying Top

• Usually done: Narrow width approximation

$$\frac{1}{p^2 - m_t^2 + i\epsilon} \to \frac{1}{p^2 - m_t^2 + im_t\Gamma_t}$$

- Same as one cut of the $J \rightarrow t\bar{t}$ example
- \Rightarrow Cuts cannot be treated separately
- \Rightarrow Not gauge invariant
- \Rightarrow Mixes different orders in α_W : Γ_t is $\mathcal{O}(\alpha_W m_t)$
 - If $t \to Wb$ is kinematically allowed: $\mathcal{O}(\alpha_W)$ piece is wrong

Analysis of the Contributions Numerics and Discussion

Practical Solution

Divide into resonant (A)and non-resonant (A') region

$$U = \int_{m_t^2 - \Delta}^{m_t^2 + \Delta} \mathrm{d}m_{bW}^2 \; \frac{f(m_{bW}^2)}{(m_{bW}^2 - m_t^2)^2 + \epsilon^2}$$

 ϵ regulator from $i\epsilon$ prescription

• Need to subtract singular piece in region A by expanding

$$f(m_{bW}^2) = f_0 + (m_{bW}^2 - m_t^2)f_1 + (m_{bW}^2 - m_t^2)^2 f_2 + \dots$$
$$I = \frac{\pi}{\epsilon} f_0 + 2\Delta f_2 + \dots$$

• Size is suppressed by Δ

 \Rightarrow Practially ignoring the region A is a good approximation

Analysis of the Contributions Numerics and Discussion

Practical Solution

Divide into resonant (A)and non-resonant (A') region

$$U = \int_{m_t^2 - \Delta}^{m_t^2 + \Delta} \mathrm{d}m_{bW}^2 \; \frac{f(m_{bW}^2)}{(m_{bW}^2 - m_t^2)^2 + \epsilon^2}$$

 ϵ regulator from $i\epsilon$ prescription

• Need to subtract singular piece in region A by expanding

$$f(m_{bW}^2) = f_0 + (m_{bW}^2 - m_t^2)f_1 + (m_{bW}^2 - m_t^2)^2f_2 + \dots$$
$$I = \frac{\pi}{\epsilon}f_0 + 2\Delta f_2 + \dots$$

• Size is suppressed by Δ

 \Rightarrow Practially ignoring the region A is a good approximation

Sascha Turczyk

Analysis of the Contributions Numerics and Discussion

Practical Solution

Divide into resonant (A)and non-resonant (A') region

$$U = \int_{m_t^2 - \Delta}^{m_t^2 + \Delta} \mathrm{d}m_{bW}^2 \; \frac{f(m_{bW}^2)}{(m_{bW}^2 - m_t^2)^2 + \epsilon^2}$$

 ϵ regulator from $i\epsilon$ prescription

• Need to subtract singular piece in region A by expanding

$$f(m_{bW}^2) = f_0 + (m_{bW}^2 - m_t^2)f_1 + (m_{bW}^2 - m_t^2)^2f_2 + \dots$$
$$I = \frac{\pi}{\epsilon}f_0 + 2\Delta f_2 + \dots$$

- Size is suppressed by Δ
- \Rightarrow Practially ignoring the region A is a good approximation

Sascha Turczyk

Analysis of the Contributions Numerics and Discussion

Results for Massless Quarks

• Tree level: $gg \rightarrow u\bar{u}$ and $gg \rightarrow d\bar{d}$

• Real radiation: $gg \rightarrow u\bar{u}Z$, $gg \rightarrow d\bar{d}Z$, $gg \rightarrow u\bar{d}W^-$ and $gg \rightarrow d\bar{u}W^+$

- SU(2): $\sigma(u\bar{u}) = \sigma(d\bar{d}), \ \sigma(u\bar{d}W^{-}) = \sigma(d\bar{u}W^{+}) = 2\sigma(u\bar{u}Z) = 2\sigma(d\bar{d}Z)$
- Cancellation $3\sigma(u\bar{d}W) + 2v_W\sigma(u\bar{u}) \rightarrow 0$
- No full cancellation for experimental observables!

Application to $qq \rightarrow t\bar{t}, b\bar{b}$

Results for Massive and Stable Top: Remarks

• Use equivalence theorem for longitudinal polarization of W

$$\begin{aligned} \sigma(t\bar{b}W^{-}) &\to \sigma(u\bar{d}W^{-}) + 2(y_{t}^{2} + y_{b}^{2})\sigma_{S} \\ \sigma(t\bar{t}Z) &\to \frac{1}{2}\sigma(u\bar{d}W^{-}) + 2y_{t}^{2}\sigma_{S} \\ \sigma(b\bar{b}Z) &\to \frac{1}{2}\sigma(u\bar{d}W^{-}) + 2y_{b}^{2}\sigma_{S} \\ \sigma(t\bar{t}H) &\to 2y_{t}^{2}\sigma_{S}, \quad \sigma(b\bar{b}H) \to 2y_{b}^{2}\sigma_{S} \\ \sigma_{V}(t\bar{t}) &\to (v_{W} + 3v_{t} + v_{b})\sigma(u\bar{u}) \\ \sigma_{V}(b\bar{b}) &\to (v_{W} + v_{t} + 3v_{b})\sigma(u\bar{u}) \end{aligned}$$

Total real radiation

$$\sigma_{R} = 2\sigma(t\bar{b}W^{-}) + \sigma(t\bar{t}Z) + \sigma(b\bar{b}Z) + \sigma(t\bar{t}H) + \sigma(b\bar{b}H)$$

$$\rightarrow 3\sigma(u\bar{d}W^{-}) + 8(y_{t}^{2} + y_{b}^{2})\sigma_{S}$$

• Total virtual correction

$$\sigma_V = \sigma_V(t\bar{t}) + \sigma_V(b\bar{b}) = (2v_W + 4v_t + 4v_b)\sigma(u\bar{u})$$

Analysis of the Contributions Numerics and Discussion

Numerical Result for Massive and Stable Top

- *v*_{t,b} linear in Log
- Gauge and Higgs part cancel separately

$$8(y_t^2+y_b^2)\sigma_S+(4v_t+4v_b)\sigma(u\bar{u})\to 0.$$

• No full cancellation for experimental observables!

Sascha Turczyk

Application to $gg \rightarrow t\bar{t}, b\bar{b}$

Analysis of the Contributions Numerics and Discussion

Numerical Results for Physical Top Quark Case

- Same as before, Yukawa coupling for bottom much smaller
- Used \$t tag for MadGraph5_aMC@NLO
- \Rightarrow Excludes a region of width 15 Γ_t around the on-shell *t*-quark
 - No full cancellation for experimental observables!

Sascha Turczyk

Summary

- Electroweak corrections for $gg \to t\bar{t}$
- $\bullet\,$ Virtual corrections are around -10% for $E_{cm}\sim 2~GeV$
- If part of real radiation can be excluded, there are large electroweak radiative corrections
- Importance grows with energy and become measurable at LHC energies

- Corrections for $q\bar{q} \rightarrow t\bar{t}$ expected to be twice as large
- Explored minimal effect
- Total corrections to NLL can be written as a product $R_{QCD}R_{EW}$
- \Rightarrow EW can be included by reweighting QCD result
- \Rightarrow Inclusion of EW corrections possible with SCET approach
- \Rightarrow Full study with proton PDF, shower, exp. cuts, ... necessary

Summary

- Electroweak corrections for $gg \to t\bar{t}$
- $\bullet\,$ Virtual corrections are around -10% for $E_{cm}\sim 2~GeV$
- If part of real radiation can be excluded, there are large electroweak radiative corrections
- Importance grows with energy and become measurable at LHC energies

- Corrections for $q\bar{q} \rightarrow t\bar{t}$ expected to be twice as large
- Explored minimal effect
- Total corrections to NLL can be written as a product R_{QCD}R_{EW}
- \Rightarrow EW can be included by reweighting QCD result
- \Rightarrow Inclusion of EW corrections possible with SCET approach
- $\Rightarrow\,$ Full study with proton PDF, shower, exp. cuts, ... necessary

Backup Slides

SCET Operators

•
$$g(p_1) + g(p_2) \rightarrow q(p_3) + \overline{q}(p_4)$$

 $O_1 = \overline{q}_4 q_3 A_2^A A_1^A$
 $O_2 = d^{ABC} \overline{q}_4 T^C q_3 A_2^A A_1^B$
 $O_3 = i f^{ABC} \overline{q}_4 T^C q_3 A_2^A A_1^B$

High Scale Matching contains EW and QCD corrections

Running in SCET

- First run down to Electroweak scale
- Then integrate out gauge bosons \Rightarrow low scale matching
- \Rightarrow Breaks up SU(2) doubletts into individual fields

$$egin{aligned} \mathcal{M} &= \exp\left[D_C(\mu_I, \mathsf{L}_\mathsf{M}, ar{n} \cdot p)
ight] d_S(\mu_I, \mathsf{L}_\mathsf{M}) \ & imes P \, \exp\left[\int_{\mu_h}^{\mu_I} rac{\mathsf{d}\mu}{\mu} \gamma(\mu, ar{n} \cdot p)
ight] C(\mu_h, \mathsf{L}_\mathsf{Q}) \end{aligned}$$

Anomalous Dimension Matrices

$$\gamma(\mu, \bar{n} \cdot p) = \gamma_C(\mu, \bar{n} \cdot p) + \gamma_S(\mu)$$

• Soft matrix: $\hat{=}$ interactions between particles

$$\gamma_{\mathcal{S}}(\mu) = -\sum_{\langle rs \rangle, i} \frac{\alpha_i(\mu)}{\pi} T_r^{(i)} \cdot T_s^{(i)} \ln \frac{-n_r \cdot n_s + i0^+}{2}$$

Colinear Part: Knows about species (Diagonal!)

$$\gamma_C(\mu, \bar{n} \cdot p) = \mathscr{V} \sum_r \left[A_r(\mu) \ln \frac{2E_r}{\mu} + B_r(\mu) \right]$$

• $A_r(\mu)$ and $B_r(\mu)$ have a perturbative expansion in $\alpha_i(\mu)$

Idea of SCET

Ansatz

- Describing energetic particles with multiple scales
 - Scattering process $\mathcal{O}(Q^2)$
 - 2 Collinear component
 - Soft component
 - Systematic power-counting $\lambda \ll 1$
- Propagating around light-cone: $p^2 \ll Q^2$
- \Rightarrow Factorization of perturbative and non-perturbative effects

Kinematics

- Light-cone vectors $\mathbf{n}^{\mu} = (1, \mathbf{n})$ and $\mathbf{\bar{n}}^{\mu} = (1, -\mathbf{n})$
- \Rightarrow Collinear field: $p^- = ar n \cdot p \sim Q$, $p^+ = n \cdot p \sim \lambda^2 Q$, $p_\perp \sim \lambda Q$
 - Ultrasoft field: All components scale as $\lambda^2 Q$

Idea of SCET

Ansatz

- Describing energetic particles with multiple scales
 - Scattering process $\mathcal{O}(Q^2)$
 - 2 Collinear component
 - Soft component
 - Systematic power-counting $\lambda \ll 1$
- Propagating around light-cone: $p^2 \ll Q^2$

 \Rightarrow Factorization of perturbative and non-perturbative effects

Kinematics

- Light-cone vectors $\mathbf{n}^{\mu} = (1, \mathbf{n})$ and $\mathbf{\bar{n}}^{\mu} = (1, -\mathbf{n})$
- \Rightarrow Collinear field: $p^- = \bar{n} \cdot p \sim Q$, $p^+ = n \cdot p \sim \lambda^2 Q$, $p_\perp \sim \lambda Q$
 - Ultrasoft field: All components scale as $\lambda^2 Q$

High-Scale Operator in Full SM

Full Standard Model

- Respect full $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$ gauge symmetry
- All masses set to zero
- \Rightarrow Infrared divergencies

Matching onto $\mathsf{SCET}_{\mathsf{ew}}$

• Describing fields with collinear Wilson lines $\bar{Q}\Gamma Q \rightarrow \exp C(\mu)[\bar{\xi}_{n,p_1}W_n]\Gamma[W_{\bar{n}}^{\dagger}\xi_{\bar{r}}$

• Ultraviolett match onto infrared ones from full theory

High-Scale Operator in Full SM

Full Standard Model

- Respect full $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$ gauge symmetry
- All masses set to zero
- ⇒ Infrared divergencies

Matching onto $SCET_{ew}$

• Describing fields with collinear Wilson lines

 $\bar{Q}\Gamma Q o \exp C(\mu)[\bar{\xi}_{n,p_1}W_n]\Gamma[W_{\bar{n}}^{\dagger}\xi_{\bar{n},p_2}]$

• Ultraviolett match onto infrared ones from full theory

High-Scale Operator in Full SM

Full Standard Model

- Respect full $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$ gauge symmetry
- All masses set to zero
- ⇒ Infrared divergencies

Matching onto $\mathsf{SCET}_{\mathsf{ew}}$

• Describing fields with collinear Wilson lines

$$ar{Q} \Gamma Q o \exp C(\mu) [ar{\xi}_{n,p_1} W_n] \Gamma[W_{ar{n}}^\dagger \xi_{ar{n},p_2}]$$

• Ultraviolett match onto infrared ones from full theory

Sudakov Logarithm

Simplified Problem

- $\bullet~1 \rightarrow 1 \mbox{ process problem}$
- ⇒ Simple coordinates
- \Rightarrow *n* and \bar{n} are orthogonal

$$\log F_E(Q^2, \mu) = C(\mu = Q) + \int_Q^{M_Z} \frac{d\mu}{\mu} \gamma_1(\mu) + D_{Z,W}(\mu = M_Z) + \int_{M_Z}^{\mu} \frac{d\mu}{\mu} \gamma_2(\mu)$$

Extension to More Particles

- r particles \Rightarrow Set of n_i $i = 1, \ldots, r$
- \Rightarrow $n_i \cdot n_j \neq 0$ if $i \neq j$
- \Rightarrow Two types of corrections
 - Field dependent corrections
 - 2 Corrections between different fields

Sudakov Logarithm

Simplified Problem

- $1 \rightarrow 1$ process problem
- ⇒ Simple coordinates
- \Rightarrow *n* and \bar{n} are orthogonal

$$\log F_E(Q^2, \mu) = C(\mu = Q) + \int_Q^{M_Z} \frac{d\mu}{\mu} \gamma_1(\mu) + D_{Z,W}(\mu = M_Z) + \int_{M_Z}^{\mu} \frac{d\mu}{\mu} \gamma_2(\mu)$$

Extension to More Particles

- r particles \Rightarrow Set of n_i $i = 1, \ldots, r$
- \Rightarrow $n_i \cdot n_j \neq 0$ if $i \neq j$
- \Rightarrow Two types of corrections
 - Field dependent corrections
 - Orrections between different fields

Factorization into Soft and Collinear

Comment about Regulator for divergencies

- Analytic regulator: $\frac{1}{p_i^2 m^2} \rightarrow \frac{1}{(p_i^2 m^2)^{1 + \delta_i}}$
- ⇒ Breaks color Ward identity
 - Use Δ regulator: $\frac{1}{p_i^2 m^2} \rightarrow \frac{1}{p_i^2 m^2 \Delta_i}$
- ⇒ Preserves gauge-invariant Wilson line
- Soft function obeys Casimir scaling and linear in $n_i \cdot n_j$
- \Rightarrow Write soft-function as sum over all two-particle pairs

Factorization into Soft and Collinear

Comment about Regulator for divergencies

- Analytic regulator: $\frac{1}{p_i^2 m^2} \rightarrow \frac{1}{(p_i^2 m^2)^{1+\delta_i}}$
- ⇒ Breaks color Ward identity
 - Use Δ regulator: $rac{1}{p_i^2-m^2}
 ightarrow rac{1}{p_i^2-m^2-\Delta_i}$
- \Rightarrow Preserves gauge-invariant Wilson line
 - Soft function obeys Casimir scaling and linear in $n_i \cdot n_j$
- \Rightarrow Write soft-function as sum over all two-particle pairs

Factorization into Soft and Collinear

Comment about Regulator for divergencies

- Analytic regulator: $\frac{1}{p_i^2 m^2} \rightarrow \frac{1}{(p_i^2 m^2)^{1+\delta_i}}$
- ⇒ Breaks color Ward identity
 - Use Δ regulator: $rac{1}{p_i^2-m^2}
 ightarrow rac{1}{p_i^2-m^2-\Delta_i}$
- ⇒ Preserves gauge-invariant Wilson line
 - Soft function obeys Casimir scaling and linear in $n_i \cdot n_j$
- \Rightarrow Write soft-function as sum over all two-particle pairs

Soft Corrections

Definition

- Universal soft function $U_S(n_i, n_j) = \log \frac{-n_i \cdot n_j i0^+}{2}$
- Anomalous dimension $\gamma_s = \Gamma(\alpha(\mu)) \left[-\sum_{\langle ij \rangle} \mathbf{T}_i \mathbf{T}_j U_S(n_i, n_j) \right]$
- Low-scale matching $D_s = J(\alpha(\mu), L_m) \left[-\sum_{\langle ij \rangle} \mathbf{T}_i \mathbf{T}_j U_S(n_i, n_j) \right]$

① Cusp anomalous dimension
$$\Gamma(lpha(\mu)) = rac{lpha(\mu)}{4\pi}$$
4

2 Matching
$$J(lpha(\mu),L_m)=rac{lpha(\mu)}{4\pi}2\lograc{M^2}{\mu^2}$$

- Contains all information about kinematics of process
- Assumes Casimir scaling (gauge singlett operator)
- \Rightarrow 3-Loop Cusp anomalous dimension is used

Collinear Corrections

Definition

- Regulator choice: n_i Wilson line interactions only with i particle
- ⇒ Particle dependent corrections
- \Rightarrow Sum over all particles

- Anomalous dimension contains cusp and non-cusp part
 - Cusp: 3-loop K factor
 - Non-cusp: 2 loop K factor
- Matching contains wave-function renormalization
- Matching contains $Z \gamma$ mixing
- Additional matching in $SU(3)_C$, because top is integrated out
- All functions listed in [0909.0947]

Collinear Corrections

Definition

- Regulator choice: n_i Wilson line interactions only with i particle
- ⇒ Particle dependent corrections
- \Rightarrow Sum over all particles

- Anomalous dimension contains cusp and non-cusp part
 - Cusp: 3-loop K factor
 - Non-cusp: 2 loop K factor
- Matching contains wave-function renormalization
- Matching contains $Z \gamma$ mixing
- Additional matching in $SU(3)_C$, because top is integrated out
- All functions listed in [0909.0947]

Breaking of the Electroweak Symmetry

Standard Model

- Scalar field (Higgs) obtains vacuum expectation value (VEV)
- Couples to other fields
- \Rightarrow VEV breaks symmetry spontaneously

 $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \rightarrow SU(3)_C \otimes U(1)_{em}$

Consequences

• Mixing of fields:

 $Z = \cos \theta_W W^3 - \sin \theta_W B$ $A = \sin \theta_W W^3 + \cos \theta_W B$

- Mass splitting $M_W \neq M_Z$
- Goldston Boson \equiv Longitudinal polarization
- Top Yukawa coupling non-negligable

Breaking of the Electroweak Symmetry

Standard Model

- Scalar field (Higgs) obtains vacuum expectation value (VEV)
- Couples to other fields
- \Rightarrow VEV breaks symmetry spontaneously

 $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \rightarrow SU(3)_C \otimes U(1)_{em}$

Consequences

Mixing of fields:

$$Z = \cos \theta_W W^3 - \sin \theta_W B$$
$$A = \sin \theta_W W^3 + \cos \theta_W B$$

- Mass splitting $M_W \neq M_Z$
- Goldston Boson \equiv Longitudinal polarization
- Top Yukawa coupling non-negligable

Effect of Symmetry Breaking

- Operator basis is extended: $(M_{SU(2)}^{break})_{ij}$ non-square matching matrix
- Gauge structure is changed $SU(2)_L \otimes U(1)_Y \rightarrow U(1)_{em}$
- ⇒ EW symmetry breaking described by soft matrix

Matching at 1-Loop

$$R_{S,W}^{(1)} = \frac{\alpha_W}{4\pi} 2 \log M_W^2 \mu^2 \left[R^{(0)} \mathcal{O}_{SU(2)} + \sum_{\langle ij \rangle} \mathbf{T}_{3,i} \mathbf{T}_{3,j} \mathcal{U}_S(n_i, n_j) \right]$$
$$R_{S,Z}^{(1)} = \frac{\alpha_Z}{4\pi} 2 \log M_W^2 \mu^2 \left[-\sum_{\langle ij \rangle} \mathbf{T}_{Z,i} \mathbf{T}_{Z,j} \mathcal{U}_S(n_i, n_j) \right]$$
$$M_{SU(2)}^{\text{break}} = R^{(0)} + R_{S,W}^{(1)} + R_{S,Z}^{(1)}$$

Effect of Symmetry Breaking

- Operator basis is extended: $(M_{SU(2)}^{break})_{ij}$ non-square matching matrix
- Gauge structure is changed $SU(2)_L \otimes U(1)_Y \rightarrow U(1)_{em}$
- \Rightarrow EW symmetry breaking described by soft matrix

Matching at 1-Loop

$$R_{S,W}^{(1)} = \frac{\alpha_W}{4\pi} 2 \log M_W^2 \mu^2 \left[R^{(0)} \mathcal{O}_{SU(2)} + \sum_{\langle ij \rangle} \mathbf{T}_{3,i} \mathbf{T}_{3,j} \mathcal{U}_S(n_i, n_j) \right]$$
$$R_{S,Z}^{(1)} = \frac{\alpha_Z}{4\pi} 2 \log M_W^2 \mu^2 \left[-\sum_{\langle ij \rangle} \mathbf{T}_{Z,i} \mathbf{T}_{Z,j} \mathcal{U}_S(n_i, n_j) \right]$$
$$M_{SU(2)}^{\text{break}} = R^{(0)} + R_{S,W}^{(1)} + R_{S,Z}^{(1)}$$