Heavy Flavor Dynamics in Hot QCD matter

Istituto Nazionale di Fisica Nucleare

Vincenzo Greco – University of Catania/INFN-LNS

Collaborators:

- V. Minissale, L. Oliva, S. Plumari, M. Ruggieri. M.L. Sambataro
- S.K. Das (Ghoa)
- D. Avramescu, T. Lappi (Jyvaskyla)

61st International Winter Meeting on Nuclear Physics, Bormio, 27-31 January 2025

Sketch of Time evolution of uRHICs

Outline

- ♦ Basic concepts & motivation for HQ physics in uRHICs
- $\diamond\,$ Results from the first & second stage:
 - strong non-perturbative HQ dynamics [agreement to LQCD?!, close to AdS/CFT limit?]
 - <u>non-universal</u> hadronization in $AA \neq e^+e^-$ seems so already for pp@TeV
- \diamond **Next steps:** low p_T , extension to b & access to new observables
- ♦ HQ as probe of Glasma early stage phase

Basic Scales and specific of HQ

Why Heavy?

- > *PARTICLE Physics*: $\mathbf{m}_{c,b} >> \Lambda_{QCD}$ pQCD initial production
- > PLASMA Physics:
 - $m_{c,b} >> T_{RHIC,LHC}$ no thermal production
 - $m_{c,b} >> gT_{RHIC,LHC}$ soft scatterings \rightarrow Brownian motion

Specific Features:

- $\succ \tau_0 {\approx 1/2m_Q} \; ({<}0.1 \; \mbox{fm/c}){<<} \tau_{QGP} \mbox{ witness of all QGP evolution}$
- $ightarrow au_{th} \approx au_{QGP} >> au_{q,g}$ carry more information of their evolution

Reviews:

- F. Prino and R. Rapp, JPG (2019)
- X. Dong and VG, Prog.Part.Nucl.Phys. (2019)
- Jiaxing Zhao et al., Prog.Part.Nucl.Phys. (2020)

Basic Scales and specific of HQ

Why Heavy?

- > *PARTICLE Physics*: $\mathbf{m}_{c,b} >> \Lambda_{QCD}$ pQCD initial production
- > PLASMA Physics:
 - $m_{c,b} >> T_{RHIC,LHC}$ no thermal production
 - $m_{c,b} >> gT_{RHIC,LHC}$ soft scatterings \rightarrow Brownian motion

Specific Features:

- $\succ \tau_0 {\approx 1/2m_Q} \; ({<}0.1 \; \mbox{fm/c}){<<} \tau_{QGP} \mbox{ witness of all QGP evolution}$
- $ightarrow \tau_{th} \approx \tau_{QGP} >> \tau_{q,g}$ carry more information of their evolution

- * For HQ we know initial p_T distribution at variance with light quark & gluons
- * HQ not created at hadronization by string breaking + const. quarks close to energy conservation

Standard Dynamics of Heavy Quarks in the QGP

- ♦ This is the main set up at least at $p_T < 6-8$ GeV
- ♦ Brownian motion challenged for charm ($M_c \sim 3 \text{ T} \sim g\text{T}$) → Relativistic Boltzmann dynamics
- $\Leftrightarrow~At~p_T\!>10~GeV~radiative~E_{loss}$, $q_{hat\prime}$ jet physics

HQ link to Lattice QCD at finite T

* Ab-initio Diffusion Transport Coefficient

Spectral function ρ_E extracted **from euclidean color-electric correlator** $D_E(\tau) \rightarrow$ Kubo formula diffusion in the p \rightarrow 0 limit:

$$\frac{D_p}{T^3} = \lim_{\omega \to 0} \frac{T\rho_E(\omega)}{\omega} \implies D_s = \frac{T^2}{D_p} = \frac{T}{M_Q \gamma} = \frac{T}{M_Q} \tau_{th}$$

Approximations/limitations:

- *Extraction of* $\rho_E(\omega)$ from $D_E(\tau)$ is not a well posed problem with a finite limited # of points
- *infinite HQ mass vs. charm quark, continuum extrapolation...*
- \rightarrow quenched N_f=0 \rightarrow to non quenched QCD (2023-24)

HQ allow for developing a NRQCD EFT at finite T & many-body T-matrix from V(r,T) by LQCD

Studying the HF in uRHIC

How HQ interact with the medium [low-medium p_T]

✤ <u>3 kinds of approaches:</u>

a) **pQCD inspired + HTL**

[*Nantes*(+*rad.*) ... *Torino, LBL-Duke*] LO diagrams, propagator with reduced IR regulator $(q^2 - \kappa m_d^2(T))^{-1}$ match **soft scale** resummed in **HTL**

b) **Quasi Particle Model + tree level diagrams** [*Catania, Frankfurt-PHSD, QLBT o CoLBT,...*] **g(T) from a fit to IQCD-EoS screened propagators with m**_D ~ **gT**

c) **T-matrix:** scattering under V(r,T) deduced from IQCD (TAMU)

Two Main Observables in HIC

Nuclear Modification factor

$$R_{AA}(p_T) = \frac{d^2 N^{AA} / dp_T d\eta}{N_{coll} d^2 N^{NN} / dp_T d\eta}$$

- Modification respect to pp
- Decrease with increasing partonic interaction

♦ <u>Anisotropy p-space</u>: Elliptic Flow v₂

What was the expectation for charm?

QGP created is made by 99% of q=u,d,s, + Charm Quarks <1%

 $m_q \approx 0.01~GeV$ & $M_c \approx 1.3~GeV$ \rightarrow poorly dragged & long thermalization time :

In LO-pQCD $\tau_{c,therm} \approx 20 \text{ fm/c} >> \tau_{QGP} >> \tau_{q,therm} \approx O(1) \text{ fm/c} \rightarrow R_{AA} \sim 1 \text{ and } v_2 \sim 0$

For plasma conditions realistically obtainable in the nuclear collisions (T~250 MeV, g=2) \rightarrow effective masses $m_{q,g}$ * ~ gT~500 MeV"

R_{AA} & v₂ with upscaled pQCD cross section

It's not just a matter of pumping up pQCD elastic cross section: too low R_{AA} or too low v_2

R_{AA} and v₂ evolution & correlation

No interaction means $R_{AA}{=}1$ and $v_2{=}0.$ more interaction decrease R_{AA} and increase v_2

R_{AA} is "generated" faster than v_2

The relation between R_{AA} and time is **not trivial** and is driven by the time (temperature) dependence of the interaction.

Studying charm in uRHICs – after Run 2

Note: early data $p_T > 1.5-2$ GeV with significant error bars

Diffusion Coefficient of Charm Quark: first stage

uRHIC created matter is the Hot QCD matter not in perturbative regime!

X. Dong and VG, Prog.Part.Nucl.Phys. (2019)

★ Largely non-perturbative D_s (close AdS/CFT) even if M_Q>>Λ_{QCD}, m_q (bare) τ_{th}(charm, p→0) < 5 fm/c</p>

$$\tau_{th} = \frac{M}{2\pi T^2} (2\pi T D_s) \cong 1.8 \, \frac{2\pi T D_s}{(T/T_c)^2} \, \, {\rm fm/c}$$

pQCD, Asymptotic free regime

Not a model fit to IQCD data! Phenomenology $R_{AA} \& v_2 \approx Lattice QCD$

Infinite Strong Coupling (AdS/CFT)

HQ Surprise also in the transverse flow $v_1 = \langle p_x/p_T \rangle$

Would you expect charm quark to have a smaller v_2 ? Or a smaller one due to its mass?

Very surprising!

 v_1 (HQ) ~ 30 times v_1 light hadrons (π ,K,..)

HQ Surprise also in the transverse flow $v_1 = \langle p_x/p_T \rangle$

Diffusion of Charm Quark: first stage

*Main differences in comparing to LQCD-AdS/CFT:

- quenched QCD (Yang-Mills) + $M_Q \rightarrow \infty$
- phenomenology at intermediate $p_T LQCD(AdS/CFT)$ at $p \rightarrow 0$

*Main sources of differences in models:

- impact of hadronization («unexpected» large baryon production)
- momentum depedence of matrix elements
- data not enough precise/observable not enough constraining (especially for $p_T \rightarrow 0$)

Impact of HF in-medium Hadronization

<u>Opposite</u> to in-medium scattering Coalescence **brings up both** R_{AA} and $v_2 \rightarrow$ toward experimental data

Phase-space coalescence: quark recombination $f_M(P_H = p_1 + p_2) \approx f_q(p_1) \otimes f_{\bar{q}}(p_2) \otimes \Phi_M(\Delta x, \Delta p)$ Independent Fragmentation

$$f_H(P_H = zp_T) = f_{q,g}(p_T) \otimes D_{q,g \to H}(z) \quad , z < 1$$

→ Add momenta: P_T^H from low p_T quark → Enhance elliptic flow v_2 adding flows: $v_{2D}(p_T) \cong v_{2c} \left(\frac{m_c}{m_D} p_T\right) + v_{2q} \left(\frac{m_q}{m_D} p_T\right)$

HF Baryon enhancement wrt e⁺e⁻ even in AA& pp@TeV

- I⁰ prediction in coalescence [Ko PRC(2009)] of very large $\Lambda_c/D^0 >> SHM[PDG] >> e^+e^-(~PYTHIA)$
- Breaking of Universal Fragmentation Function already in pp in HF sector

HF hadronization has stimulated several developments

- ▶ PYHTIA beyond Leading Color (LC) → Color Reconnection (CR) in pp
- Coalescence+Fragmentation approach applied to pp
- Local Color Recombination: POWLANG in AA and in pp
- ▶ Inclusion of HF <u>Coalescence</u>+ Fragmentation in **EPOS** (pp &AA)

Yields modified from e⁺e⁻ (e⁻p) to pp, then from pp to AA mostly coupling to flowing QGP medium modifies p_T shape of the ratio Λc/D?

PYTHIA Color Reconnection/ Local Color neutralization

Leading Color ($N_c \rightarrow \infty$): Prob. of Local Color neutralization $\rightarrow 0$

□ When string color reconnection is switched-on in pp \rightarrow Very large baryon Λ_c , Σ_c enhancement \rightarrow not so relevant for D, like coalescence+fragmentation

Not indipendent strings - Local reconnection \rightarrow string energy minimization \rightarrow smaller invariant mass close to D meson states (like in coalescence)

(a) Mesonic reconnection.

(b) Baryonic reconnection.

Altmann et al., Towards the understanding of heavy quarks hadronization: from leptonic to heavy-ion collisions, EPJC 85 (2025)

HF Baryon enhancement: impact on R_{AA}

Till 2019-20 the baryon production (Λ_c ,...) was discarded by theoretical approaches But data at p_T > 2 GeV nearly blind to it

 Λ_c baryon production was mostly neglected in most studies of R_{AA}, but: - Strong impact on R_{AA} low-intermediate p_T \rightarrow affect estimates of D_s

"See" Hadronization mechanism through elliptic flow

If Λ_c enhancement of the yield comes from quark coalescence it should be associated to

- → Large v₂ of $\Lambda_{c} \sim v_{2c} \left(\frac{m_{c}}{m_{\Lambda}} p_{T} \right) + 2 v_{2q} \left(\frac{m_{q}}{m_{\Lambda}} p_{T} \right)$
- \rightarrow Effect to be measured in AA; will it be seen also in pp?

- $\checkmark \Lambda_c \text{ dominated by coalescence:} \\ p_T \text{ range? self-consistent with } \Lambda_c/D \text{ ratio?}$
- Would PYHTIA-CR predict finite v₂ of D, Λ_c in pp? by String shoving? Can it predict D, Λ_c systematic for v₂?

Methods/tools of AA allow better insight into hadronization in pp!?

[for Run3-4]

Is charm quark really "heavy"?

A very solid comparison to LQCD, to the development of NRQCD-EFT, to quantify interaction only by space-diffusion D_s (full Brownian motion) requires a "full" HQ , but $M_c \sim q^2 \sim gT$, $\sim 3T$ at T \sim 300-500 MeV \rightarrow full Heavy is the Bottom

Extension to bottom dynamics: R_{AA} V₂, V₃

Phase of Transition

- ► Very small new LQCD-D_s (T) $[\tau_{th}(charm, p \rightarrow 0) \sim 1-2 \text{ fm/c}]$: mass independent? down to charm mass?
- > Most studies at $p_T > 1.5-2$ GeV [mainly not including impact of Λ_c], need new wave of prediction:
 - \rightarrow compare to LQCD **need data** $p_T \rightarrow 0$
 - \rightarrow need precision data at low p_T not only for D but also for Λ_c
 - → add more esclusive observables: $v_n(\text{soft})-v_n(\text{hard})$, angular $D\overline{D}$ correlation,...

Going deeply into Hot QCD matter created in uRHICs

All harmonics appearing with different weights.

$$v_n = \langle \cos(n\varphi) \rangle$$

n = 6

Going deeply into Hot QCD matter

Go to WMAP website and play Build a Universe...

Able to «see» even the local Temperature fluctuations of the QGP

Transverse view

Relativistic HIC in '90s, '00 till about 2005 Anisotropies only with <u>even</u> parity due to symmetry \rightarrow v₂ elliptic flow

 $v_n(light) vs v_n (charm) - ebe$

Transverse view of HIC, nowdays

When including fluctuations, all moments appear:

n=4

n=5

n=6

n = 3

n=2

All harmonics appearing with different weights. $v_n = \langle \cos(n\varphi) \rangle$

HL-LHC allows to access v_n light-HQ correlation

Event-by-event coupling of the anisotropy of the bulk (light) and the charm (heavy) one → Much more precise determination of the strength interaction: drag $\gamma \sim 1/D_s$

HQ probe of CGC/Glasma phase 0+<t<0.3 fm/c

Color Glass Condensate (CGC) as high-energy limit of QCD (non-linear evolution at low x) in the BFKL direction in the plane $[Q^2, x]$?

Impact of Glasma phase

Potential impact on AA observables (starting at $\tau = \tau_{form}$ -SU(2))

♦ Opposite to HQ in QGP: Dominance of diffusion-like \rightarrow initial enhancement of $R_{AA}(p_T)$!!!

• Gain in v_2 : larger interaction in QGP stage needed to have same $R_{AA}(p_T)$ [18% smaller D_s]

Impact of Glasma phase

Glasma impact on angular $Q\bar{Q}$

First study of azimuthal $Q\bar{Q}$ correlation: large decorellation **in only 0.2 fm/c** Significant effect of glasma on HQ!

Calculation in SU(3) +longitudinal expansion

D. Avramescu et al., arXiv:2409.10.565. [hep-ph]

pA collision should keep memory of it especially correlating it to R_{AA}, v_n:

Nucleus A

Nucleus B

- identify Glasma phase
- solve the puzzle od $R_{pA} \sim 1$ and v_2 large

Summary & Perspectives

- Open HF set up a strong connection among LQCD,NREFT/phenomenology/exp. observables:
 - large non-perturbative interaction: Ds(T): agreement of phenomenology to LQCD?! close to AdS/CFT? validity of NREFT/ QCD at finite T?!
 - hadronization reveals pp@TeV much closer to AA than e⁺e⁻ or e⁻p!?

* It is a Phase of Transition to a new PROGRESS:

- new LQCD results for $D_s(T) \rightarrow$ smaller than previous average estimate (τ_{th} (charm)~ 1-2 fm/c)
- better identify impact of baryon HF hadronization (large Λ_c/D) on estimate of $D_s(T)$
- Precision data @low $pT \mid new observables: R_{AA}(\Lambda_c), v_2(\Lambda_c), light-HF v_n correl., D\overline{D} angular corr.$ | extension to bottom |**multicharm**production (**ALICE3** $) <math>\rightarrow$ breakthrough
- Open HF can have a relevant interplay with developments of Glasma studies [especially for pA]

Back-up Slide

Relativistic Boltzmann equation at finite n/**s**

Bulk evolution

$$p^{\mu}\partial_{\mu}f_{q}(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{q}(x,p) = C[f_{q},f_{g}]$$

$$p^{\mu}\partial_{\mu}f_{g}(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{g}(x,p) = C[f_{q},f_{g}]$$

Equivalent to viscous hydro at $\eta/s \approx 0.1$

Free-streaming

Field interaction $\varepsilon - 3p \neq 0$

Collision term gauged to some **η/s≠ 0**

HQ evolution

$$p^{\mu}\partial_{\mu}f_{Q}(x,p) = \mathcal{C}[f_{q},f_{g},f_{Q}](x,p)$$

$$\stackrel{q}{\longrightarrow} f_{Q}(x,p) = \mathcal{C}[f_{q},f_{g},f_{Q}](x,p)$$

$$\stackrel{q}{\longrightarrow} f_{Q}(x,p) = \mathcal{C}[f_{q},f_{g},f_{Q}](x,p)$$

$$\stackrel{q}{\longrightarrow} f_{Q}(x,p) = \mathcal{C}[f_{Q}] = \frac{1}{2E_{1}} \int \frac{d^{3}p_{2}}{2E_{2}(2\pi)^{3}} \int \frac{d^{3}p'_{1}}{2E_{1'}(2\pi)^{3}} \times [f_{Q}(p'_{1})f_{q,g}(p'_{2}) - f_{Q}(p_{1})f_{q,g}(p_{2})] \times |\mathcal{M}_{(q,g)+Q}(p_{1}p_{2} \rightarrow p'_{1}p'_{2})|^{2} \times (2\pi)^{4}\delta^{4}(p_{1}+p_{2}-p'_{1}-p'_{2}),$$

Non perturbative dynamics \rightarrow M scattering matrices (q,g \rightarrow Q) evaluated by Quasi-Particle Model fit to **IQCD thermodynamics**

$$m_g^2(T) = \frac{2N_c}{N_c^2 - 1} g^2(T) T^2$$
$$g^2(T) = \frac{48\pi^2}{(11N_c - 2N_f) \ln\left[\lambda \left(\frac{T}{T_c} - \frac{T_s}{T_c}\right)\right]^2}$$

Impact of off-shell dynamics: M.L. Sambataro et al., *Eur.Phys.J.C* 80 (2020) 12, 1140

Multicharm production + PbPb \rightarrow OO

$\Xi_{cc}^{+,++}$, Ω_{scc} , Ω_{ccc}			
Baryon			
$\Xi_{cc}^{+,++} = dcc, ucc$	3621	$\frac{1}{2}\left(\frac{1}{2}\right)$	
$\Omega_{scc}^+ = scc$	3679	$\overline{0}\left(\frac{1}{2}\right)$	
$\Omega_{ccc}^{++} = ccc$	4761	$0(\frac{3}{2})$	

- Understand HQ in medium hadronization:
 [pure recombination , no fragmentation at low p_T at least]
- > Ω_{ccc} very sensitive (to cubic power) to $(dN_{charm}/dp_T)^3$

A system size scanning is like looking to see ΔE versus L \rightarrow dE/dx

• Makes a I order of magnitude difference depending on degree of equilibirum, while very small effect on D, $\Lambda_c \sim (dN_{charm}/dp_T)$, also due to charm # conservation & confinement

$\Omega_{ccc} p_T$ evolution from PbPb to OO

Deviation from scaling $N_c \left(\frac{N_c}{V}\right)^2$ due to different final p_T-charm distribution wrt PbPb

 $\Omega_{ccc} p_T$ spectrum evolution with system size unveil direct information of charm dN_c/dp_T with much larger sensitivity w.r.t. D^0 or $\Lambda_c \rightarrow$ precise info on interaction $D_s(T)$

ALICE3

"Fragmentation" Fractions in pp Catania Coalescence

- Evidence of different "Fragmentation" Fractions in pp at LHC wrt e⁺e⁻ & e⁻p but similar to AA
- ➤ Coalesc.+Fragm. very close to pp FF
- ➢ OK SHM-RQM for ∆c and D's
- ➤ Large Ξ_c , Ω_c only in coalescence, lack of yield in PYTHIA, SHM-RQM,... large error bars

Seems only hadronization models treating pp as a small QGP fireball or allowing local reconnection-recombination get close to data..

QPM ($N_f=2+1$) extension to QPMp ($N_f=2+1+1$)

From Dyson-Schwinger (\sim PHSD group in N_f=2+1) $M_g(T,\mu_q,p) = \left(\frac{3}{2}\right) \left(\frac{g^2(T^{\star}/T_c(\mu_q))}{6} \left[\left(N_c + \frac{1}{2}N_f\right)T^2 + \frac{N_c}{2}\sum_{q}\frac{\mu_q^2}{\pi^2} \right] \left[\frac{1}{1 + \Lambda_g(T_c(\mu_q)/T^{\star})p^2}\right] \right]$ $+ m_{\chi g}$ C. S. Fischer, J. Phys. G, R253 (2006) H. Berrehrah, W. et al., PRC 93(2016) $M_{q,\bar{q}}(T,\mu_q,p) = \left(\frac{N_c^2 - 1}{8N_c}g^2(T^*/T_c(\mu_q))\right)\left[T^2 + \frac{\mu_q^2}{\pi^2}\right]\left[\frac{1}{1 + \Lambda_q(T_c(\mu_q)/T^*)p^2}\right]$ M.L. Sambataro et al. e-Print: 2404.17459 $+ m_{\chi g}$ QPM extended from Nf = 2+1Momentum dependent masses $p >> \Lambda_{QCD} m_{u,d,s} \rightarrow current masses$ to Nf = 2 + 1 + 1 (charm quark is included) $2 T_{C}$ N_=2+1+1 T_C P/T^4 M_{g,q} [GeV] IQCD [WB] - QPM_n [Case 1] Pressure, trace anomaly gluon including charm 0.01 strange Nf = 2 + 1 + 1 up/down 0.2 0.6 0.8 T [GeV] 0.001 0.01 0.1 1 0.01 0.1 1 10 100 1000 10 100 $p^2 [GeV^2]$ $p^2 [GeV^2]$

m_{u,d,s}(p) expected but solves also a know issue...

Quark susceptibility from QPM to QPMp

M.L. Sambataro et al. e-Print: 2404.17459

QPM ($N_f=2+1$) extension to QPMp ($N_f=2+1+1$)

Diffusion D_s(T) from QPM to QPMp

- **QPMp** describes ε , P, χ_q , χ_s of LQCD and is closer than **QPM** to D_S to LQCD(new) with dynamical fermions
- Still a significant mass dependence from charm to bottom not seen in LQCD + Non Rel. EFT
- Can this new D_s(T) generate predictions for R_{AA}, v₂, v₃ in agreement with experimental data?

- For observables is relevant the p-dependence:
 - T=T_C-> 40 % larger τ_{th} (smaller D_s) at p~5 GeV, but could be larger: to be done a comparison among different approaches [QPMp p-dependence within the Bayesian analisys of Duke group]
- At T_c seems LQCD+NERFT clould lead to a gap wrt Ds calculation from the hadronic part. [Das, Torres-Rincon, 2406.13286[hep-ph]]

Relevance of direct Bottom measurements

- ▶ Quite close to $M \rightarrow \infty \&$ Non Relativistic limit
 - \rightarrow more solid comparison to LQCD/NRQCD for D_s(T)
- \succ $M_Q(T) >> T$, gT full **Brownian motion**, satisfy fluctuations dissipation theorem
 - → damps uncertainties in transport evolution (Langevin, Boltzmann, Kadanoff-Baym...)
- \succ Impact of **hadronization** on R_{AA} & v_n moderate & less different wrt fragmentation
- > Larger $\tau_{th}^b \sim M/T \tau_{th}^c$ more sensitive to dynamical evolution: carry more info

Going deeper into Λ_c enhancement

- Catania-coal & SHM-RQM/QCM natural good description of Σ_c/D^0 and $\Lambda_c \leftarrow \Sigma_c$ - PYTHIA-CR too many $\Sigma_c \rightarrow \Lambda_c/D^0$

Going deeper into Λ_c enhancement

Altmann et al., arXiv 2405.19137

- Catania-coal & SHM-RQM/QCM natural good description of Σ_c/D^0 and $\Lambda_c \leftarrow \Sigma_c$

- PYTHIA-CR too many $\Sigma_c \rightarrow \Lambda_c/D^0$; associated to a suppression of junction **diquark** *I*=1 (set ~ e^+e^- for string di-quark). Removing it \rightarrow Agreeement to data of $\Lambda_c \leftarrow \Sigma_c$

It goes in the direction of simply recombine according to SU(3) ~ simple colaescence

Magnetic field modifies Z⁰ I[±] invariant mass and width in AA

On-shell & off-shell dynamics for charm

Extending collision integral to off-shell dynamics: solvable in a box at equilibrium

$$[f] = \int dm_i A(m_i) \int dm_f A(m_f)$$

$$\times \frac{1}{2E_p} \int \frac{d^3 \mathbf{q}}{2E_q(2\pi)^3} \int \frac{d^3 \mathbf{q}'}{2E_{q'}(2\pi)^3} \int \frac{d^3 \mathbf{p}'}{2E_{p'}(2\pi)^3}$$

$$\times \frac{1}{\gamma_Q} \sum |\mathcal{M}_Q|^2 (2\pi)^4 \delta^4(p+q-p'-q')$$

$$\times [f(\mathbf{p}')\hat{f}(\mathbf{q}',m_f) - f(\mathbf{p})\hat{f}(\mathbf{q},m_i)] \qquad (20)$$

C

Spectral function for q & g $A_i^{BW}(m_i) = \frac{2}{\pi} \frac{m_i^2 \gamma_i^*}{(m_i^2 - M_i^2)^2 + (m_i \gamma_i^*)^2} \quad \text{off-shell} \approx \text{PHSD}$

+ a k(p) making the drag off-shell=drag on-shell

M.L. Sambataro et al., EPJC80(2020)

Impact of off-shell dynamics on charm

Bulk is not with the same energy density:

- energy density of off-shell case is smaller
- dynamics is Boltzmann-like: not gaussian

fluctuation areounf the average like in Langevin dynamics

M.L. Sambataro et al., EPJC80(2020)

A first study of HQ in a Glasma What happens for 0+<t<0.3-0.5 fm/c?

$$\langle \rho^a_A(x_T) \rho^b_A(y_T)
angle = (g^2 \mu_A)^2 \delta^{ab} \delta^{(2)}(x_T - y_T),$$

Inizialization by Mc-Lerran/Venugopalan model PRD49(1994)

$$\frac{A_i^a(x)}{dt} = E_i^a(x), \tag{16}$$

 $\frac{dE_{i}^{a}(x)}{dt} = \sum_{j} \partial_{j} F_{ji}^{a}(x) - \sum_{b,c,j} f^{abc} A_{j}^{b}(x) F_{ji}^{c}(x).$ (17)

Formation time of transverse E-B fields $g^2\mu\tau \approx 1 \approx \tau_{form}$ (charm) after $\tau \cong Q_s^{-1}$, all components are equal

The very early stage has left some imprints?

J. Liu, S. Plumari, K. Das, M. Ruggieri, VG, Phys. Rev. C 102 (2020) 4, 044902

Δv_1 from e.m. field?

 $d(\Delta v_1)/dy\big|_{exp} = - \ 0.011 \ \pm 0.024 (stat) \pm 0.016 (syst)$

 $d(\Delta v_1)/dy|_{th.} = -0.01$, L. Oliva et al.

 \approx 10 times larger than charged, similar to S. Das et al., PLB768 (2017) but could be **also consistent with 0!**

> v_1 expected to be more sensitive than v_2 to high T (early time) $D_s(T)$!

Unexplored...

t [fm/c]

Electro-Magnetic field

K. Tuchin, PRC 88, 024911 (2013).

K. Tuchin, Adv. High Energy Phys. 2013, 1 (2013).

U. Gürsoy, D. Kharzeev, K. Rajagopal PRC 89, 054905 (2014).

Assumptions:

- Medium σ_{el} at t<0
- Electric Conductivity const. in T
- No Modification in the bulk due to currents
- No e-b-e fluctuations
- Chiral topological charge [arXiv:2002.05047,Tuchin]

Computation of early stage e.m. field is quite an issue:

 $= eB_0/(1 + \tau/\tau_B)$

1.5

 $E_x(\tau) > E_x(\tau)$

E.m. field: a main source of uncertainty

Case A

E-B fields like Gursoy et al., PRC89(2014) Medium at t<0 + eq. medium σ_{el} =0.023 fm⁻¹

Case B and C [B₀ at t=0 vacuum value] $eB_y(x, y, \tau) = -B(\tau)\rho_B(x, y)$ $\tau_B=0.4$ fm/c assumption $B(\tau) = eB_0/(1 + \tau^2/\tau_B^2)$ $\nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t$: $\frac{\partial E_z}{\partial x} \approx 0$ small $B(\tau) = eB_0/(1 + \tau/\tau_B)$

B an C similar B_y up to t< 1 fm/c

* e.m. field $\sigma_{\rm el}$ as for RHIC

→ $\Delta v_1(D^0)$ order magnitudes smaller than ALICE data + opposite sign

* e.m. with $B_y(t=0)$ as in vacuum \rightarrow Large $\Delta v_1(D^0)$ but **opposite** direction wrt to data

* e.m. with $B_y(t=0)$ as in vacuum, $E_x \approx 0.5 \ B_y$ (t=0.5-1 fm/c) $\rightarrow \Delta v_1(D^0) \approx ALICE Data$ (1/t ideal MHD)

Time derivative of $B_y(t)$ even more relevant than absolute values"⁵⁶

V_1 splitting for D^0 - \underline{D}^0 and I^+ - I^- from Z^0 decay and

- No medium strong interaction
- $\tau_{decay}(Z^0) = \tau_{form}(charm) = 0.08 \text{ fm/c}$
- Massless more easily to drag + qE_x –qv_zB_y \approx q(E_x –B_y)
- Charge 1.5 times larger

- 1) $\Delta v_1(l^+, l^-) < \Delta v_1(D^0, \underline{D}^0)$ even if $\Delta p_X(l) \approx 2^* \Delta p_X(D)$
- 2) even the sign of $\Delta v_1 (l^+, l^-)$ can be opposite!? not because wins electric field

$$v_1(p_T, y) \approx \frac{\overline{\Delta p}_x(p_T, y)}{2} \frac{-\partial \ln f_a}{\partial p_T}.$$

If $\Delta v_1 = v_1(D^0) - v_1(\underline{D}^0)$ is of electromagnetic origin \rightarrow we'd have a proof of the formation of the QGP Is there some complementary way of proving it?

> Is there a further way to pin down the e.m field strength? Such a large splitting (in ALICE) has an electromagnetic origin?

Probing the electromagnetic fields in ultra-relativistic collisions with leptons from Z₀ decay and charmed mesons

Z⁰ mass and width modification in AA

To be done vs centralities, systems,...