NUCLEAR STRUCTURE AND ASTROPHYSICS: SELECTED TOPICS (BORMIO 2025)

Michaela Thiel Johannes Gutenberg-Universität Mainz

NUCLEAR STRUCTURE AND ASTROPHYSICS: SELECTED TOPICS

Monday 27th January 2025

09:10 Cecilia Chirenti "Astrophysical constraints on the **NEUTRON STAR EQUATION OF STATE** from **SHORT GAMMA-RAY BURSTS**"

Tuesday 28th January 2025

09:45 Ani Aprahamian "Were the HEAVY ELEMENTS MADE IN NATURE?"

11:00 Adi Ashkenazi "The NUCLEAR ASPECTS of NEUTRINO OSCILLATION mesurements"

Wednesday 29th January 2025

17:00 James Lattimer "Recent developments in extracting the EOS FROM OBSERVATIONS"

Thursday 30th January 2025

09:00 Jacklyn Gates "Pursuing new SUPERHEAVY ELEMENTS"

NUCLEAR STRUCTURE AND ASTROPHYSICS: SELECTED TOPICS

NUCLEAR STRUCTURE:

- (1) the basics
- (2) ab initio nuclear models
- (3) neutrino oscillation measurements
- (4) superheavy nuclei

NUCLEAR ASTROPHYSICS:

- (1) introduction
- (2) stars: nature's nuclear reactors
- (3) life and death of a star
- (4) nuclear Equation of State
- (5) s, r, p, rp processes

\approx 300 STABLE NUCLEI \circ Z \cong N up to ⁴⁰Ca

 $\begin{array}{c} \circ \ \mathbf{Z} \equiv \mathbf{N} \ \mathbf{up} \ \mathbf{to} \ \mathbf{V} \\ \circ \ \mathbf{N} > \mathbf{Z} \ \text{for } \mathbf{A} > 40 \end{array}$

pprox 3000 UNSTABLE NUCLEI

ISLAND OF STABILITY?

N, number of neutrons

STATIC PROPERTIES TO DESCRIBE A NUCLEUS:

electric charge radius mass binding energy angular momentum parity magnetic dipole and electric quadrupole moments energies of excited states

CHARGE DISTRIBUTIONS IN (STABLE) NUCLEI

see Patrick Achenbach's talk on Tuesday

well described by FERMI PARAMETRISATION

 $\rho(\mathbf{r}) = \frac{\rho(\mathbf{0})}{1 + e^{(\mathbf{r} - \mathbf{R})/t}}$

Radius R

 \hookrightarrow increases with A: $R=r_0\cdot A^{1/3}~(r_0\approx$ 1,2fm)

SURFACE WIDTH or SKIN THICKNESS t

- $\circ\,$ const. density ho_0 in the interior (saturation)
- \circ same skin thickness t
- \rightarrow (stable) nuclei look like **LIQUID DROPS** of radius $\mathbf{R} \propto A^{1/3}$

BINDING ENERGY

BINDING ENERGY B:

energy required to split a nucleus into its constituents $m(\textbf{Z},\textbf{N}) = \left(\textbf{Z}m_p + \textbf{N}m_n\right) - \textbf{B}$

$\hookrightarrow \text{gives information on}$

- \circ forces between nucleons
- $\circ~$ stability of nucleus
- energy released or required in nuclear decays or reactions

characterize binding energy with only a few general parameters → LIQUID DROP MODEL

LIQUID DROP MODEL

Bethe-Weizsäcker semi-empirical mass formula:

$$B(Z, N) = a_{V} \cdot A - a_{S} \cdot A^{2/3} - a_{C} \cdot \frac{Z(Z-1)}{A^{1/3}} - a_{sym} \cdot \frac{(A-2Z)^{2}}{A}$$

16 ⁴⁰Ca ⁴⁸Ca ¹³²Sn²⁰⁸P

EXPERIMENTAL EVIDANCE FOR SHELL STRUCTURE IN NUCLEI

two-neutron separation energy

nuclear-charge radii

NUCLEAR SHELL MODEL

Multiplicity Further splitting from spin-orbit of states Quantum energy effect states of potential well including 1g 7/2 angular momentum effects. 1g 1g_{9/2} 10 Closed shells 2p indicated by "magic numbers" 1f of nucleons. 1f_{7/2} 8 (50) 1d_{3/2} 2s 1d 28 1d_{5/2} 6 20 1p 8 1s· 2

developed in 1949 by Maria Göppert-Mayer and Hans Jensen

at leading order nucleons are seen as:

- INDEPENDENT particles
- $\circ~$ evolving in a MEAN FIELD
- $\circ\;$ which generates orbitals
 - grouped in SHELLS separated by energy gaps
- \circ closed shells \Leftrightarrow **MAGIC NUMBERS**
- SPIN-ORBIT COUPLING is crucial to get the right ordering of shells

NUCLEAR SHELL MODEL

explains SPIN and PARITY of the ground state of many nuclei and some of the EXCITED LEVELS e.g. 17 O and 17 F:

NUCLEAR MODELS

up to here: potential assumed based on empirical facts

can we build **AB INITIO** models (i.e. based on first principles)?

 → nucleons as building blocks

 → realistic NN-interaction

AB INITIO METHODS: description of nuclei starting from the bare NN & 3N interactions.

NUCLEAR SHELL MODEL: nuclear average potential + (residual) interaction between nucleons.

MEAN-FIELD METHODS: nuclear average potential with global parametrisation (+ correlations). **PHENOMENOLOGICAL MODELS**: specific nuclei or properties with local

parametrisation.

MANY-BODY HAMILTONIAN

nuclear structure calculations: A nucleons (Z protons and N neutrons)

relative motion described by the A-body Hamiltonian:

$$H = \sum_{i=1}^A \frac{p_i^2}{2m} + \sum_{i < j}^A V\big(\vec{r}_i, \vec{r}_j\big) + \cdots$$

→ solve the A-body Schrödinger equation $H\Psi(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A) = E\Psi(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A)$

REALISTIC NN-INTERACTIONS

construct NN-potentials based on neutron and proton scattering data and properties of light nuclei

$\Leftrightarrow \textbf{PHENOMENOLOGICAL POTENTIALS} fitted on NN-observables:$

- $\,\circ\,$ d binding energy,
- NN-phaseshifts

ENERGY LEVELS OF LIGHT NUCLEI: EXPERIMENT VS THEORETICAL CALCULATION

 V_{NN} underbinds the nucleus \hookrightarrow need **THREE-BODY FORCES**

$$H = \sum_{i=1}^{A} T_i + \sum_{j>i=1}^{A} V_{ij} + \sum_{k>j>i=1}^{A} V_{ijk} + \cdots$$

three-body forces account for intermediate excitation of nucleons

 \hookrightarrow can be derived from <code>EFFECTIVE FIELD THEORY</code>

Carlson, Pieper, Wiringa et al.

EFFECTIVE FIELD THEORY (EFT)

is an effective quantum field theory based on QCD symmetries with resolution scale Λ that selects appropriate degrees of freedom

 \hookrightarrow hierarchy of EFTs that describe the strong interaction across multiple scales

 \hookrightarrow scale separation simplifies description of physical processes

 \hookrightarrow relevant degrees of freedom in nuclear physics: **NUCLEONS AND MESONS** \Leftrightarrow **CHIRAL EFT**

CHIRAL EFFECTIVE FIELD THEORY (χ EFT)

systematic expansion of nuclear forces in Q/ Λ

natural hierarchy of nuclear forces

power counting scheme results in systematic expansion ↔ enables UNCERTAINTY ESTIMATES

low energy constants (LEC) unknown

↔ fit to NN data (NN scattering)
↔ fit to 3N data (binding energies, radii)

ground state energies obtained from different ab initio methods are in good agreement

- $\circ\;$ with each other
- \circ with experiment
- all theoretical approaches require 3N forces to reproduce the dripline at ²⁴O

PROGRESS IN AB INITIO NUCLEAR STRUCTURE CALCUATIONS

NEUTRINOS

- \circ have no charge
- $\circ~$ are everywhere
 - $\hookrightarrow 10^{12}$ neutrinos pass through every cm² every second

NEUTRINOS

- $\,\circ\,$ have no charge
- $\circ \quad \text{are everywhere} \\ \hookrightarrow \text{WHERE DO THEY COME FROM?}$

NEUTRINOS

- \circ have no charge
- $\circ~$ are everywhere
 - $\hookrightarrow 10^{12}$ neutrinos pass through every cm² every second
- \circ are very weakly interacting
 - \hookrightarrow would need 10 light-years of lead to stop a 1MeV neutrino
- $\circ\;$ come in three flavours

 $\,\circ\,$ have very small masses

HOW TO DETECT NEUTRINOS?

 \hookrightarrow via their weak interactions!

HOW TO DETECT NEUTRINOS?

HOW TO DETECT NEUTRINOS?

$\hookrightarrow \text{via their weak interactions!}$

HOW TO DETECT NEUTRINOS?

• **NEUTRINO OSCILLATIONS** (start with two flavours)

 \hookrightarrow each flavour (e, μ) is a superposition of different masses (1,2)

$$\begin{pmatrix} v_{e} \\ v_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$$

ACCELERATOR-BASED OSCILLATION EXPERIMENTS

 $\stackrel{\hookrightarrow}{\rightarrow} \text{neutrino oscillation probability}$ $P_{\nu_{\mu} \rightarrow \nu_{e}}(E,L) = sin^{2}(2\theta)sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right)$

E: neutrino energy L: propagation distance θ : neutrino mixing angle $\Delta m^2 = m_{\nu_1}^2 - m_{\nu_2}^2$

← to extract oscillation parameters the neutrino energy has to be reconstructed
 in every neutrino-nucleus scattering event

NUCLEAR STRUCTURE: NEUTRINO OSCILLATION
MEASUREMENTSPhysics process

see Adi Ashkenazi's talk on Tuesday

 \hookrightarrow precise description of $\nu - N$ interaction needed!

MC vs. (e,e'p) Transverse Variables

see Adi Ashkenazi's talk on Tuesday

IDEA: use electron scattering

- $\hookrightarrow \textbf{constrain model uncertainties}$

GOAL: leverage e-N and v-N scattering data to constrain exiting models and improve simulation environment

$\approx 300 \text{ STABLE NUCLEI}$ $\circ Z \cong N \text{ up to } {}^{40}\text{Ca}$

 \circ N > Z for A>40

pprox 3000 UNSTABLE NUCLEI

ISLAND OF STABILITY?

N, number of neutrons

does the stability end with Uranium OR is there an **ISLAND OF STABILITY**?

is there a new magic number for Z \sim 114-126?

nuclei with Z>103 already predicted in the late 1960s based on theoretical models extending the nuclear shell model

nuclear shell effects provide increased binding energy → stabilize superheavy elements (SHE) against spontaneous fission

ISLAND OF STABILITY

region of superheavy nuclei near spherical proton and neutron shell closures at Z = 114 and N = 184

SYNTHESIS OF SUPERHEAVY ELEMENTS

cold fusion reactions ²⁰⁸Pb or ²⁰⁹Bi + massive projectile ($A \ge 50$) \rightarrow high Z + (1-2n) successfully applied to synthesis

elements Z=107-112

hot fusion reactions ⁴⁸Ca on actinide target \rightarrow SHE + (4-5n) used for synthesis of elements Z=114-118

presently 118 elements known up to OGANESSON (Og)

IDENTIFICATION OF SUPERHEAVY ELEMENTS

 $\hookrightarrow \alpha \text{-decay will occur until spontaneous fission occurs} \\ \hookrightarrow \text{observation of sequential } \alpha \text{-decays}$

see Jacklyn Gates' talk on Thursday

ON THE WAY TO PRODUCE ELEMENT 120

elements Z=114-118 were all produced using ⁴⁸Ca beams on actinide targets

- \hookrightarrow heaviest possible target: californium \rightarrow 98 protons
- $\hookrightarrow \textbf{heavier beams needed}$

NUCLEAR STRUCTURE: SUPERHEAVY NUCLEI

CAN SUPERHEAVY ELEMENTS BE PRODUCED IN NATURE?

possible site: astrophysical rapid neutron capture process

- $\hookrightarrow \text{surpassing area of fission dominance}$
- → subsequent beta-decays of higher charge number nuclei ends with finite abundance in valley of beta-stability

see Ani Aprahamian's talk on Tuesday

NUCLEAR ASTROPHYSICS

THE BIG QUESTIONS

- o creation of heavy elements?
- nuclear engines for the life and death of stars?

EoS of neutron-rich matter?

1 introduction

stars: nature's nuclear reactors

life and death of a star

nuclear Equation of State

s, r, p, rp processes

NUCLEAR ASTROPHYSICS: INTRODUCTION

NUCLEOSYNTHESIS IN A NUTSHELL

by fusion of light elements the Fe-Ni region can be reached

NUCLEAR ASTROPHYSICS: INTRODUCTION

ABUNDANCES OF ELEMENTS

did you notice...

- o odd-even staggering of abundances?
- larger alpha-nuclei abundance?
- $\circ~$ broad peak around Fe?
- $(\rightarrow$ that is nuclear physics!)

NUCLEAR ASTROPHYSICS: INTRODUCTION

ABUNDANCES OF ELEMENTS

formation of elements: big bang nucleosynthesis fusion in stars, explosive burning: $H \rightarrow He$ $He \rightarrow C, O$ $C, O \rightarrow Si$ $Si \rightarrow Fe$ group

s, r, p, rp process

HYDROGEN BURNING: PP CHAIN

summary: $4p \rightarrow {}_2^4He + 2e^+ + 2\nu_e + 25MeV$

HYDROGEN BURNING: CNO CYCLE

if the star constains C, N or O, they can be used as catalyst to synthesize 4 He from 4p

CNO C – cycle: $^{12}C + ^{1}H \rightarrow ^{13}N + \gamma$ $^{13}N \rightarrow ^{13}C + e^+ + v_e$ $^{13}C + ^{1}H \rightarrow ^{14}N + \gamma$ $^{14}N + ^{1}H \rightarrow ^{15}O + \gamma$ $^{15}\text{O} \rightarrow ^{15}\text{N} + e^+ + v_e$ $^{15}N + ^{1}H \rightarrow ^{12}C + ^{4}He$

summary: $({}^{12}C) + 4p \rightarrow ({}^{12}C) + {}^{4}_{2}He + 2e^{+} + 2v_{e} + 26.73MeV$

REACTION RATE

we consider the radiative capture reaction: $1 + 2 \rightarrow 3 + \gamma$ the **REACTION RATE** is the number of reactions occuring per unit time and volume

 $r = N_1 N_2 \sigma v$

the velocity v is distributed according to Maxwell-Boltzmann

$$\phi(v) \propto e^{-E/kT}$$

 $\Rightarrow \langle \sigma v \rangle = 4\pi \int \phi(v) \sigma(v) v^3 dv$
 $\propto \int e^{-E/kT} \sigma(E) E dE$

$\sigma(E)$ at low energy

due to **COULOMB BARRIER** or plummets at low E because reaction takes place only through **TUNNELING**

ASTROPHYSICAL S FACTOR: THE NUCLEAR PHYSICS NUGGETS OF $\langle \sigma v \rangle$

often it is useful to remove the energy dependence from the cross section

the rapid drop explained by the Gamow factor $e^{-2\pi\eta}$

with the Sommerfeld parameter

$$\eta = \frac{Z_1 Z_2 e^2}{4\pi\epsilon_0 \hbar \nu}$$

$$\Rightarrow \sigma(E) = \frac{S(E)e^{-2\pi\eta}}{E}$$

the astrophysical S factor varies smoothly with E

GAMOW PEAK

- $\langle \sigma v
 angle \propto \int e^{-E/kT} \sigma(E) E \ dE$ = $\int e^{-E/kT} e^{-2\pi\eta} S(E) dE$
- \hookrightarrow S (i.e. σ) must be known only in the Gamow peak:

 $\overline{\mathbf{g}(\mathbf{E})} = \mathbf{e}^{-\mathbf{E}/\mathbf{kT}}\mathbf{e}^{-2\pi\eta}$

light nuclei fuse at lower temperature (compared to heavier ones)

 $\hookrightarrow \textbf{DIFFERENT STAGES} \text{ of nuclear burning in stars}$

HELIUM BURNING

when enough ⁴He has built up AND if temperature and pressure are high enough \hookrightarrow He fusion starts

the obvious reaction would be ⁴He + ⁴He BUT there are **NO STABLE NUCLEI WITH A=8**

this A=8 gap is bridged by the TRIPLE- α PROCESS:

⁴He + ⁴He ⇒ ⁸Be

⁸Be + ⁴He \rightleftharpoons ¹²C* \rightarrow ¹²C + γ

SUBSEQUENT STAGES

 ${}^{12}C + {}^{4}He \rightarrow {}^{16}O + \gamma$ ${}^{16}O + {}^{4}He \rightarrow {}^{20}Ne + \gamma$

+ more advanced burning stages \rightarrow **ONION-LIKE STRUCTURE OF THE STAR**

NUCLEAR ASTROPHYSICS: LIFE AND DEATH OF A STAR

MEDIUM MASS STARS ($M \leq 8 M_{\odot}$)

H outer layer is expelled → PLANETARY NEBULA

> NGC 6543, Cat's Eye Nebula

nuclear reactions stop and the remaining core cools down \hookrightarrow WHITE DWARF (M ~ M_{\odot} and R ~ R_{\oplus}) where gravity is compensated by the pressure of the electrons, which form a Fermi gas

NUCLEAR ASTROPHYSICS: LIFE AND DEATH OF A STAR

MASSIVE STARS ($M > 8 M_{\odot}$)

once Fe is produced, the stellar core collapses

- \circ photodisintegration
- $\,\circ\,$ electron capture by the nuclei: p + e^- \rightarrow n + ν_e
- $\,\circ\,$ neutron degeneracy sets in

 \hookrightarrow NEUTRON STAR (M \sim M $_{\odot}$ and R \sim 10km; $\rho{\sim}\rho_{0})$

 \hookrightarrow black hole (M ~ several M_{\odot})

outer layers expelled → CORE-COLLAPSE SUPERNOVA (type II)

NUCLEAR ASTROPHYSICS: LIFE AND DEATH OF A STAR

What is a neutron star (NS)?

- \circ for **ASTRONOMERS** NS are very **LITTLE STARS** "visible" as radio pulsars or sources of X- and γ -rays
- for **PARTICLE PHYSICISTS** NS are **NEUTRINO SOURCES** (mainly when they are born) and probably the only places in the Universe where deconfined quark matter may be abundant
- $\circ~$ for <code>COSMOLOGISTS</code> NS are "almost" <code>BLACK HOLES</code>
- $\circ\,$ for <code>NUCLEAR PHYSICISTS</code> NS are the <code>BIGGEST NEUTRON-RICH NUCLEI</code> of the Universe

- → NS are EXCELLENT OBSERVATORIES to test fundamental properties
 of matter under extreme conditions
- $\hookrightarrow NS \text{ offer an interesting INTERPLAY BETWEEN NUCLEAR PROCESSES AND ASTROPHYSICAL OBSERVABLES}$

- $\,\circ\,$ neutron stars are bound by gravity NOT by the strong force
- \circ neutron stars satisfy the TOLMAN-OPPENHEIMER-VOLKOFF (TOV) equation

$$\frac{dM}{dr} = 4\pi r^2 \varepsilon(r)$$

$$\frac{dP}{dr} = -G \frac{\varepsilon(r)M(r)}{r^2} \left[1 + \frac{P(r)}{\varepsilon(r)} \right] \left[1 + \frac{4\pi r^3 P(r)}{M(r)} \right] \left[1 - \frac{2GM(r)}{r} \right]^{-1}$$

only physics that the TOV equation is sensitive to: EQUATION OF STATE (EoS) \rightarrow P = P(ϵ)

MASS-RADIUS RELATION

the radius R of a neutron star with mass M cannot be arbitrarily small!

 $\hookrightarrow \textbf{GENERAL RELATIVITY: a NS is not a black hole} \\ \hookrightarrow \mathbf{R} > \frac{2 \text{GM}}{c^2}$

 $\hookrightarrow \text{FINITE PRESSURE: NS matter cannot be arbitrarily compressed} \\ \hookrightarrow R > \frac{9}{4} \frac{GM}{c^2}$

 \hookrightarrow CAUSALITY: speed of sound must be smaller than c $\hookrightarrow R > 2.\,9 \frac{GM}{c^2}$

MASS-RADIUS RELATION

- EoS must span about 10 orders of magnitude in baryon density
- $\,\circ\,$ increase from $0.\,7 \rightarrow 2\,M_{\odot}$ must be explained by nuclear physics

Bethe-Weizsäcker: incompressible quantum liquid drop binding energy

Bethe-Weizsäcker: incompressible quantum liquid drop binding energy $B(Z, N) = a_v \cdot A - a_s \cdot A^{2/3} - a_c \cdot \frac{Z(Z-1)}{A^{1/3}} - a_{sym} \cdot \frac{(A-2Z)^2}{A}$

in the limit where volume V and A $ightarrow \infty$ but $rac{A}{v} =
ho_0 = const.$

$$\epsilon(lpha)\equiv-rac{B(Z,N)}{A}=-a_V+Jlpha^2$$
 with $lpha=ig(
ho_n-
ho_pig)/ig(
ho_n+
ho_pig)$

incompressible \rightarrow fails to reproduce response to density fluctuations

$$\epsilon(\alpha) \equiv -\frac{B(Z,N)}{A} = -a_V + J\alpha^2 \qquad \text{with } \alpha = (\rho_n - \rho_p)/(\rho_n + \rho_p)$$

← Equation of State of asymmetric matter

 $\epsilon(\rho, \alpha) = \epsilon(\rho, \alpha = 0) + S(\rho)\alpha^2 + O(\alpha^4)$ whe

18 orders of magnitude smaller55 orders of magnitude lighterSAME Equation of State

VS.

NUCLEAR ASTROPHYSICS: NUCLEAR EOS

SYMMETRY ENERGY

 $S(\rho)$ characterisis the increase in energy from N = Z

Taylor expanded around $\rho = \rho_0$:

$$\mathbf{S}(\mathbf{\rho}) = \mathbf{J} + \frac{\mathbf{L}}{3} \left(\frac{\mathbf{\rho} - \mathbf{\rho}_0}{\mathbf{\rho}_0} \right) + \frac{1}{18} \mathbf{K}_{sym} \left(\frac{\mathbf{\rho} - \mathbf{\rho}_0}{\mathbf{\rho}_0} \right)^2 + \cdots$$

the symmetry energy can be constrained from

- $\circ~$ laboratory measurements \rightarrow **NEUTRON SKIN THICKNESS**
- $\circ~$ astrophysical observations \rightarrow MASS AND RADII OF NEUTRON STARS
- $\,\circ\,$ nuclear structure calculations

see James Lattimer's talk on Wednesday

NUCLEAR ASTROPHYSICS: NUCLEAR EOS

see James Lattimer's talk on Wednesday

The TOV equations determine the neutron star M-R curve from the equation of state (EOS), i.e., the 2 pressure-energy density $(P-\mathcal{E})$ relation. M-R observations can be converted to EOS information by inverting the TOV equations. We discovered a simple analytic inversion method using (M, R) values for fractional maximum mass points that gives the central P- \mathcal{E} of those stars to better than 0.5%.

observation of neutron stars

radio

Green Bank MeerKAT

IR and optical optical and UV

observation of neutron stars

gravitational waves

neutrinos

ANTARES

IceCube

NEUTRON STAR MERGER GW170817

gravitational wave signal + γ - and X-ray, UV, optical, IR, and radio signals \Rightarrow **MULTI-MESSENGER ASTRONOMY**

B.P. Abbott et al., ApJL 848 (2017) L12

NEUTRON STAR MERGER GW170817

B.P. Abbott et al., PRL 119 (2017) 161101

GRAVITATIONAL WAVE (GW)

GAMMA RAY BURST (GRB) U What powers the GRBs?

see Cecilia Chirenti's talk on Monday

HMNS oscillations could

result in a measurable

MODULATION OF THE GRB

 \hookrightarrow quasiperiodic oscillations (QPO)

HYPERMASSIVE NEUTRON STAR (HMNS)

see Cecilia Chirenti's talk on Monday

CONSTRAIN MASS-RADIUS RELATION

from oscillation modes obtain constraints on o chirp mass:

$$\mathcal{M} = \frac{(M_1 M_2)^{\frac{3}{5}}}{(M_1 + M_2)^{\frac{1}{5}}}$$

○ binary tidal deformability $\widetilde{\Lambda} = \frac{16}{13} \left(\frac{(M_1 + M_2)M_1^4 \widetilde{\Lambda_1}}{(M_1 + M_2)^5} + (1 \leftrightarrow 2) \right)$

$$\Rightarrow \mathbf{R}_{\mathbf{M}}(\widetilde{\Lambda}, \mathcal{M}) = \alpha \left(\frac{\mathcal{M}}{\mathbf{1}\mathbf{M}_{\odot}}\right) \left(\frac{\widetilde{\Lambda}}{\mathbf{800}}\right)^{\frac{1}{\beta}}$$

adapted from V. Guedes et al., arXiv: 2408.16534

\Rightarrow Information about EoS obtained from GRB

HOW DO WE GET HEAVIER ELEMENTS?

 \circ increasing Coulomb barrier suppresses fusion

 $\circ~$ once Fe synthesised no further fusion

to explain formation of heavier elements Burbidge, Burbidge and Hoyle (B²FH) suggest in 1957 SUCCESSIVE CAPTURES OF NEUTRONS BY SEED NUCLEI → s and r processes

S PROCESS

the s process is a **SLOW** process of neutron capture by stable nuclei

 \hookrightarrow slow means slower than β deacy

→ requires small neutron flux
 e.g. He burning stage of AGB stars

synthesis elements close to valley of stability

 \hookrightarrow does not explain

- $\,\circ\,$ isotopes away from stability
- \circ heavy elements (U, Th, ...)

R PROCESS

the r process is a **RAPID** process of neutron capture by stable nuclei

 \hookrightarrow rapid means faster than β deacy

 $\hookrightarrow \textbf{requires high neutron flux}$

e.g. core-collapse supernovae, neutron star mergers

synthesis elements far away from valley of stability → superheavy elements too?

see Ani Aprahamian's talk on Tuesday

stable

isotope?

slide courtesy of Ani Aprahamian

P AND RP PROCESSES

s and r processes synthesis only neutron-rich nuclei

how to explain the presence of p-rich nuclei?

 \hookrightarrow p and rp processes are similar processes with <code>SUCCESSIVE PROTON CAPTURES</code>

P PROCESS:

slow capture of protons synthesis proton-rich nuclei close to valley of stability possible site: supernova

NUCLEAR ASTROPHYSICS: S, R, P, RP PROCESSES

RP PROCESSES

rapid proton-capture reactions synthesis elements away from valley of stability possible sites:

- $\circ~$ X-ray burst
- → accretion by neutron star of H- and He-rich material from companion star
- \circ supernova type la

SUMMARY

nuclei are synthesised in stellar environments during various processes

- $\,\circ\,$ pp chain, CNO cycles, He burning
- \circ s and r processes (n capture)
- \circ p and rp processes (p capture)

stable nuclei can be qualitatively described by liquid-drop and shell model

nowadays ab initio nuclear structure models from first principles

→ FUTURE CHALLENGES AND OPPOTUNITIES in nuclear structure and astrophysics studying stable, exotic and superheavy nuclei

