Benedict Heybeck for the ALICE collaboration

Measurement of the p- Σ^+ correlation function in pp collisions with ALICE

Goethe-University Frankfurt IKF

 \succ <u> Σ -nucleon interaction</u> important to understand the <u>composition and equation</u> of state of dense astrophysical objects like <u>neutron stars</u>

 \triangleright Depending on the potential, Σ baryons might be present in neutron stars

[1] J. Schaffner-Bielich, Nuc. Phys. A 835 (2010) 279

 \succ <u> Σ -nucleon interaction</u> important to understand the <u>composition and equation</u> of state of dense astrophysical objects like <u>neutron stars</u>

 \succ Depending on the potential, Σ baryons might be present in neutron stars

\succ Baryon-baryon interactions representable by 6 distinct multiplets: $8 \otimes 8 = 27 \oplus 10 \oplus 10^* \oplus 8_{s} \oplus 8_{a} \oplus 1$

channel			spin-parity		
baryon pair	$\operatorname{strangeness}$	isospin	singlet-even/triplet-odd	triplet-even/singlet-odd	
N–N	0	0	_	$(\overline{10})$	
N–N	0	1	(27)	_	
$ m N{-}\Lambda$	1	1/2	$\frac{1}{\sqrt{10}}[(8_s) + 3(27)]$	$\frac{1}{\sqrt{2}}\left[-(8_a) + (\overline{10})\right]$	
$N-\Sigma$	1	1/2	$\frac{1}{\sqrt{10}}[3(8_s) - (27)]$	$\frac{1}{\sqrt{2}}[(8_a) + (\overline{10})]$	
$N-\Sigma$	1	3/2	(27)	(10)	

but ${}^{3}S_{1}$ is <u>not accessible</u> through NN or ΛN interactions

 \succ p- Σ^+ system well suited to study partially Pauli-forbidden decuplet

- \geq ¹S₀ channel of p- Σ^+ interaction <u>rather well known</u> through NN (I=1) interaction,

[2] J-PARC E40, Progress of Theoretical and Experimental Physics 9 (2022) 093D01

\succ Baryon-baryon interactions representable by 6 distinct multiplets: $8 \otimes 8 = 27 \oplus 10 \oplus 10^* \oplus 8_{s} \oplus 8_{a} \oplus 1$

channel			spin-parity		
baryon pair	$\operatorname{strangeness}$	isospin	singlet-even/triplet-odd	triplet-even/singlet-odd	
N–N	0	0	_	$(\overline{10})$	
N–N	0	1	(27)	-	
N– Λ	1	1/2	$\frac{1}{\sqrt{10}}[(8_s) + 3(27)]$	$\frac{1}{\sqrt{2}}\left[-(8_a) + (\overline{10})\right]$	
$N-\Sigma$	1	1/2	$\frac{1}{\sqrt{10}}[3(8_s) - (27)]$	$\frac{1}{\sqrt{2}}[(8_a) + (\overline{10})]$	
$N-\Sigma$	1	3/2	(27)	(10)	

but ${}^{3}S_{1}$ is not accessible through NN or AN interactions

 \succ p- Σ^+ system well suited to study partially Pauli-forbidden decuplet

- $\geq {}^{1}S_{0}$ channel of p- Σ^{+} interaction <u>rather well known</u> through NN (I=1) interaction,

[2] J-PARC E40, Progress of Theoretical and Experimental Physics 9 (2022) 093D01

28. Januar 2025 International Winter Meeting on Nuclear Physics Bormio – Benedict Heybeck

- Experimental <u>data is scarce</u>, all data points obtained from scattering
- Theoretical models not well constrained, particularly at low energies
- > Predictions for ${}^{3}S_{1}$ state of p- Σ^{+} interaction range from strong repulsion (fss2) to moderate attraction (NSC97f)

[3] J. Haidenbauer et al., Eur. Phys. J. A 59 (2023) 63

28. Januar 2025 International Winter Meeting on Nuclear Physics Bormio – Benedict Heybeck

- Experimental <u>data is scarce</u>, all data points obtained from scattering
- Theoretical models not well constrained, particularly at low energies
- > Predictions for ${}^{3}S_{1}$ state of p- Σ^{+} interaction range from strong repulsion (fss2) to moderate attraction (NSC97f)

[3] J. Haidenbauer et al., Eur. Phys. J. A 59 (2023) 63

The ALICE Detector

Inner Tracking System (ITS) \rightarrow vertex reconstruction Time Projection Chamber (TPC) \rightarrow tracking + PID Time Of Flight (TOF) \rightarrow PID Calorimeters \rightarrow Photon measurement

GOETHE UNIVERS

- > $\Sigma^+ \rightarrow \pi^0 + p$ (BR = 51.57%) $\pi^0 \rightarrow \gamma + \gamma$ (BR ≈ 100%)
- Reconstruct secondary vertex using a Kalman Filter approach (KFParticle)
- Measure photons with conversions and the calorimeters

- $\succ \Sigma^+ \to \pi^0 + p$ (BR = 51.57%) $\pi^0 \rightarrow \gamma + \gamma$ (BR $\approx 100\%$)
- Reconstruct secondary vertex using a Kalman Filter approach (KFParticle)
- Measure photons with conversions and the calorimeters \rightarrow First Σ^+ spectra at the LHC

GOET

First measurement of Σ^+ at LHC energies!

- > $\Sigma^+ \rightarrow \pi^0 + p$ (BR = 51.57%) $\pi^0 \rightarrow \gamma + \gamma$ (BR ≈ 100%)
- Reconstruct secondary vertex using a Kalman Filter approach (KFParticle)
- Measure photons with conversions and the calorimeters
 - \rightarrow First Σ^+ spectra at the LHC
- Efficiency too low for femtoscopy

- Select particles using <u>machine</u> <u>learning</u> approach (XGBoost)

[5] T. Chen, C. Guestrin, arXiv:1603.02754 (2016)

International Winter Meeting on Nuclear Physics Bormio – Benedict Heybeck

- $\blacktriangleright \quad \frac{\text{Reconstruct only one photon to}}{\text{improve efficiency}} \text{ and calculate} \\ \text{missing momentum from topology} \\ \text{and } \pi^0 \text{ mass} \\ \end{matrix}$
- Select particles using <u>machine</u>
 <u>learning</u> approach (XGBoost)
- Reconstruction efficiency improved by one order of magnitude
- Twofold improvement of purity

Σ^+ reconstruction in ALICE

- ➢ Reconstruct only one photon to improve efficiency and calculate missing momentum from topology and π^0 mass
- Select particles using <u>machine</u> learning approach (XGBoost)
- Reconstruction efficiency improved by one order of magnitude
- > Twofold improvement of purity
- \succ <u>Refit vertex</u> using Σ^+ mass constraint \rightarrow Very good k* resolution (~6 MeV/c)

ALI-SIMUL-589394

Correlation function

> The experimental correlation function is defined as

$$C(k^*) = \mathcal{N} \times \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$$

Correlation function

> The experimental correlation function is defined as

$$C(k^*) = \mathscr{N} \times \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$$

Correlation function contains contributions from misidentification <u>and feed-down</u> quantified by λ parameters

 $\succ \lambda$ parameters determined using <u>novel</u> data-driven approach based of effective spectra

> Koonin-Pratt equation:

 $C(k^*) = \int S(r) \left| \Psi(\vec{k}^*, \vec{r}) \right|^2 d^3r$

[6,7] S. Pratt, Phys. Rev. D 33 (1986) 1314; M. Lisa et al., Ann. Rev. Nucl. Part. Sci. 55 (2005) 357

GOETHE UNIVERS

[8] arXiv:2311.14527

> Koonin-Pratt equation:

GOETH

 $C(k^*) = \int S(r) \left| \Psi(\vec{k}^*, \vec{r}) \right|^2 d^3r$ $\Psi(k^*, r) = e^{-ik^*r} + f(k^*) \frac{e^{ik^*r}}{r}$

> Koonin-Pratt equation:

GOETH

> Koonin-Pratt equation:

GOETH

Koonin-Pratt equation:

$$C(k^*) = \int S(r) \left| \Psi(\vec{k}^*, \vec{r}) \right|^2 d^3r$$

$$\Psi(k^*, r) = e^{-ik^*r} + f(k^*) \frac{e^{ik^*r}}{r}$$

$$C(k^*) = 1 + \frac{2\Re f(k^*)}{\sqrt{\pi}r_0} F_1(2k^*r_0) - \frac{\Im f(k^*)}{r_0} F_2(2k^*r_0) + \frac{|f(k^*)|^2}{2r_0^2} \left(1 - \frac{d_0}{2\sqrt{\pi}r_0}\right)$$

GOETHE UNIVERSI

> Koonin-Pratt equation:

$$C(k^*) = 1 + \frac{2\Re f(k^*)}{\sqrt{\pi}r_0} F_1(2)$$

> Koonin-Pratt equation:

$$C(k^*) = \int S(r) \left| \Psi(\vec{k}^*, \vec{r}) \right|^2 d^3r$$

$$\Psi(k^*, r) = e^{-ik^*r} + f(k^*) \frac{e^{ik^*r}}{r}$$

$$C(k^*) = 1 + \frac{2\Re f(k^*)}{\sqrt{\pi}r_0} F_1(2k^*r_0) - \frac{\Im f(k^*)}{r_0} F_2(2k^*r_0) + \frac{|f(k^*)|^2}{2r_0^2} \left(1 - \frac{d_0}{2\sqrt{\pi}r_0}\right)$$

Effective range approximation: $f(k^*)^{-1} \approx$

→ Lednický-Lyuboshits approach

International Winter Meeting on Nuclear Physics Bormio – Benedict Heybeck 28. Januar 2025

GOETH

$$= -\frac{1}{a_0} + \frac{a_0}{2} k^{*2} - ik^* + O(k^{*4})$$

[9] R. Lednicky, V. Lyuboshits, Yad. Fiz. 35 (1981) 1316

> Koonin-Pratt equation:

Use full wavefunctions from models: $\Psi(\vec{k}^*, \vec{r}) = \Psi^S(\vec{k}^*, \vec{r}) + \Psi^C(\vec{k}^*, \vec{r}) - \frac{F_0(\eta, \rho)}{2}$

Collaboration with Johann Haidenbauer

$C(k^*) = \int S(r) \left| \Psi(\vec{k}^*, \vec{r}) \right|^2 d^3r$

Solve Schrödinger equation in generic potential:

$$V(r) = V_0 e^{-(m_{\pi^0} r)^2} + \frac{\alpha}{r}$$

Collaboration with Yuki Kamiya

Femto theory (in a nutshel
Solution:

$$C(k^*) = \int S(k^*, \vec{r}) = \Psi^S(\vec{k}^*, \vec{r}) + \Psi^C(\vec{k}^*, \vec{r}) - \frac{F}{2}$$

Collaboration with Johann Haidenbaue

GOETHE UNIVERS

I)

$I(r) \left| \Psi(\vec{k}^*, \vec{r}) \right|^2 d^3 r$

Solve Schrödinger equation in generic potential:

$$V(r) = V_0 e^{-(m_{\pi^0} r)^2} + \frac{\alpha}{r}$$

Collaboration with Yuki Kamiya

Comparison with data

- Calculations weighted by <u> λ -parameters</u> to account for impurities in the data
- Error bands arise from uncertainty of the source size
- Large spread in model predictions \rightarrow Data very constraining despite sizeable uncertainties

NLO(sim): J. Haidenbauer et al., Phys. Lett. B 829 (2022) 137074 M. Nagels et al., Phys. Rev. C 99 (2019) 044003 **ESC16**: SMS NLO: J. Haidenbauer et al., Eur. Phys. J. A 56 (2020) 91 NSC97f: T. Rijken et al., Phys. Rev. C 59 (1999) 21

International Winter Meeting on Nuclear Physics Bormio – Benedict Heybeck 28. Januar 2025

${}^{1}S_{0} \& {}^{3}S_{1}$ channel

Sensitivity to singlet strength only in the first bin

${}^{1}S_{0} \& {}^{3}S_{1}$ channel

Sensitivity to singlet strength only in the first bin

channel			spin-parity		
baryon pair	strangeness	isospin	singlet-even/triplet-odd	triplet-even/singlet-odd	
N–N	0	0	_	$(\overline{10})$	
N–N	0	1	(27)	_	
N-Λ	1	1/2	$\frac{1}{\sqrt{10}}[(8_s) + 3(27)]$	$\frac{1}{\sqrt{2}}\left[-\left(8_a\right)+\left(\overline{10}\right)\right]$	
N-Σ	1	1/2	$\frac{1}{\sqrt{10}}[3(8_s) - (27)]$	$\frac{1}{\sqrt{2}}[(8_a) + (\overline{10})]$	
N-Σ	1	3/2	(27)	(10)	

${}^{1}S_{0} \& {}^{3}S_{1}$ channel

Sensitivity to singlet strength only in the first bin

channel			spin-parity		
baryon pair	strangeness	isospin	singlet-even/triplet-odd	triplet-even/singlet-odd	
N–N	0	0	-	$(\overline{10})$	
N–N	0	1	(27)	_	
N-Λ	1	1/2	$\frac{1}{\sqrt{10}}[(8_s) + 3(27)]$	$\frac{1}{\sqrt{2}}\left[-(8_a) + (\overline{10})\right]$	
N-Σ	1	1/2	$\frac{1}{\sqrt{10}}[3(8_s) - (27)]$	$\frac{1}{\sqrt{2}}[(8_a) + (\overline{10})]$	
N-Σ	1	3/2	(27)	(10)	

- Correlation function very sensitive to triplet strength at higher k*
- Good agreement with very shallow repulsion

International Winter Meeting on Nuclear Physics Bormio – Benedict Heybeck 28. Januar 2025

> Koonin-Pratt equation:

Use full wavefunctions from models: $\Psi(\vec{k}^*, \vec{r}) = \Psi^S(\vec{k}^*, \vec{r}) + \Psi^C(\vec{k}^*, \vec{r}) - \frac{F_0(\eta, \rho)}{\gamma}$

Collaboration with Johann Haidenbauer

$C(k^*) = \int S(r) \left| \Psi(\vec{k}^*, \vec{r}) \right|^2 d^3r$

Solve Schrödinger equation in generic potential:

$$V(r) = V_0 e^{-(m_{\pi^0} r)^2} + \frac{\alpha}{r}$$

Collaboration with Yuki Kamiya

Gaussian potential

International Winter Meeting on Nuclear Physics Bormio – Benedict Heybeck

GOETH

> Obtain correlation functions from Gauss + Coulomb potential and compare to data

Gaussian potential

- Singlet scattering length in agreement with all considered model predictions
- \succ In the <u>triplet</u> again a <u>shallow repulsion</u> is found with $a_0 \approx 0.3$ fm.
- Best agreement with meson-exchange model Jülich04

NLO(sim): J. Haidenbauer et al., Phys. Lett. B 829 (2022) 137074 M. Nagels et al., Phys. Rev. C 99 (2019) 044003 ESC16: SMS NLO: J. Haidenbauer et al., Eur. Phys. J. A 56 (2020) 91 NSC97f: T. Rijken et al., Phys. Rev. C 59 (1999) 21 Y. Fujiwara et al., Phys. Rev. C 65 (2001) 014002 fss2: Nagels73: M. Nagels et al., Annals Phys. 79 (1973) 338 Jülich04: J. Haidenbauer et al., Phys. Rev. C 72 (2005) 044005

GOETHE

Conclusion

- \succ First measurement of the p- Σ^+ correlation function
- Comparison with various model: both attraction and strong repulsion in triplet channel are disfavored, most models by >3σ

GOETHE UNIVERS

Conclusion

- \succ First measurement of the p- Σ^+ correlation function
- Comparison with various model: both attraction and strong repulsion in triplet channel are disfavored, most models by >3σ
- Very good agreement with SMS NLO calculation with weak triplet strength
- \succ Unlikely to find Σ baryons in neutron stars

Conclusion

- \succ First measurement of the p- Σ^+ correlation function
- Comparison with various model: both attraction and strong repulsion in triplet channel are disfavored, most models by >3σ
- Very good agreement with SMS NLO calculation with weak triplet strength
- \succ Unlikely to find Σ baryons in neutron stars

Backup

International Winter Meeting on Nuclear Physics Bormio – Benedict Heybeck 28. Januar 2025

> The observable of interest in femtoscopy is the relative momentum

 $k^* = \frac{1}{2} |\vec{p}_1^* - \vec{p}_2^*|$ distribution of the particle pairs evaluated in their rest frame

 \succ Contribution of Σ^0 decays to Λ is sizeable contamination of the $p-\Lambda$ correlation function (~16%)

 \blacktriangleright Notable uncertainty on extracted p- Λ and $p-p-\Lambda$ interactions

> Koonin-Pratt equation:

$$C(k^*) = \int S(r) \left| \Psi(\vec{k}^*, \vec{r}) \right|^2 d^3r$$

$$\Psi(k^*, r) = e^{-ik^*r} + f(k^*) \frac{e^{ik^*r}}{r} \leftarrow$$

$$C(k^*) = 1 + \frac{2\Re f(k^*)}{\sqrt{\pi}r_0} F_1(2k^*r_0) - \frac{\Im f(k^*)}{r_0} F_2(2k^*r_0) + \frac{|f(k^*)|^2}{2r_0^2} \left(1 - \frac{d_0}{2\sqrt{\pi}r_0}\right)$$

$$Pproximation: \quad f(k^*)^{-1} \approx -\frac{1}{a_0} + \frac{d_0}{2}k^{*2} - ik^* + O\left(k^{*4}\right)$$

Effective range a

GOETHE UNIVERS

Koonin-Pratt equation:

$$C(k^*) = \int S(r) \left| \Psi(\vec{k}^*, \vec{r}) \right|^2 d^3r$$

$$\Psi(k^*, r) = e^{-ik^*r} + f(k^*) \frac{e^{ik^*r}}{r}$$

$$C(k^*) = 1 + \frac{2\Re f(k^*)}{\sqrt{\pi}r_0} F_1(2k^*r_0) - \frac{\Im f(k^*)}{r_0} F_2(2k^*r_0) + \frac{|f(k^*)|^2}{2r_0^2} \left(1 - \frac{d_0}{2\sqrt{\pi}r_0}\right)$$
pproximation: $f(k^*)^{-1} \approx -\frac{1}{a_0} + \frac{d_0}{2}k^{*2} - ik^* + O(k^{*4})$

Effective range a

GOETHE UNIVERS

> Koonin-Pratt equation:

 $C(k^*) = \int S($

 $\Psi(k$

$$C(k^*) = 1 + \frac{2\Re f(k^*)}{\sqrt{\pi}r_0} F_1(2k^*r_0) - \frac{\Im f(k^*)}{r_0} F_2(2k^*r_0) + \frac{|f(k^*)|^2}{2r_0^2} \left(1 - \frac{d_0}{2\sqrt{\pi}r_0}\right) + \frac{$$

7

Effective range approximation: $f(k^*)^{-1} \approx$

[11] J. Haidenbauer, U.G. Meissner, Exploring the Σ^+ p interaction by measurements of the correlation function, Phys. Lett. B 829 (2022)

28. Januar 2025

International Winter Meeting on Nuclear Physics Bormio – Benedict Heybeck

Model	NLO13(600)	NLO19(600)	Julich04	ESC16	Nagels73	fss2	NLO(sim)
a _s [fm]	-3.56	-3.62	-3.6	-4.3	-2.42	-2.28	-2.39
r _s [fm]	3.54	3.5	3.24	3.25	3.41	4.68	4.61
a _t [fm]	0.49	0.47	0.31	0.57	0.71	0.83	0.8
r _t [fm]	-5.08	-5.77	-12.2	-3.11	-0.78	-1.52	-1.25

$$(r) \left| \Psi(\vec{k}^*, \vec{r}) \right|^2 d^3 r$$

*, r) =
$$e^{-ik^*r} + f(k^*) \frac{e^{ik^*r}}{r}$$

$$x - \frac{1}{a_0} + \frac{d_0}{2} k^{*2} - ik^* + O(k^{*4})$$

28. Januar 2025

International Winter Meeting on Nuclear Physics Bormio – Benedict Heybeck

