Heavy-ion physics primer Maximiliano Puccio (CERN)

61st International Winter Meeting on Nuclear Physics, January 27-31 2025, Bormio, Italy

Disclaimer

Heavy ion physics is a large and very diverse universe

- humankind can create
- In 1.5h I will try to give you a taste of it
- or send an email (<u>mpuccio@cern.ch</u>)

The content of this lecture is partially derived from lectures given by some of my mentors and teachers, to whom I am grateful:

Alexander Kalweit, Johanna Stachel, Francesco Prino, Enrico Scomparin

rightarrow From measurements of τ lepton anomalous magnetic dipole moment to the measurement of binding energies of hypernuclei, passing through the characterisation of the densest matter

• Focusing mostly on the basic concepts of heavy-ion and mainly measurements at the LHC • ... but of course much more is out there! Feel free to ask me during the lecture, during the break

Particle collisions: e+e-

Particle collisions: e+e-

Elementary collisions:

- Simplest theoretical modelling
- Small experimental backgrounds
- Energy reach of collider limited by synchrotron $\propto (p/m)^4$

Particle collisions: pp

Torbjörn Sjöstrand, PoS LHCP2022 (2023) 040

Particle collisions: pp

Overlap of many elementary collisions

Particle collisions: heavy-ion

Overlap of many nucleon-nucleon collisions

- That are overlap of many partonic collisions
- Different possible collisions:
 - "Head-on" interactions of the nuclei with up to thousands particles being produced
 - "Grazing collisions" where $\gamma \gamma$ and γ Pb interactions can be investigated

Run: 244918 Time: 2015-11-25 10:36:18 Colliding system: Pb-Pb Collision energy: 5.02 TeV

Particle collisions: heavy-ion

Overlap of many nucleon-nucleon collisions

- That are overlap of many partonic collisions
- Different possible collisions:
 - "Head-on" interactions of the nuclei with up to thousands particles being produced
 - "Grazing collisions" where $\gamma \gamma$ and γ Pb interactions can be investigated

Why do we investigate this complex environment?

Run: 244918 Time: 2015-11-25 10:36:18 Colliding system: Pb-Pb Collision energy: 5.02 TeV

Quick prelude: quantum chromodynamics (I)

$$\mathscr{L} = \sum_{q} \overline{\psi}_{q,a} (i\gamma^{\mu}\partial_{\mu}\delta_{ab} - \frac{1}{2}g_{s}$$

With the gluon field tensor:

 $F^{A}_{\mu\nu} = \partial_{\mu}\mathscr{A}^{A}_{\nu} - \partial_{\nu}\mathscr{A}^{A}_{\mu} - g_{s}f_{ABC}\mathscr{A}^{B}_{\mu}\mathscr{A}^{C}_{\nu}$

 $\xi_{s}\gamma^{\mu}\lambda_{ab}^{C}\mathscr{A}_{\mu}^{C} - m_{q}\delta_{ab})\psi_{q,b} - \frac{1}{\varDelta}F_{\mu\nu}^{A}F^{A\,\mu\nu}$

 $-\imath g_s^2 V_{4g}(p_1^{\mu_1},p_2^{\nu_1},p_3^{\rho_1},p_4^{\sigma_1},a,b,c,d)$ $\eta^{4D}_{\mu_1\mu}\eta^{4D}_{\nu_1\nu}\eta^{4D}_{\rho_1\rho}\eta^{4D}_{\sigma_1\sigma}$

Quick prelude: quantum chromodynamics (I)

With the gluon field tensor:

 $F^{A}_{\mu\nu} = \partial_{\mu}\mathscr{A}^{A}_{\nu} - \partial_{\nu}\mathscr{A}^{A}_{\mu} - g_{s}f_{ABC}\mathscr{A}^{B}_{\mu}\mathscr{A}^{C}_{\nu}$

 $-\imath g_s^2 V_{4g}(p_1^{\mu_1}, p_2^{\nu_1}, p_3^{\rho_1}, p_4^{\sigma_1}, a, b, c, d)$ $\eta^{\rm 4D}_{\mu_1\mu}\eta^{\rm 4D}_{\nu_1\nu}\eta^{\rm 4D}_{\rho_1\rho}\eta^{\rm 4D}_{\sigma_1\sigma}$

Quick prelude: quantum chromodynamics (II)

With the gluon field tensor:

 $F^{A}_{\mu\nu} = \partial_{\mu}\mathscr{A}^{A}_{\nu} - \partial_{\nu}\mathscr{A}^{A}_{\mu} - g_{s}f_{ABC}\mathscr{A}^{B}_{\mu}\mathscr{A}^{C}_{\nu}$

Properties of QCD relevant for heavy-ions:

- 1. *Confinement*: quarks and gluons are bound in color neutral mesons $(q\overline{q})$ or baryons (qqq).
- **Chiral symmetry:** Interaction between 2. left- and right handed quarks disappears for massless quarks.
- 3. Asymptotic freedom: Interaction strength decreases with increasing 0.05 momentum transfer ($\alpha_{\rm S} \rightarrow 0$ for $Q^2 \rightarrow \infty$).

0.35

0.3

 $\alpha_s(Q^2)$

 $\mathscr{L} = \sum_{q} \overline{\psi}_{q,a} (i\gamma^{\mu}\partial_{\mu}\delta_{ab} - \frac{1}{2}g_{s}\gamma^{\mu}\lambda_{ab}^{C}\mathcal{A}_{\mu}^{C} - m_{q}\delta_{ab})\psi_{q,b} - \frac{1}{4}F_{\mu\nu}^{A}F^{A\mu\nu}$

Color confinement

No free quarks and gluons have been observed in nature

This creates an "anti-screening" effect among quark pairs that is effectively modelled by the Cornel potential:

QCD this is understood by the large coupling constant and the non-abelian nature of the QCD symmetry group

Pulling a $q\overline{q}$ pair apart, makes enough energy to create another $q\overline{q}$

Color de-confinement and Debye screening

At very high transferred momenta, the quark are asymptotically free

Is there another way?

 α

$$V(r) = -\frac{\alpha}{r} + Kr \qquad V(r) = -\frac{\alpha}{r}$$

 $T < T_{\rm C}$

 $T \sim T_{\rm C}$

 $T > T_C$

Let's consider a quark pair surrounded by colour charges

- The interaction among the two quark is screened
- The effective $q\overline{q}$ potential becomes Yukawa like

 Hadrons with constituents quarks at distances larger than λ_D cannot be bound

 $\rho < \rho_{\rm c}$

80

 $\rho \sim \rho_c$

 $\rho > \rho_c$

Anatomy of the QCD phase transition

Let's take a spoon of the Sun core matter (T=1.5 \cdot 10⁷ K ~ 1.3 keV)

~70% of free protons, ~30% of helium
 Assume to turn up the temperature

- The rate and intensity of the interactions among the particle will increase
- With increasing temperature the hadronic gas starts populating with different particles (pions, kaons, ...)
- At some point, it becomes more favourable to have free quarks

Smooth transition, not a sudden (first order) change!

The phase diagram of QCD

Net Baryon Density

11

CHIRAL OBJECTS

Mirror

Left hand

Right hand

ACHIRAL OBJECTS

Mirror

Cannot be superimposed

Can be superimposed

CHIRAL OBJECTS

Mirror

Left hand

Right hand

ACHIRAL OBJECTS

Mirror

Cannot be superimposed

In science:

- In biology the compound with the wrong chirality <u>can kill you</u>
- In particle physics

Can be superimposed

CHIRAL OBJECTS

Mirror

Left hand

Right hand

ACHIRAL OBJECTS

Mirror

Cannot be superimposed

In science:

- In biology the compound with the wrong chirality
 <u>can kill you</u>
- In particle physics

Right-handed:

Left-handed:

Can be superimposed

Chiral symmetry breaking in QCD

$$\mathscr{L}_{QCD}^{m=0} = i\bar{q}_R\gamma_\mu D^\mu q_R + i\bar{q}_L\gamma_\mu D^\mu q_L - \frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}_a$$

However, one can create out of the vacuum only pairs with the same chirality for momentum and helicity conservation.

$$\langle q\bar{q}\rangle = \langle q_R\bar{q}_R\rangle + \langle q_L\bar{q}_R\rangle + \langle q_R\bar{q}_L\rangle$$

The vacuum mixes chiral states \rightarrow chiral symmetry is spontaneosly broken

Same dynamics behind the Higgs mechanism

Massless QCD Lagrangian does not mix different chiral states \rightarrow Chiral symmetry

 $+ \langle q_L \bar{q}_L \rangle = \langle q_L \bar{q}_R \rangle + \langle q_R \bar{q}_L \rangle \neq 0$

Chiral symmetry breaking in QCD

$$\mathscr{L}_{QCD}^{m=0} = i\bar{q}_R\gamma_\mu D^\mu q_R + i\bar{q}_L\gamma_\mu D^\mu q_L - \frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}$$

However, one can create out of the vacuum only pairs with the same chirality for momentum and helicity conservation.

$$\langle q\bar{q}\rangle = \langle q_R\bar{q}_R\rangle + \langle q_L\bar{q}_R\rangle + \langle q_R\bar{q}_L\rangle$$

The vacuum mixes chiral states \rightarrow chiral symmetry is spontaneosly broken

Same dynamics behind the Higgs mechanism

Not the only thing in common with the Higgs:

Higgs mechanism gives mass to elementary particles

Only 1% of ordinary matter mass

Much more of the ordinary matter mass is due to the CSB in QCD

R. Rapp and J. Wambach, Adv.Nucl.Phys 25 (2000)

Chiral symmetry restoration in QCD

Key prediction: at high temperatures chiral symmetry is restored in QCD

Chiral symmetry restoration in QCD

Key prediction: at high temperatures chiral symmetry is restored in QCD According to LQCD, the chiral symmetry restoration is also an unambiguous signature of a deconfined state of matter and a true fundamental phenomenon in the Standard Model

Measure the chiral symmetry restoration in QCD -> get the Nobel

QGP and where to find it

Heavy ions and the early universe (I)

- Big bang in the early universe and little bang in the laboratory.
- The Universe went through a QGP phase about 10ps after its creation and froze out into hadrons after about 10µs which later formed nuclei.
- In addition, there are similarities between the big bang (universe QGP) and the little bang (heavy-ions) concerning the decoupling.

Heavy ions and the early universe (II)

- Decoupling: different type of particles fall out of thermal equilibrium with each other and *freeze out* when the mean free path for interaction is comparable to the size of the expanding system.
- Examples of this analogy:
 - Early Universe: neutrinos decouple early as their interaction is weak.
 - Heavy-ions: -----
 - chemical freeze-out (inelastic interactions changing particle type) happens before kinetic freeze-out (elastic interactions changing only momenta)
 - Kinetic freeze-out of strange particles might happen before the kinetic freeze-out of non-strange particles

Timelapse of the collision

Time:0.08

Timelapse of the collision

Time:0.08

21

Particle detection (t≈10¹⁵fm/c)

Kinetic freeze-out (t=10 fm/c)

Chemical freeze-out

Hydrodynamic evolution (t~0.5fm/c)

Pre-equilibrium Collision (t=0fm/c)

T > 300 MeV

How to study heavy-ions collisions

HEE

CMS Experiment at the LHC, CERN Data recorded: 2024-Nov-06 10:55:06.459264 GMT Run / Event / LS: 387854 / 23097014 / 33

LHCb Experiment at CERN Run / Event: 310067 / 3591585364 Data recorded: 2024-11-06 12:08:15 GMT

11

Thousands of particles of particles

More than 20k charged particles crossing your detector!

High particle density environment

• Even at the LHC, 95% of all particles are produced with $p_T < 2$ GeV/c in pp and Pb-Pb collisions.

Bulk particle production and the study of collective phenomena are associated with "soft" **physics** in the non-perturbative regime of QCD.

HEE

CMS Experiment at the LHC, CERN Data recorded: 2024-Nov-06 10:55:06.459264 GMT Run / Event / LS: 387854 / 23097014 / 33

LHCb Experiment at CERN Run / Event: 310067 / 3591585364 Data recorded: 2024-11-06 12:08:15 GMT

11

Detector granularity is key

We need highly granular detectors to reconstruct the trajectories of particles

- up to o(100k) channels per cm² when we are 1-2 cm far away from the interaction region
 - Fabulous evolution of the silicon detector technologies
- Farther away we can start using other technologies like gaseus detector
 - Most prominent examples: STAR and ALICE Time Projection Chambers

Different particles are sensitive to different stages of the collisions Stable particles: identification through dE/dx, Cherenkov, time of flight • Weakly decaying particle (e.g. Λ , Ξ , Ω): topological identification

Different particles are sensitive to different stages of the collisions Stable particles: identification through dE/dx, Cherenkov, time of flight • Weakly decaying particle (e.g. Λ , Ξ , Ω): topological identification

Different particles are sensitive to different stages of the collisions Stable particles: identification through dE/dx, Cherenkov, time of flight • Weakly decaying particle (e.g. Λ , Ξ , Ω): topological identification

Different particles are sensitive to different stages of the collisions

- Stable particles: identification through dE/dx, Cherenkov, time of flight
- Weakly decaying particle (e.g. Λ , Ξ , Ω): topological identification

es of the collisions , Cherenkov, time of flight ological identification

Different particles are sensitive to different stages of the collisions

- Stable particles: identification through dE/dx, Cherenkov, time of flight
- Weakly decaying particle (e.g. Λ , Ξ , Ω): topological identification

es of the collisions , Cherenkov, time of flight ological identification

Topological identification of particles

Not all the particles fly through our detectors

- Many actually decay within few hundreds um from the collisions
- Using silicon vertex detectors we can reconstruct the decay point (vertices)
- Secondary vertex + momentum information of the daughter tracks = topological selections

LI-PERF-564335

Calorimetry

CMS Experiment at LHC, CERN Data recorded: Sun Nov 14 19:31:39 2010 CEST Run/Event: 151076 / 1328520 Lumi section: 249

Jet 0, pt: 205.1 GeV

Jet 1, pt: 70.0 GeV

Photon and high energy electrons can be identified by EM calorimeters

- Positioned after the trackers
 - Electron/gamma separation
 - Smaller granularity allowed

The energy of the rest of the hadron can be measured in hadronic calorimeters

They enable to measure the energy of the collision going to neutral particles

Muon identification

CMS Experiment at LHC, CERN Data recorded: Tue Nov 9 23:51:56 2010 CEST Run/Event: 150590 / 776435 Lumi section: 183

Muon 0, pt: 29.7 GeV

Muons survive all calorimeters

Clean identification

Muon 1, pt: 33.8 GeV

Study of quarkonia, Z, W, H

What do we measure?

Different kind of collisions: centrality

The centrality of a collision is defined by the impact parameter b: *Most central collision* \Leftrightarrow *Smallest b*

Experimentally it is possible to correlate the charged particle multiplicity to b by fitting data with the function shape predicted by the Glauber model.

Assumptions of the Glauber model:

- Nucleons travel on straight lines
- Collisions do not alter their trajectory and remain intact
- No quantum-mechanical interference
- Interaction probability for two nucleons is given by the nucleon-nucleon (pp) crosssection.

35

Glauber Monte Carlo simulation (I)

Nucleons are distributed in space sampling from the Woods-Saxon distribution:

$$= \frac{\rho_0}{1 + e^{r - R/a}}$$

 ρ_0 is the density in the center, R is the radius of the nucleus and a the skin depth (R and a are measured in electron-nucleus scatterings)

Glauber Monte Carlo simulation (I)

Nucleons are distributed in space sampling from the

$$= \frac{\rho_0}{1 + e^{r - R/a}}$$

 ρ_0 is the density in the center, R is the radius of the nucleus and a the skin depth (R and a are measured in

The interaction probability is taken from measurements

2 nucleons from the colliding nuclei are considered as interacting if their distance on the transverse plane satisfies:

Glauber Monte Carlo simulation (II)

Once distributed in space, the nucleons travel on straight paths along the z axis. One can compute:

- Number of nucleons participating in at least one interaction (N_{part})
- Number of binary collisions (N_{coll})

Glauber Monte Carlo simulation (II)

Examples:

- 10% most central collisions at RHIC (Au-Au, 200 GeV): N_{coll} ~1200, N_{part} ~380
- 5% most central collisions at LHC (Pb-Pb) 2.76 TeV): N_{coll} ~1680, N_{part} ~382

Once distributed in space, the nucleons travel on straight paths along the z axis. One can compute:

- Number of nucleons participating in at least one interaction (N_{part})
- Number of binary collisions (N_{coll})

The Glauber Model fit

In pp collisions at high energy, the charged particle multiplicity $d\sigma/dN_{ch}$ has been measured over a wide range of rapidity and is well described by a Negative Binomial Distribution

$$P_{\mu,k}(n) = \frac{\Gamma(n+k)}{\Gamma(n+1)\Gamma(k)} \frac{(\mu/k)}{(\mu/k+1)}$$

The parameters of the NBD, as well as N_{part} and N_{coll} are fitted to the measured multiplicity distribution

- Percentiles of hadronic crosssection are defined, e.g.
 - 0-5%: central ("many particles")
 - 80-90%: peripheral ("few particles")

40

- later evolution of the system are smaller.
- Heavy-ion collision: many NN collisions
- Without nuclear effects (interaction with the QCD medium), a heavy-ion collision would just be a superposition of independent NN collisions with incoherent fragmentation.
- The number of independent NN collisions $\langle N_{coll} \rangle$ can be calculated for a given impact parameter/centrality in the Glauber model.

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA}/dp_{T}}{dN_{pp}/dp_{T}}$$

• Hard process occur in initial nucleon-nucleon (NN) collisions. The momentum transfers in the

 $\frac{dN_{AA}/dp_{T}}{d\sigma_{pp}/dp_{T}}$ $\mathbf{P}\mathbf{P}$

- later evolution of the system are smaller.
- Heavy-ion collision: many NN collisions
- Without nuclear effects (interaction with the QCD medium), a heavy-ion collision would just be a superposition of independent NN collisions with incoherent fragmentation.
- The number of independent NN collisions $\langle N_{coll} \rangle$ can be calculated for a given impact parameter/centrality in the Glauber model.

• Hard process occur in initial nucleon-nucleon (NN) collisions. The momentum transfers in the

 dN_{AA}/dp_{T} $d\sigma_{nn}/dp_{T}$ $\Gamma\Gamma$ $\langle T_{\rm AA} \rangle = \langle N_{\rm coll} \rangle / \sigma_{\rm pp}^{\rm inel}$

- later evolution of the system are smaller.
- Heavy-ion collision: many NN collisions
- Without nuclear effects (interaction with the QCD medium), a heavy-ion collision would just be a superposition of independent NN collisions with incoherent fragmentation.
- The number of independent NN collisions $\langle N_{coll} \rangle$ can be calculated for a given impact parameter/centrality in the Glauber model.

• Hard process occur in initial nucleon-nucleon (NN) collisions. The momentum transfers in the

 dN_{AA}/dp_{T} $d\sigma_{nn}/dp_{T}$ $\Gamma\Gamma$ $\langle T_{\rm AA} \rangle = \langle N_{\rm coll} \rangle / \sigma_{\rm pp}^{\rm inel}$

Question: how much is the RAA if Pb-Pb collisions are a mere superposition of pp collisions?

- later evolution of the system are smaller.
- Heavy-ion collision: many NN collisions
- Without nuclear effects (interaction with the QCD medium), a heavy-ion collision would just be a superposition of independent NN collisions with incoherent fragmentation.
- The number of independent NN collisions $\langle N_{coll} \rangle$ can be calculated for a given impact parameter/centrality in the Glauber model.

• Hard process occur in initial nucleon-nucleon (NN) collisions. The momentum transfers in the

 dN_{AA}/dp_{T} $d\sigma_{nn}/dp_{T}$ $\Gamma\Gamma$ $\langle T_{\rm AA} \rangle = \langle N_{\rm coll} \rangle / \sigma_{\rm pp}^{\rm inel}$

Question: how much is the RAA if Pb-Pb collisions are a mere superposition of pp collisions?

Answer: 1

Control experiment: RAA of electroweak probes

Control experiment: RAA of electroweak probes

https://doi.org/10.1016/j.physletb.2020.135262

we can correct for this effect

Not all particles are unaffected by the QGP

Disappearing jets

Peripheral Pb-Pb collision

Central Pb-Pb collision

Disappearing jets

Peripheral Pb-Pb collision

One of the two jets disappears (is quenched) in central collisions

Central Pb-Pb collision

The most dense material mankind creates

How this happens?

- High momenta partons generating the jet are created at the early stages of the collisions
- They travel through the QGP: the position at which they are created matters!

Drawing: M. Knichel

To stop a highly energetic jet (e.g. 100 GeV), it needs a 10fm droplet of QGP or ~1.5m of hadronic calorimeter

46

Dijet imbalance

 A_{I}

Peripheral collisions: distribution as in Pythia (as in pp)

Symmetric configuration is significantly depleted

Enhancement of asymmetric configurations

Suppression of high- p_T hadrons

There is a significant suppression of high p_{T} -particles observed in AA collisions which is a true medium effect

nucleon collisions.

High p_{T} particle production in AA collision is not a simple superposition of incoherent nucleon-

Energy loss in QED: Bethe Bloch formula. What about in QCD?

- The QGP is a high density source of color sources (quarks and gluons) which are felt by the traversing quark or gluon.
- It experiences
 - Collisional energy loss: elastic scatterings, dominant at low momentum
 - Radiative energy loss: inelastic scatterings, gluon bremsstrahlung, dominates at high momentum
- Total energy loss is a sum of the two processes.

Collisional energy loss

Radiative energy loss

Average momentum transfer 1 Free mean path

- BDPMS (Baier, Dokshitzer, Mueller, Peigne, Schiff) formalism
- Infinite energy limit
- Static medium

$\Delta E \propto \alpha_S \cdot C_R \cdot \hat{q} \cdot L^2$

Energy loss proportional to:

- Path length through medium squared
- Casimir factor
 - CR = 4/3 (quarks)
 - CR = 3 (gluons)
- Medium properties are encoded in the parameter "q-hat" which corresponds to the average squared transverse momentum transfer per mean free path.

Bayesian analysis to extract q-hat

Phys. Rev. C 104, 024905 (2021) PbPb 5.02 TeV Design JETSCAPE ➡ 0-10% Centrality 🛨 30-50% Centrality 10 20 30 40 50 60 70 80 90 p_T (GeV/c)

Oversimplifying:

Step 1: establishing the prior distributions

Bayesian analysis to extract q-hat

Oversimplifying:

- Step 1: establishing the prior distributions
- Step 2: bayesian optimisation of the model parameters, obtain the posterior distributions

Bayesian analysis to extract q-hat

Unique way to extract QGP properties keeping into account data and model systematics

0.7

JETSCAP

What else is produced in Heavy lon?

Particle spectra

- 1. Identify particle in the detector (pion, kaon, proton, Λ , Ξ , Ω , antideuteron...)
- 2. Fill p_T -spectrum
- 3. Interpolate unmeasured region at low p_T (at high p_T negligible)

4. Integrate:

$$\frac{\mathrm{d}N}{\mathrm{d}y} = \int \frac{\mathrm{d}^3 N}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y \mathrm{d}\varphi} \mathrm{d}\varphi \mathrm{d}p$$

Chemical equilibrium and freeze-out temperature

Production chemically calculated I (roughly d

- In Pb-Pb flavor hac magnitud out temp
 - This inclu rarer tha to fifth q in Pb-Pb
 - Light (an despite 1

Chemical equilibrium and freeze-out temperature

Production yields of light flavour hadrons from a chemically equilibrated fireball can be calculated by Statistical Hadronisation Model (roughly $dN/dy \sim e^{-m/T_{ch}}$)

- In Pb-Pb collisions, particle yields of light flavor hadrons are described over 7 orders of magnitude with a common chemical freezeout temperature of *T*_{ch} ≈ 156 MeV.
 - This includes strange hadrons which are rarer than u,d quarks. Approx. every fourth to fifth quark (every tenth) is a strange quark in Pb-Pb collisions (in pp collisions).
 - Light (anti)nuclei fit also in this picture despite their low binding energy ($E_{\rm b} << T_{\rm ch}$).

Chemical potential determination (I)

From the ratio between particles and antiparticles it is possible to determine the chemical potentials according to the SHM:

$$\overline{h}/h \propto \exp\left[-2\left(B+\frac{S}{3}\right)\frac{\mu_B}{T_{ch}}-2Q\frac{\mu_Q}{T_{ch}}\right]^{0.3}$$

d/<u>d</u>

<u>d∕d</u>

d 1.00

Chemical potential determination (II)

From the ratio between particles and antiparticles it is possible to determine the chemical potentials according to the SHM:

$$\overline{h}/h \propto \exp\left[-2\left(B+\frac{S}{3}\right)\frac{\mu_B}{T_{ch}}-2Q\frac{\mu_Q}{T_{ch}}\right]$$

From the fits new determination of the baryochemical potential at hadronisation

- Far smaller uncertainties thanks to the direct cancellation of uncertainties in the ratios
- Nearly baryon free system at the LHC for |y| < 0.5

ALI-PUB-566119

Chemical equilibrium vs collision energy

- Hadron yields from SIS up to RHIC and LHC can be described in a hadro-chemical model applying thermal fits.
- Effective parameterization of (T, μ_B) as a function of collision energy:

$$T[\text{MeV}] = T_{lim} \left(1 - \frac{1}{0.7 + (\exp(\sqrt{s_{NN}}(\text{GeV})) - 2.9)/1.5}
ight)$$

 $\mu_b[\text{MeV}] = rac{a}{1 + b\sqrt{s_{NN}}(\text{GeV})},$

 Particle ratios can be calculated at any collision energy

→ One observes a limiting temperature of hadron production around T≈160MeV.

Where are we in the phase diagram

P. Braun-Munzinger and J. Stachel, arXiv:1101.3167

μ_b (MeV)

- By colliding nuclei with different center of mass energies, different regions of the phase diagram are explored.
- Thermal model fits to the experimental data define the chemical freeze-out line in the QCD phase diagram.
- The previously schematic phase diagram becomes one which is actually measured.

Where are we in the phase diagram

P. Braun-Munzinger and J. Stachel, arXiv:1101.3167

μ_h (MeV)

- By colliding nuclei with different center of mass energies, different regions of the phase diagram are explored.
- Thermal model fits to the experimental data define the chemical freeze-out line in the QCD phase diagram.
- The previously schematic phase diagram becomes one which is actually measured.
- SHM is not QGP: it's a Hadron Resonance Gas
 - However, the chemical freeze-out line determined by thermal fits coincides with the phase boundary calculated by lattice QCD above top SPS energies
 - Do multi-particle collisions near TC equilibrate the system? A rapid change in density near the phase transition can explain this.

How about the initial temperature of the QGP?

How about the initial temperature of the QGP?

We can study the photon directly produced by the QGP

- challenging subtraction of the decay photons (e.g. $\pi^0 \rightarrow \gamma \gamma$)
- model comparisons are needed as direct photons are also emitted at later stages of the collision.

$T_{eff} = 304 \pm 11 \pm 40 \text{ MeV}$

Effective temperature of approx. 300 MeV is observed as a result of a high initial temperature and the blue-shift due to the radial expansion of the system.

Kinetic equilibrium of soft particles

foresees the

Kinetic equilibrium of soft particles

As seen in the collision simulation, the current *standard heavy ion description* foresees the creation of a rapidly expanding fireball containing *u,d*, and *s* quarks. What makes us think that:

- The particle chemistry agrees with the calculation of the Statistical Hadronisation Model
- The particle momenta distribution agree with the expectation of hydrodynamics

From: C. Loizides

Ilation of the Statistical Hadronisation Model https://www.station.com/station

Collective motion: radial flow (I)

Isotropic radial flow

Common radial hydrodynamic expansion: all particles are pushed at the same velocity:

- Higher mass = harder spectra
- Higher collision energy = harder spectra

 $p_{_{\mathrm{T}}}$ (GeV/*c*)

63

Collective motion: radial flow (II)

Isotropic radial flow

Common radial hydrodynamic expansion: all particles are pushed at the same velocity:

- Higher mass = harder spectra
- Higher collision energy = harder spectra
- More central collision = harder spectral

Collective motion: radial flow (II)

Isotropic radial flow

Common radial hydrodynamic expansion: all particles are pushed at the same velocity:

- Higher mass = harder spectra
- Higher collision energy = harder spectra
- More central collision = harder spectra
- Hydro model describe the spectra and define a kinetic freeze-out surface

Collective motion: elliptic flow (I)

Initial spatial anisotropy can translate in a momentum anisotropy • How efficiently this process can happen depends on the properties of the QGP created in the collisions

$$E\frac{d^{3}N}{d^{3}p} = \frac{d^{2}N}{2\pi p_{T}dp_{T}dy} \left\{ 1 + 2\sum_{n=1}^{\infty} v_{n}(p_{T})\cos[n(\varphi - \psi_{n})] \right\}$$

Radial flow v_{1} - direct flow, v_{2} - elliptic flow

 $v_1 -$

Collective motion: elliptic flow (I)

Initial spatial anisotropy can translate in a momentum anisotropy How efficiently this process can happen depends on the properties of the QGP created in the collisions

$$E\frac{d^3N}{d^3p} =$$

Even in single event we can se a modulation in the azimuthal distribution of particle production

- One could just do the Fourier transformation of the distribution to get the vn coefficients
 - However: other non-collective effect influence this distribution (e.g. jets, decays of resonances)
- A awful lot of work to correct for these effects (multi particle correlations, large pseudo rapidity gaps)

Collective motion: elliptic flow (II)

- v₂ exhibits a strong centrality dependence
- v₂ largest for 40-50%
- Spatial anisotropy very small in central collisions
- Largest anisotropy in mid-central collisions
- Small overlap region in peripheral collisions

Mass ordering of V₂

At $p_T < 2$ GeV/c, the elliptic flow shows the same mass ordering $(p = \beta \gamma \cdot m)$ as radial flow

Interplay between radial flow and elliptic flow, as expected by hydrodynamics

At intermediate transverse momentum: baryon-meson grouping

Direct effect of the modification of the hadronisation in the medium due to quark recombination

Sensitivity of v₂ to shear viscosity

• The larger the shear viscosity per entropy density ratio η/s of the QGP, the more v_2 is reduced. Dissipative losses hamper the buildup of flow = measuring the magnitude of v_2 and comparing it to models, we can determine how *ideal* the QGP liquid is.

[Phys.Rev.Lett. 106 (2011) 192301]

QGP properties and bayesian analyses

Nature Physics volume 15, pages 1113–1117 (2019)

• Parameter estimation taking into account several different measurements and models

Bayesian analysis: a new way of interpreting the large amount of data from Heavy lon collisions

70

QGP properties and bayesian analyses

Nature Physics volume 15, pages 1113–1117 (2019)

calibration

Bayesian analysis: a new way of interpreting the large amount of data from Heavy lon collisions • Parameter estimation taking into account several different measurements and models

Searching the QCD critical point

Expected to be at lower energies: RHIC beam energy scan program

Looking for critical phenomena in the production of soft particles

Searching the QCD critical point

Expected to be at lower energies: RHIC beam energy scan program

- Looking for critical phenomena in the production of soft particles
 - Example in ordinary matter: ethylene opalescence at the critical point, collective fluctuations in the gas at long enough wavelengths to scatter visible light.

S. Horstmann, Ph.D. Thesis University Oldenburg

Search of the critical point in QCD matter (I)

- Charge, Strangeness)
- Fluctuations: we need to go beyond the measurement of average production per event
 - distribution)

• We look at collective fluctuations of the quantum numbers conserved by QCD (**B**aryon number,

• e.g. we measure the number of protons - the number of antiprotons in every event (net-proton

72

Search of the critical point in QCD matter (I)

- Charge, Strangeness)
- Fluctuations: we need to go beyond the measurement of average production per event
 - distribution)

• We look at collective fluctuations of the quantum numbers conserved by QCD (**B**aryon number,

• e.g. we measure the number of protons - the number of antiprotons in every event (net-proton

Question: if we baryon number is conserved, why don't we see a Dirac delta?

Search of the critical point in QCD matter (I)

- Charge, Strangeness)
- Fluctuations: we need to go beyond the measurement of average production per event
 - distribution)

We look at collective fluctuations of the quantum numbers conserved by QCD (Baryon number,

• e.g. we measure the number of protons - the number of antiprotons in every event (net-proton

Question: if we baryon number is conserved, why don't we see a Dirac delta?

Answers: one can balance the baryon number and charge of the proton with e.g. an antineutron and a pion, and our detectors have a limited acceptance

Search of the critical point in QCD matter (II)

In principle, the moment of the distributions of the net-charges can be compared directly with the susceptibilities χ computed with the Lattice QCD:

 χ^{BS}_{lmr}

Net charges distribution moments and their relation to the susceptibilities:

 K_1 σ^2 K_2 K_3/σ^3 K_4/σ^2

Issue: we cannot compare directly with LQCD at low energy (sign problem), then we compare with non-critical models

Models are monotonic with energy, but C_4/C_2 measurement show an hint of non-monotonic behaviour around 20 GeV

$$P_n^Q = \frac{\partial^{l+m+n} (P/T^4)}{\partial (\mu_B/T)^l \, \partial (\mu_S/T)^m \, \partial (\mu_S/T)^n}$$

$$= \mu = \langle N \rangle = VT^{3} \cdot \chi_{1}$$

$$= \mu_{2} = \langle (\delta N)^{2} \rangle = VT^{3} \cdot \chi_{2}$$

$$^{3} = \mu_{3}/\sigma^{3} = \langle (\delta N)^{3} \rangle / \sigma^{3} = VT^{3} \cdot \chi_{3}/(VT^{3} \cdot \chi_{4})$$

$$^{4} = (\mu_{4} - 3\mu_{2}^{2})/\mu_{2}^{2} = \langle (\delta N)^{4} \rangle / \sigma^{4} - 3 = (VT^{3} \cdot \chi_{4})/(VT^{3} \cdot \chi_{4})$$

Heavy quarks

Where are heavy quarks in the evolution of the fireball?

Heavy quark dynamics

- pQCD) and then interact with the medium.
- There is strong evidence that charm quarks thermalize in the medium.

• Heavy quark flavors (c,b) are dominantly produced in initial hard scatterings (calculable in

Charmonia suppression and recombination

at the phase boundary.

- $R_{AA}(LHC) > R_{AA}(RHIC)$
- R_{AA} midrapidity > R_{AA} forward rap.

The J/ ψ is expected not to be bound in the QGP phase (Matsui/Satz, 1986), but it can regenerate

doi:10.1038/nature06080

The case for charm statistical hadronisation

JHEP 07 (2021) 035

The recombination effect is such that you can even explain the yield of charm hadrons using the SHM!

- Only additional input: number of c-cbar pairs in the system
- One more hint in the direction of the presence of a deconfined medium

The same description only partially work for beauty quark (not enough of them in the system)

The counter-example: bottomonia

Conclusions

Conclusions

What I could not cover:

- Ultra peripheral collisions
- Nuclei and exotic hadron formation (most of my research, sigh)
- Femtoscopy
- ... and more

If you are interested in some of these topics, drop me an email and I will provide some pointers or have a look at the Hadron Collider Physics School Heavy lons lectures

New physics does necessarily mean beyond the standard model: the study of multi-particle systems can lead to the discovery of new phenomena that can surprise us

Dilepton measurements for temperature and chiral symmetry restoration measurements

Backup
Starting point: grand-canonical partition function for a *relativistic ideal quantum gas of hadrons* of particle type i (i = pion, proton,... \rightarrow full PDG!):

$$\ln Z_{GK_i} = \pm g_i \frac{V}{2\pi^2\hbar^3} \int_0^\infty \mathrm{d}p^2 \ln\left(1\pm d^2\right) dp^2 \ln\left(1\pm d^2\right) dp^2 \ln\left(1\pm d^2\right) dp^2 \ln\left(1\pm d^2\right) dp^2 \ln\left(1+d^2\right) dp^2 \ln\left(1+d^2\right$$

Once Z is known, we can calculate all other thermodynamic quantities:

$$n = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial \mu} P = \frac{\partial (T \ln Z)}{\partial V} s = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial T}$$

 $\mu_i = B_i \mu_B + Q_i \mu_Q + S_i \mu_S$

 $e^{-\frac{\sqrt{m_i^2+p^2}-\mu_i}{kT}}$

Starting point: grand-canonical partition function for a *relativistic ideal quantum gas of* hadrons of particle type i (i = pion, proton,... \rightarrow full PDG!):

(-) for bosons, (+) for fermions

$$\ln Z_{GK_i} = \pm g_i \frac{V}{2\pi^2\hbar^3} \int_0^\infty \mathrm{d}p^2 \ln\left(1\pm d^2\right)$$

Once Z is known, we can calculate all other thermodynamic quantities:

$$n = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial \mu} P =$$

 $\mu_i = B_i \mu_B + Q_i \mu_Q + S_i \mu_S$

 $e^{-\frac{\sqrt{m_i^2+p^2}-\mu_i}{kT}}$

$$= \frac{\partial (T \ln Z)}{\partial V} \quad s = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial T}$$

Starting point: grand-canonical partition function for a *relativistic ideal quantum gas of* hadrons of particle type i (i = pion, proton,... \rightarrow full PDG!):

(-) for bosons, (+) for fermions

$$\ln Z_{GK_i} = \pm g_i \frac{V}{2\pi^2\hbar^3} \int_0^\infty dp^2 \ln\left(1 \pm e^{i\theta}\right)^{O(1)}_{degeneracy} dp^2 \ln\left(1 + e^{i\theta}\right)^{O(1)}_{degenera$$

Once Z is known, we can calculate all other thermodynamic quantities:

$$n = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial \mu} P = \frac{\partial (T \ln Z)}{\partial V} s = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial T}$$

 $\mu_i = B_i \mu_B + Q_i \mu_Q + S_i \mu_S$

 $e^{-\frac{\sqrt{m_i^2+p^2}-\mu_i}{kT}}$

Starting point: grand-canonical partition function for a *relativistic ideal quantum gas of* hadrons of particle type i (i = pion, proton,... \rightarrow full PDG!):

(-) for bosons, (+) for fermions

$$\ln Z_{GK_i} = \pm g_i \frac{V}{2\pi^2 \hbar^3} \int_0^\infty dp^2 \ln \left(1 \pm e_{ij}\right)^{CK_i} dp^$$

Once Z is known, we can calculate all other thermodynamic quantities:

$$n = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial \mu} P = \frac{\partial (T \ln Z)}{\partial V} s = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial T}$$

 $\mu_i = B_i \mu_B + Q_i \mu_O + S_i \mu_S$

mical potential representing each conserved quantity

Starting point: grand-canonical partition function for a *relativistic ideal quantum gas of hadrons* of particle type i (i = pion, proton,... \rightarrow full PDG!):

(-) for bosons, (+) for fermions

$$\ln Z_{GK_i} = \pm g_i \frac{V}{2\pi^2 \hbar^3} \int_0^\infty dp^2 \ln \left(1 \pm e_{ij}\right)^{O(1)}_{O(1)} degeneracy} degeneracy$$

Once Z is known, we can calculate all other thermodynamic quantities:

$$n = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial \mu} P =$$

 $\mu_i = B_i \mu_B + Q_i \mu_O + S_i \mu_S$

nical potential representing each conserved quantity

Only two free parameters are needed: (T, μ_B) . Volume cancels if particle ratios n_i/n_j are calculated. If yields are fitted, it acts as the third free parameter.

 $= \frac{\partial (T \ln Z)}{\partial V} \quad s = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial T}$

Starting point: grand-canonical partition function for a *relativistic ideal quantum gas of hadrons* of particle type i (i = pion, proton,... \rightarrow full PDG!):

(-) for bosons, (+) for fermions

Once Z is known, we can calculate all other thermodynamic quantities:

$$n = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial \mu} P$$

Partition function shown here is only valid in the resonance gas limit (HRG), i.e. relevant interactions are mediated via resonances, and thus the non-interacting hadron resonance gas can be used as a good approximation for an interacting hadron gas.

 $\mu_i = B_i \mu_B + Q_i \mu_Q + S_i \mu_S$

nical potential representing each conserved quantity

Only two free parameters are needed: (T, μ_B) . Volume cancels if particle ratios n_i/n_j are calculated. If yields are fitted, it acts as the third free parameter.

$$= \frac{\partial (T \ln Z)}{\partial V} \quad s = \frac{1}{V} \frac{\partial (T \ln Z)}{\partial T}$$

