## Recent results from the MEG-II experiment

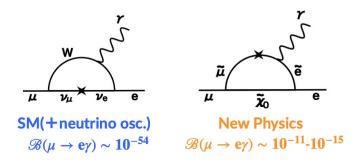
Probing Physics Beyond the Standard Model

61<sup>st</sup> International winter meeting on Nuclear Physics Bormio, 27 – 31 January 2025



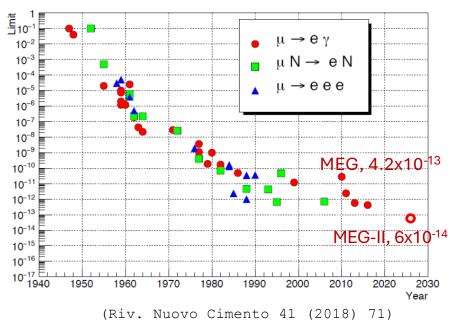


# MEG


#### **Outline**

- Muons as probes for New Physics
- Results on  $\mu^+ \rightarrow e^+ \gamma$  search (2021 data sample)
- Search for the X17 boson
- Perspectives in search for Axion Like Particles
- Final remarks

## Why to Search for $\mu^+ ightarrow e^+ \gamma$



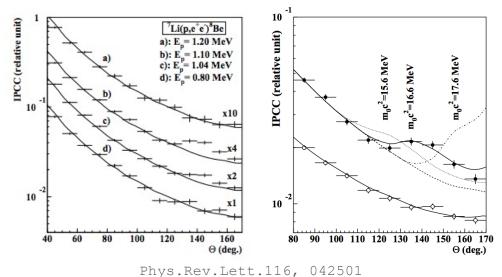

- In SM flavour conservation is not protected by a gauge symmetry
- $\mu^+ \rightarrow e^+ \gamma$  in SM is highly suppressed because of the tiny neutrino mass
- Several BSM models predict a sizeable rate for  $\mu^+ \rightarrow e^+ \gamma$



■ The branching ratio is a sensitive probe of the scale of new physics  $\mathfrak{B} \propto \frac{1}{\Lambda^4}$ . Values up to  $10^3$  TeV are accessible.

#### History plot




The observation of the  $\mu^+ o e^+ \gamma$  decay would constitute unambiguous experimental evidence of BSM physics

#### The X17 boson



• An experiment at Atomki reported an anomaly in the angular distribution of the Internal  $e^+e^-$  Pairs Conversion of the  $^7Li(p,e^+e^-)^8Be$  process

Krasznahorkay et al., 2016





- The excess has been observed at  $\Theta \sim 140^\circ$  for Ep = 1100 KeV
- It could be the decay of a light boson named X17 with
  - $\mathfrak{B}(X) = 6 \times 10^{-6}$  wrt  $\gamma$  production
  - $m_X = 16.70 \,\mathrm{MeV}\,/\,\mathrm{c}^2$

(Phys. Rev. D 95, 035017)

If confirmed this observation would constitute direct evidence of a particle not foreseen in the SM

### **Axion like particles**



- Models with ALPs that could generate charged Lepton Flavor Violations have been proposed
- These models could solve the strong CP problem and provide a source for DM
- The ALP mass can be very light and the decay constant very large, however, the LFV coupling could enable experimental observation in muon decays

```
Y.Ema et Al. JHEP 01(2017)096

L.Calibbi et Al. Phys.Rev.D 95(2017) 095009

M.Linster et Al. JHEP 08(2018)058

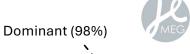
L.Calibbi et Al. JHEP 09(2021)173
```

#### **ALPs and MEG**

• The Collaboration already published results for the process  $\mu \to e^+ a \to \gamma \gamma$  with the ALP decaying in the MEG apparatus

Euro.Phys.J. C80(2020)858

• Our theorist friends have recently evaluated the MEG-II detector sensitivity in specific low intensity muon beams and relaxed threshold conditions for the channel  $\mu \to ea\gamma$  in the case of long-lived axions


Y.Jho et Al. JHEP 10(2022)29

# MEG

#### **Outline**

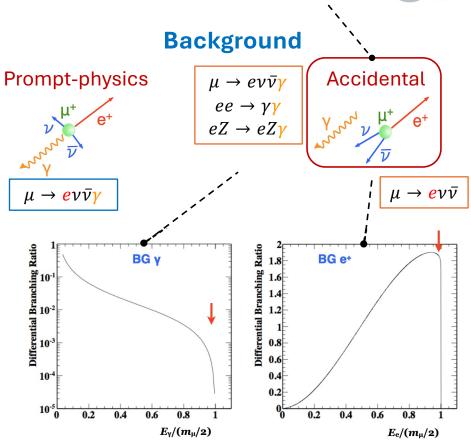
- Muons as probes for New Physics
- Results on  $\mu^+ \rightarrow e^+ \gamma$  search (2021 data sample)
- Search for the X17 boson (released yesterday)
- Perspectives in search for Axion Like Particles
- Final remarks

# The search for $\mu^+ ightarrow e^+ \gamma$



#### **S**ignal

- Two bodies decay at rest
  - Simultaneous (  $t_{e\gamma} = 0$  )
  - Monochromatic energies ( $E_e = E_v \approx 52.8 \text{ MeV}$ )
  - Back-to-back (  $\Theta_{e\gamma}=180^{\circ}$  )


Beamintensity Acceptance Branching valio

**Signal**  $N_{sig} = R_{\mu} \times T \times \Omega \times \mathfrak{B} \times \epsilon_{\gamma} \times \epsilon_{e} \times \epsilon_{sel}$ 

Bkg  $N_{acc} \propto R_{\mu}^2 \times T \times (\Delta E_{\gamma}^2 \times \Delta E_{e} \times \Delta t_{e\gamma} \times \Delta \Theta_{e\gamma}^2)$ 

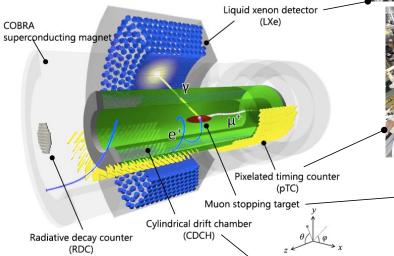
#### Key elements:

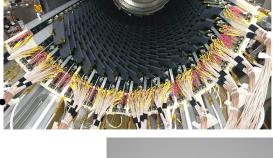
- intense continuous beamline
- high-resolution detectors



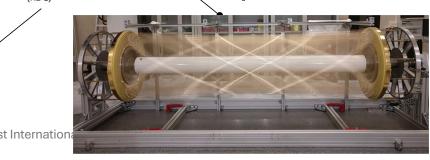


## The MEG-II experiment at PSI


Target BR sensitivity 6 x 10 <sup>-14</sup>


(x10 better than MEG)



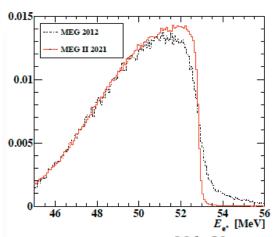






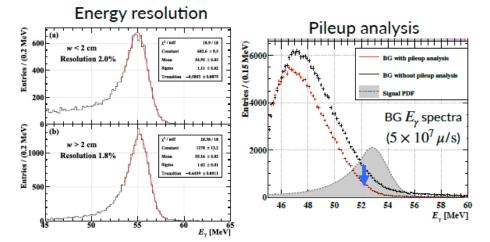




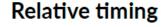



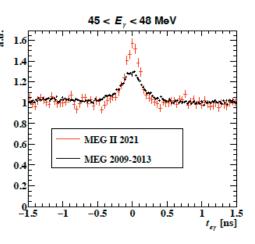

M.Grassi

## **MEG-II Detector's Performance Highlights**




#### Positron tracking





- Energy resolution: 90 keV
- $(\leftrightarrow 320 \, keV @ MEG)$
- Efficiency: **67** % @  $3 \times 10^7 \mu/s$  ( $\leftrightarrow 30$  % @MEG)

#### Photon energy



- High-granularity and uniform readout by MPPCs
- Energy resolution: 2.0%/1.8% for (conv. depth: <2cm/>2cm)
- Pielup BG reduction by 35% at 48-58MeV (5  $imes 10^7 \, \mu/s$ )





- •Overall resolution 79 ps
  - $(\leftrightarrow 122 \text{ ps@MEG})$

MEG II Collaboration, Euro.Phys.J. C84(2024)190

## Detector's performances for 2021 dataset analysis



| Resolutions                               | MEG     | MEG-II Proposal | MEG-II Achieved |
|-------------------------------------------|---------|-----------------|-----------------|
| $E_e$ (keV)                               | 320     | 100             | 89              |
| $	heta_e$ (mrad)                          | 9.4     | 3.7             | 7.2             |
| $\phi_e$ (mrad)                           | 8.7     | 6.7             | 4.1             |
| $z_e/y_e$ (mm) core                       | 2.4/1.2 | 1.6/0.7         | 2.0/0.74        |
| $E_{\gamma}$ (%)[ $w$ <2cm)/( $w$ >2cm)   | 2.4/1.7 | 1.7/1.7         | 2.0/1.8         |
| $u_{\gamma}, v_{\gamma}, w_{\gamma}$ (mm) | 5/5/6   | 2.4/2.4/5.0     | 2.5/2.5/5.0     |
| $t_{e\gamma}$ (ps)                        | 122     | 70              | 78              |
| Efficiencies                              |         |                 |                 |
| $\varepsilon_{\gamma}$ (%)                | 63      | 69              | 62              |
| $\varepsilon_e$ (%)                       | 30      | 65              | 67              |
| $\varepsilon_{TRG}$ (%)                   | ~99     |                 | 80 •            |

Significant improvements over MEG

- Close, or even better, the MEG-II design values
- Further calibrations and analysis refinements will improve these figures

>90 % since 2022 close to 98% this year

## $\mu^+ ightarrow e^+ \gamma$ Analysis Strategy



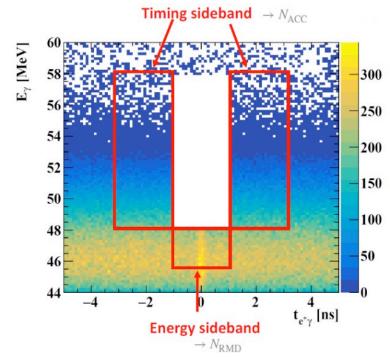
• Kinematics observables of the  $\mu^+ \rightarrow e^+ \gamma$  decay

$$\overrightarrow{x_i} = (t_{e\gamma}, E_{\gamma}, E_{e}, \theta_{e\gamma}, \phi_{e\gamma})$$

- Strategy: blind likelihood analysis
  - Blinding box:  $45 < E_{\gamma} < 58 \,\mathrm{MeV}$  ,  $\left|t_{e\gamma}\right| < 1 \,\mathrm{ns}$
  - Background events constrained from sidebands  $N_{RMD}$ ,  $N_{ACC}$
  - PDFs from sidebands and measured detector resolutions
  - Maximum Likelihood to estimate  $N_{sig}$  in the analysis region

- 
$$45 < E_{\nu} < 58 \,\mathrm{MeV}$$

- 
$$52.2 < E_e < 53.5 \text{ MeV}$$


- 
$$|t_{e\gamma}| < 0.5 \, \text{ns}$$

- $|\theta_{e\gamma}|$  < 40 mrad
- $|\phi_{e\gamma}|$  < 40 mrad



- Per-event PDFs with two angular observables  $heta_{e\gamma}$ ,  $\phi_{e\gamma}$  reference
- Constant PDFs with single relative angle  $\Theta_{e_{\mathcal{V}}}$

crosschecking



## $\mu^+ ightarrow e^+ \gamma$ Analysis Strategy



- Kinematics observables of the  $\mu^+ \to e^+ \gamma$  decay  $\overrightarrow{x_i} = (t_{e\gamma}, E_{\gamma}, E_{e}, \theta_{e\gamma}, \phi_{e\gamma})$
- Strategy: blind likelihood analysis
  - Blinding box:  $45 < E_{\gamma} < 58 \,\mathrm{MeV}$ ,  $\left|t_{e\gamma}\right| < 1 \,\mathrm{ns}$
  - Background events constrained from sidebands  $N_{RMD}$ ,  $N_{ACC}$
  - PDFs from sidebands and measured detector resolutions
  - Maximum Likelihood to estimate  $N_{sig}$  in the analysis region

- 
$$45 < E_{\nu} < 58 \,\mathrm{MeV}$$

- 
$$52.2 < E_{\rho} < 53.5 \,\mathrm{MeV}$$

$$-|t_{ev}| < 0.5 \text{ ns}$$

- $|\theta_{e\gamma}|$  < 40 mrad
- $|\phi_{e\gamma}|$  < 40 mrad
- Two independent analyses
  - Per-event PDFs with two angular observables  $heta_{e\gamma}$ ,  $\phi_{e\gamma}$  reference
  - Constant PDFs with single relative angle  $\Theta_{e \nu}$

crosschecking

$$\mathcal{L}(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{ACC}}, x_{\text{T}})$$

$$= \frac{e^{-(N_{\text{sig}} + N_{\text{RMD}} + N_{\text{ACC}})}}{N_{\text{obs}}!} C(N_{\text{RMD}}, N_{\text{ACC}}, x_{\text{T}})$$

$$\times \prod_{i=1}^{N_{\text{obs}}} (N_{\text{sig}} S(\mathbf{x_i}) + N_{\text{RMD}} R(\mathbf{x_i}) + N_{\text{ACC}} A(\mathbf{x_i})),$$

#### where

- S, R and A are the PDFs
- $N_{RMD}$ ,  $N_{ACC}$ ,  $x_T$  are constrained nuisance parameters
- $N_{sig}$  is the signal
- $x_T$  target misalignment parameter
- 3 more variables are included  $t_{RDC}-t_{LXe}$ ,  $E_{RDC}$ ,  $n_{pTC}$

## **Systematics**



- detector misalignment
- $E_{\nu}$  scale
- normalisation

#### Technical treatment in PDFs

- · nuisance parameter in pdf
- random fluctuating

#### Effect on sensitivity

• ~5% (was 13% in MEG)

| Parameter                      | Impact on sensitivity |
|--------------------------------|-----------------------|
| $\phi_{e\gamma}$ uncertainty   | 1.1 %                 |
| $E_{\gamma}$ uncertainty       | 0.9%                  |
| $\theta_{e\gamma}$ uncertainty | 0.7%                  |
| Normalization uncertainty      | 0.6%                  |
| $t_{e\gamma}$ uncertainty      | 0.1%                  |
| $E_e$ uncertainty              | 0.1%                  |
| RDC uncertainty                | < 0.1 %               |

#### **Normalisation**

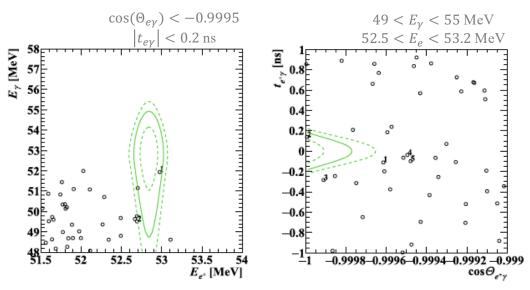


$$\mathfrak{B}(\mu^+ \to e^+ \gamma) = \frac{N_{sig}}{N_{\mu}}$$

Normalisation factor

 $N_{\mu}$  = number of measured muons

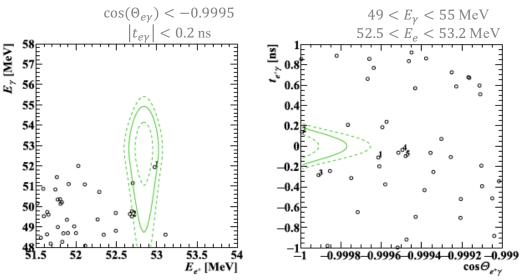
- Two independent methods
  - Counting Michel positrons
  - Counting RMD
- Both acquired in parallel to  $\mu^+ \rightarrow e^+ \gamma$ 
  - variation of the detector conditions
  - muon beam intensity


#### Data set 2021

Normalisation of the 2021 data set

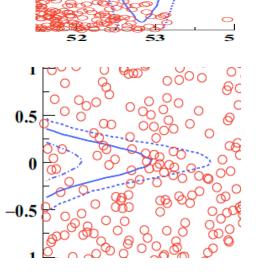
$$N_{\mu} = (2.64 \pm 0.12) \times 10^{12}$$





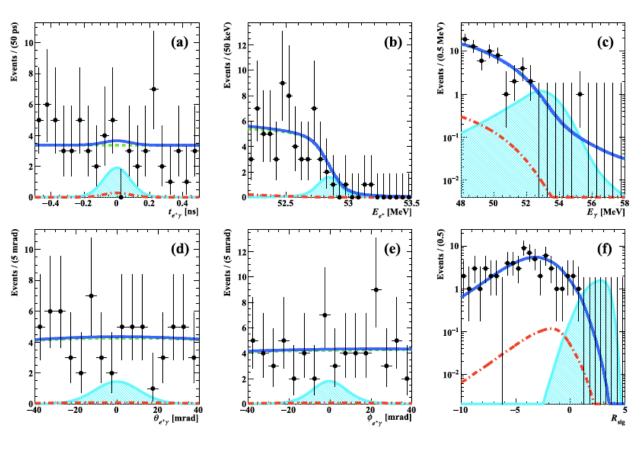



- Observed events in the analysis region = 66
- *N<sub>sig</sub>* at 0
- $N_{RMD}$ ,  $N_{ACC}$ , even when not constrained, are compatible with sidebands values


# **Event Distribution after Unblinding**








(not fully fair because of the different sizes of the projections)



## **Projections of Likelihood Fit**





#### Caption

- experimental data
- ---- ACC background
- -·- RMD background
- signal (x4)
- best-fit PDFs
- (f) relative signal likelihood

$$f_{RMD} = 0.02$$
 ,  $f_{ACC} = 0.98$ 

$$R_{\text{sig}} = \log_{10} \left( \frac{S(x_i)}{f_{\text{RMD}}R(x_i) + f_{\text{ACC}}A(x_i)} \right)$$

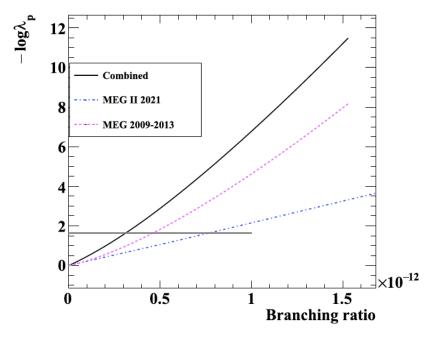
### The result of the 2021 MEG II data set



- Feldman-Cousins prescription with profile likelihood ratio ordering
- 90% C.L. upper limit on branching ratio

MEG II (2021) 
$$\mathfrak{B}_{90} = 7.5 \times 10^{-13}$$

MEG II - MEG combined  $\mathfrak{B}_{90} = 3.1 \times 10^{-13}$ 


Sensitivity

MEG II (2021) 
$$S_{90} = 8.8 \times 10^{-13}$$

MEG II - MEG combined 
$$S_{90} = 4.3 \times 10^{-13}$$

MEG II Collaboration, Euro.Phys.J. C84(2024)216

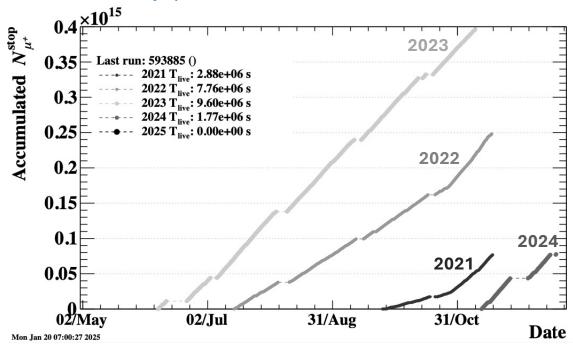
MEG: 
$$\mathfrak{B}_{90} = 4.2 \times 10^{-13}$$
  $S_{90} = 5.3 \times 10^{-13}$ 



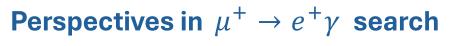
The two results are combined in a simplified manner, setting a threshold on the negative log likelihood-ratio curve instead of following the Feldman–Cousins approach.



#### Physics data acquired so far

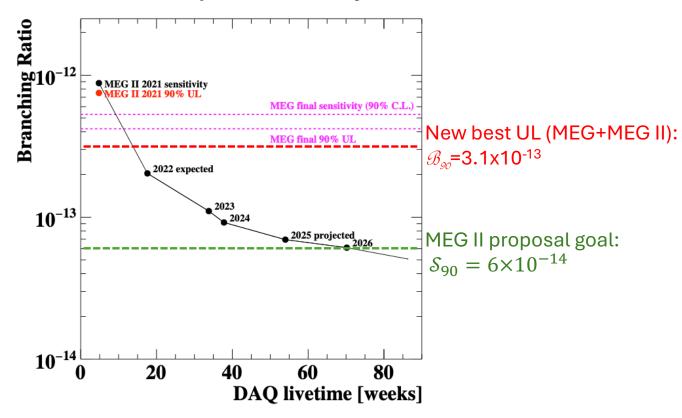

2021: first physics run with the full detector first result of MEGII recently published

(Euro. Phys. J. C84(2024)216)


- 2022: Long and stable run in optimal conditions ready for unblinding
- 2023: Largest statistics ever acquired data processing in progress
- 2024: 4 months in standby for repair works at PSI He cryoplant

MEG II total statistics  $8.1 \times 10^{14}$  mu stop

10 times the 2021 published statistics




M.Grassi





#### **MEG II expected sensitivity**



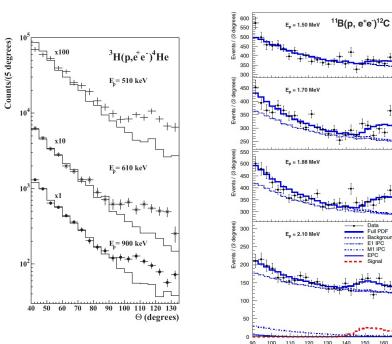
# MEG

#### **Outline**

- Muons as probes for New Physics
- Results on  $\mu^+ \rightarrow e^+ \gamma$  search (2021 data sample)
- Search for the X17 boson
- Perspectives in search for Axion Like Particles
- Final remarks

#### The X17 boson




• The Krasznahorkay et al. at Atomki confirmed the  $e^+e^-$  pairs excess in the  $^8Be$ 

$$^{3}H(p,e^{+}e^{-})^{4}He$$

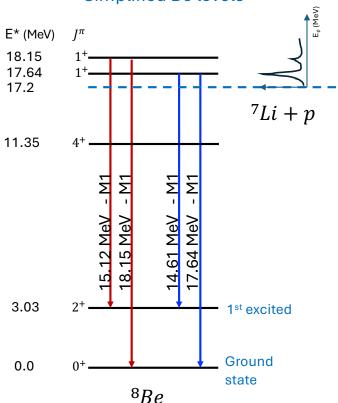
$$^{11}B(p,e^{+}e^{-})^{12}C$$

Phys.Rev.C 106(2022)L061601

Phys.Rev.C 104(2021)044003



- 1. The interpretation of the 2016 result is a new boson
  - $m_X = 16.70 \text{ MeV} / \text{c}^2$  only from 18.1 MeV resonance
- 2. With different production channels and detector techniques,
  - NA48/2 Phys.Lett.B 746(2015)178
  - NA64 Phys.Rev.D 101(2020)071101


put upper limits on the X17

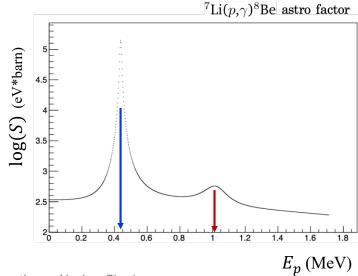
- 3. Expectation revision including Standard Physics effect
  - Zhang and Miller include amplitude interference and form factors Phys.Lett.B 773 (2017) 159
  - Koch modifies the Bethe Block Nucl. Phys. A 1008 (2021) 122143
  - Aleksejevs computes internal pair conversion with second order loops arXIV:2102.01127










- The state  ${}^{7}Li + p$  yields 17.2 MeV above the  ${}^{8}Be$  ground state  $\rightarrow$  many  ${}^{8}Be$  excited states are easily accessible
- Cross section to the resonant excited states are very different

$$E_p = 0.440 \text{ MeV}$$
  $Q = 17.6 \text{ MeV}$ 

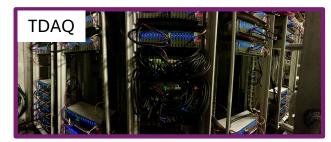
$$E_p = 1.030 \text{ MeV}$$
  $Q = 18.1 \text{ MeV}$ 

A further non-resonant state is present at 17.9 MeV

• Two  $\gamma$  transitions for each excited state

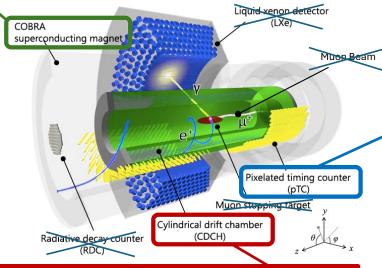





## X17 search with the MEG-II experiment



- event signature  $^7Li(p, e^+e^-)^8Be$
- exploit the high-performance MEG II detectors


Thin-wall SC solenoid with a gradient magnetic field:

- 1.27T center
- 0.49T both ends
- Field reduced at 15%



Integrated Trigger and DAQ system with full custom boards and crates

- 9000 channels
- Waveform digitizer at 1.6 GSPS with DRS chip
- Flexible FPGA based trigger with latency
   45006rassi







Two sectors made of 256 scintillating BC422 tiles read by Advansid SiPMs

- Time obtained by averaging the tile times on average: 8 tiles hit
- timing resolution 43 ps

Single volume drift chamber filled  $He:C_4H_{10}$ 

- 9 layers of 192 cells at full stereo readout
- momentum resolution ~90 KeV/c

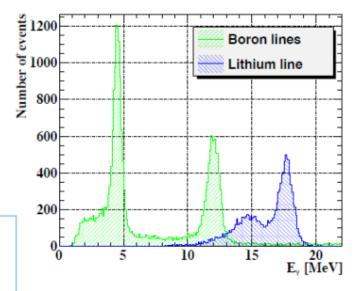
#### **MEG II Calibration Methods**



- Among the many calibration tools to calibrate the Lxe calorimeter we have a dedicated Cockcroft Walton proton accelerator
- $E_P = 440 \text{ KeV}$  to excite the 17.6 MeV line
- Very low current given the large cross section



#### C-W proton accelerator

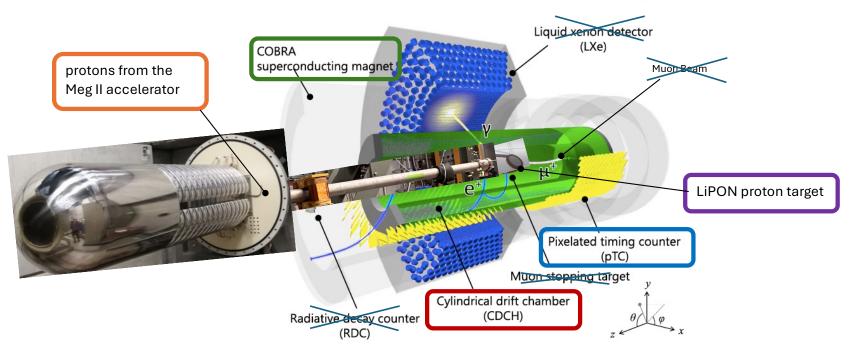

Up to 1 MeV proton on LiBO $_4$  target

Energy calibration line:

$$p^{7}\text{Li} \rightarrow {}^{8}\text{Be } \gamma(17.6 \text{ MeV})$$

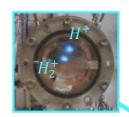
XEC-pTC time alignment with line :

$$p^{11}B \rightarrow {}^{12}C \gamma (11.6 \text{ MeV}) \gamma (4.4 \text{ MeV})$$




## X17 search with the MEG-II experiment

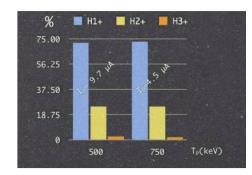



- Changes for the X17 search
  - replace the muon target with a LiPON (\*) target for proton
  - remove the RDC and install a proton beamline for the CW accelerator

(\*) Lithium phosphorus oxynitride (Li<sub>3-X</sub>PO<sub>4-Y</sub>N<sub>X+Y</sub>)



### The proton beam


- Beam imaging with proton induced fluorescence on quartz crystal
- Beam centring at the spectrometer centre with dipoles
- Proton beam composed of 75% H<sup>+</sup> and 25% H<sub>2</sub><sup>+</sup>
  - irrelevant for the MEG II standard calibration
  - increased complexity for the X17 search due to the the excitation of both resonances (17.6 and 18.1 MeV) and reduced statistics on 18.1 MeV



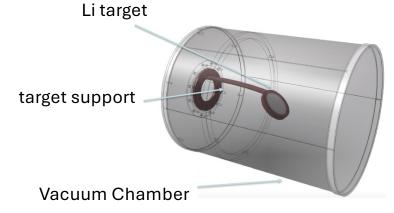


# MEGII

#### Ion composition



#### Spectrometer center





## The Li target



- Standard MEG II targets (LiF and LiBO<sub>4</sub>) not adequate for background and production issues
- Calibration target:  $5\mu m$  thick LiF target on 25  $\mu m$  copper substrate (by INFN LNL)
- Main target:
  - 7  $\mu m$  thick LiPON (\*) on a 25  $\mu m$  Cu substrate (implanted at PSI)
  - Copper target support for heat dissipation at 45° slant angle
  - · Light carbon fiber vacuum chamber to minimize multiple scattering

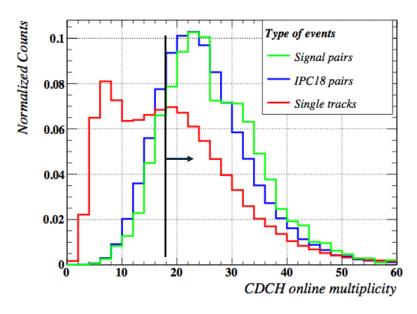






- Target too thick: high energy
   H<sup>+</sup>populate the 17.6 MeV resonance
- Irregular surface, delamination from copper substrate
  - (\*) Lithium phosphorus oxynitride ( $Li_{3-X}PO_{4-Y}N_{X+Y}$ )

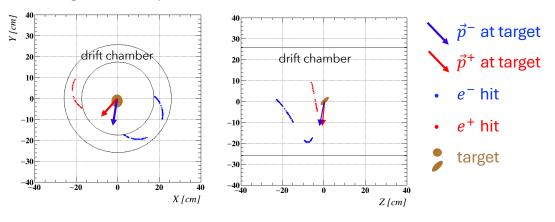
#### **Event Type and Trigger**



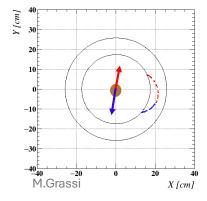

#### **Event Types**

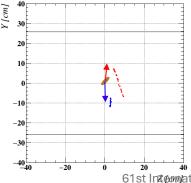
- Signal:  $e^+e^-$  from X17 decay
- IPC: Internal Pair Conversion (direct e<sup>+</sup>e<sup>-</sup> creation in Be)
- EPC:  $\gamma$  conversion to  $e^+e^-$  in matter
- Single: single tracks from γ interactions (relevant for trigger and event reconstruction)
  - Optimization between rejection of single tracks, EPC and asymmetric pairs
  - 16% efficiency on signal

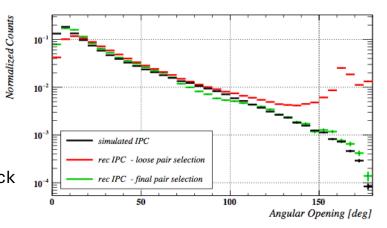
#### Trigger


- New algorithm on FPGA: defined CDCH hit multiplicity at TDAQ level (not used in  $\mu^+ \rightarrow e^+ \gamma$  search)
- Trigger: coincidence of at least 18 hits on the CDCH and 1 hit in the pTC




### **Reconstruction Algorithms**





MEG II algorithms optimized for e<sup>+</sup> reconstruction. Included the e<sup>-</sup> tracking

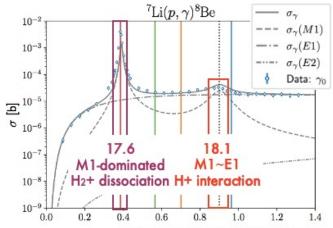


• Fake events, reconstructed close to  $\Theta_{ee} \approx 180^\circ$ , are removed with track quality requirements. Main source 2 segments of the same track.








- Checks of the reconstruction algorithms and the track quality requirements on simulated IPC events
- non-physical reconstruction effects are removed

#### **Data Sample**




- Data collected in Feb.2023 with  $E_{beam}=1080~{\rm KeV}$ ,  $I_{beam}=10~{\rm \mu A}~{\rm (+~a~small~sample~at~440~KeV)}$
- 75M events collected and 300k pairs reconstructed
- event categories from 17.6 and 18.1 MeV
   60% EPC
   40% IPC
- > Huge simulation effort

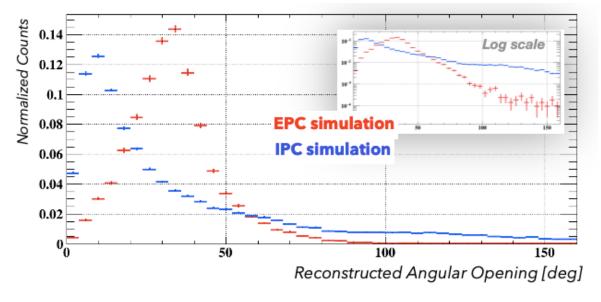
M.Grassi



•  $\gamma$  -rate monitor with BGO crystal shows sufficient stability and no target degradation



- ➤ Simultaneous search for X17 in both 440 KeV and 1030 KeV resonances
- relative population determined directly with the CDCH e+e- tracks






- Krasznahorkay et al. used a model for IPC developed by Rose.
- Phys.Rev. 76(1949)678
- We adopted the Zhang and Miller model, which includes E1-M1 interference and anisotropies.

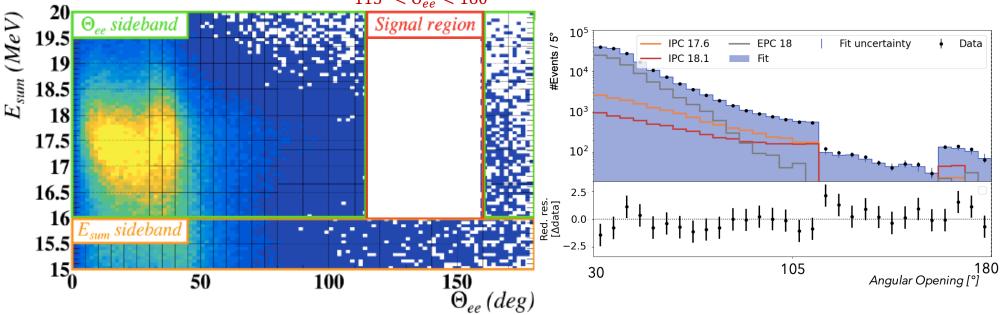
Phys.Lett.B 773(2017)159

· Good agreement with original Rose model, it differs on tails



- EPC: real photon from the dominant  $^7Li(p, \gamma)^8Be$  reaction interact in the detector material
  - · detailed detector modelling
  - large statistics
- IPC is dominant in the signal region (x100 the EPC)

### **Analysis Strategy**



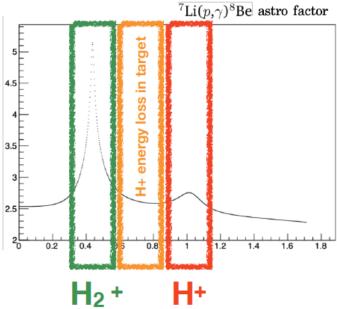

- "Blind likelihood analysis" with the blinding variables
  - angular opening of the pair  $\Theta_{ee} = \cos^{-1}\left(\frac{\mathbf{p}_+ \cdot \mathbf{p}_-}{|\mathbf{p}_+||\mathbf{p}_-|}\right)$
  - sum of the energies

$$E_{sum} = E_+ + E_-$$

 $16~{\rm MeV} < E_{sum} < 20~{\rm MeV} \\ 115^{\circ} < \Theta_{ee} < 160^{\circ}$ 

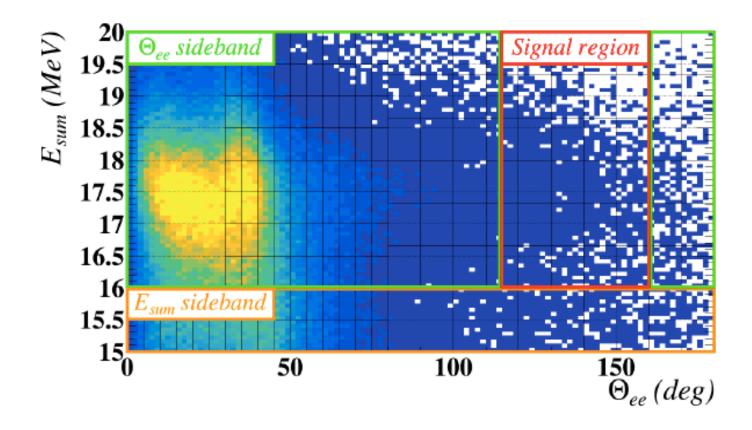
- tuning of the simulation and model validation on the sidebands
- good simulation of the background above 30°




## X17 Analysis

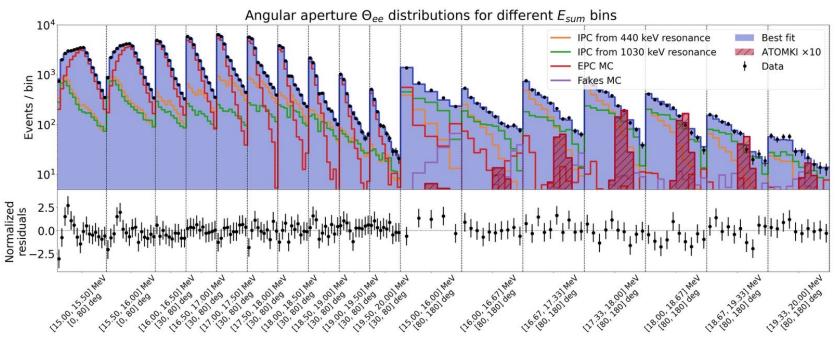


- Binned Maximum Likelihood fit
  - using template PDF histograms from detailed MC simulation
  - extensively validated on sidebands
- Likelihood parametrised in terms of relative Branching Fraction


$$R_{Q} = \frac{\mathscr{B}(^{8}\text{Be}^{*}(Q) \to {}^{8}\text{Be} + \text{X}17)}{\mathscr{B}(^{8}\text{Be}^{*}(Q) \to {}^{8}\text{Be} + \gamma)}$$

- Two signal PDFs for Q = 17.6 and 18.1 MeV
- Six IPC PDFs for the two main resonances and the non-resonant 17.9 MeV, each one times the two transitions to GS and 1<sup>st</sup> excited
- Two EPC PDFs for the two main resonances
- One fake pairs PDF




# Unblinding





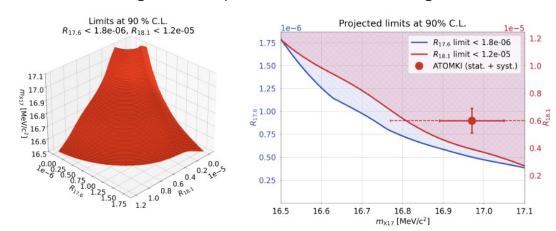
## **Likelihood Projections**





■ Best fit •  $N_{X17}$ :  $10 \pm 92$  for 18.1 MeV, 0 for 17.6 MeV

• IPC :  $12.6 \pm 0.9$  % for 18.1 MeV,  $45.8 \pm 1.3$  % for 17.6 MeV, 0 for 17.9 MeV


•  $M_{X17}$ : 16.5 MeV/c<sup>2</sup>

• goodness of fit: p-value 10.5%

#### 90% Confidence Regions



- Systematic effects (energy scale, resolutions, mass dependence, relative acceptance) are included as nuisance parameters
- three-dimensional confidence regions with profile likelihood ordering



• The 90% C.L. region includes the null hypothesis, indicating no significant excess

$$R_{17.6} < 1.8 \times 10^{-6}$$
 corresponding to  $N_{sig}(17.6) < 200$ 

$$R_{18.1} < 1.2 \times 10^{-5}$$
 corresponding to  $N_{sig}(18.1) < 230$ 

Compatibility test with the average mass of the three Krasznahorkay et al. observations on Be, He and C:

#### **X17 Search Conclusion**

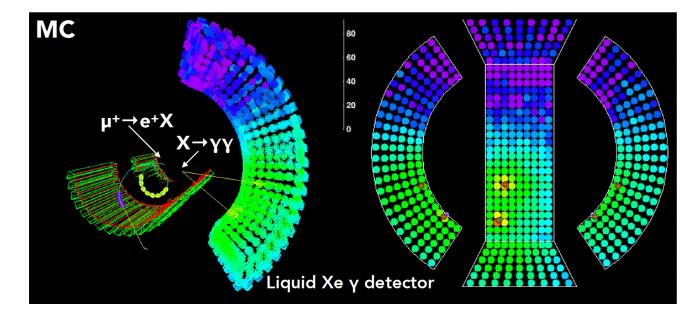


- The  ${}^7Li(p,e^+e^-){}^8Be$  process has been successfully studied with the MEG II detector
- No significant signal of a new particle decaying to e+e- was found in our data
- The reported observation by Krasznahorkay et al. was tested and excluded at 94% p-value

## **Perspectives**

- Two major improvements will enable distinct studies of the 2 resonances
  - A new LiPON target 2  $\mu m$  thick has been produced at PSI
  - Separation and collimation of  $H_2^+$  have already been achieved

# MEG

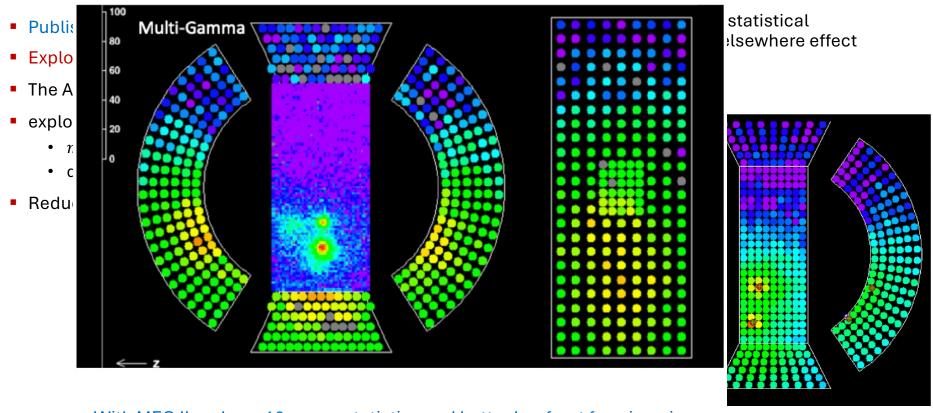

## **Outline**

- Muons as probes for New Physics
- Results on  $\mu^+ \rightarrow e^+ \gamma$  search (2021 data sample)
- Search for the X17 boson
- Perspectives in search for Axion Like Particles
- Final remarks

# $\mu \rightarrow e^+ a \rightarrow \gamma \gamma$ search



- Published with MEG
- Exploit the LXe imaging capability
- The ALP decay vertex is not reconstructed.
- explored region:
  - $m_a = 20 \div 45 \,^{\text{MeV}}/_{\text{c}^2}$
  - decay length < 1 cm
- Reduced beam intensity

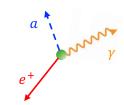


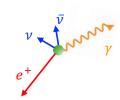

5 events were found with no statistical

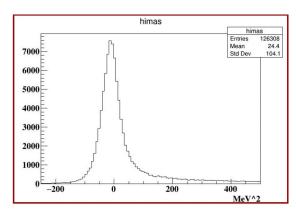
significance including look-elsewhere effect

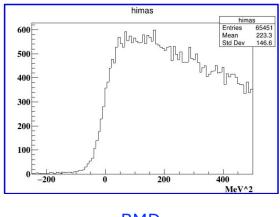
# $\mu \rightarrow e^+ a \rightarrow \gamma \gamma$ Search

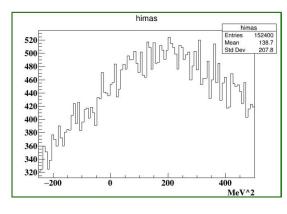






With MEG II we have 10x more statistics and better Lxe front face imaging


# $\mu \rightarrow e^+ a \gamma$ Search





- The event topology is similar to the Radiative Muon Decay
- Search in the invariant mass square of the couple  $e^+\gamma$  at  $m^2\approx 0$  for time coincident emission





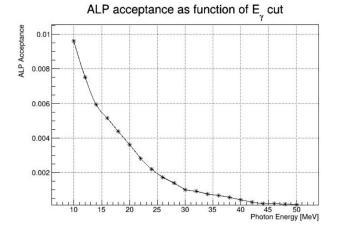






signal

**RMD** 


accidental





- Acceptance increases lowering the  $E_{\nu}$  threshold
- Constraint by DAQ rate < 40 Hz</li>
- Accidental background (dominant with the MEG beam) becomes negligible at reduced beam intensity
- reduced beam intensity data were taken for calibration purposes
- o a further optimized sample has been collected in 2024 with  $E_{\gamma} > 14~{\rm MeV}$

| Year | $R_{\mu} \left[ \mu / \mathrm{s} \right]$ | Time (sec.)               | $E_{\gamma}$ [MeV] | $k_{ALP}$         |
|------|-------------------------------------------|---------------------------|--------------------|-------------------|
| 2021 | $1.0 \times 10^{6}$                       | 322080 (~ 3.7 <i>d</i> .) | 20.0               | $4.9\times10^7$   |
| 2022 | $8.7 \times 10^{5}$                       | 193421 (~ 2.2 <i>d</i> .) | 20.0               | $2.5\times10^7$   |
| 2023 | $2.0 \times 10^{6}$                       | 234790 (~ 2.7 <i>d</i> .) | 18.0               | $8.5 \times 10^7$ |



#### MEG II estimated sensitivity

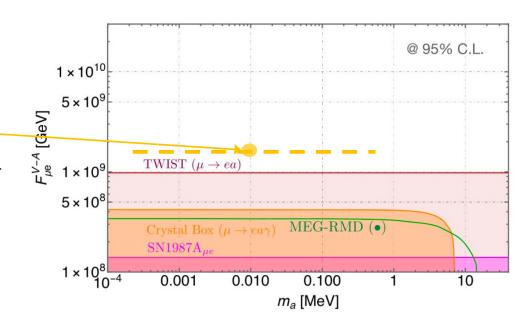
Total normalization factor

$$k_{ALP}^{tot} = 1.59 \times 10^8$$

Single event sensitivity

$$S_{ALP}^{tot} = \frac{1}{k_{ALP}^{tot}} = 6.29 \times 10^{-9}$$

## **Lower Limit Estimates**




 Preliminary estimates of the lower limit on the ALP decay constant can be inferred

$$F_{\mu e}^{V-A} > 1.52 \times 10^9 \,\text{GeV}$$

with 8.7 days of data already collected

- This could exceed the best limit set by the TWIST collaboration
- The analysis is in progress



# MEG

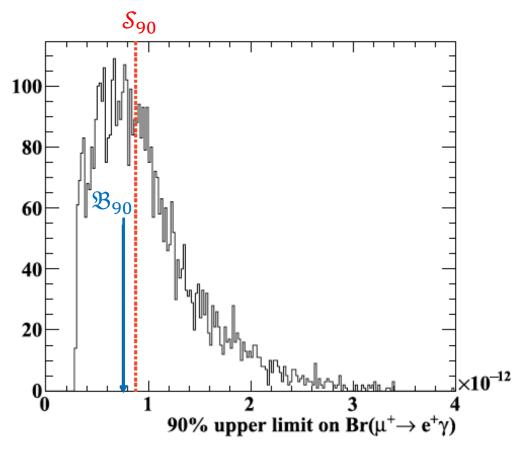
## **Outline**

- Muons as probes for New Physics
- Results on  $\mu^+ \rightarrow e^+ \gamma$  search (2021 data sample)
- Search for the X17 boson
- Perspective in search for Axion Like Particles
- Final remarks

#### **Final Remarks**

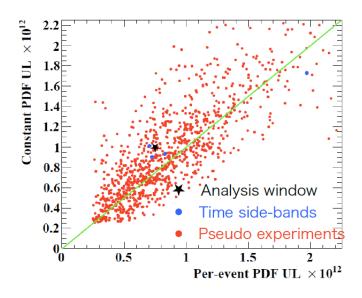


- The MEG II detector, with resolutions and efficiencies close or better than the design values, is operated at PSI
- The  $\mu^+ \to e^+ \gamma$  search with the 2021 data sample has been published with no evidence of signal
- A data sample 10 times larger has been already acquired
- X17 and Axion Like Particle searches demonstrated the MEG II detector's sensitivity to other phenomena beyond the SM




## **Additional material**

## $\mu^+ \rightarrow e^+ \gamma$ 2021 Sensitivity

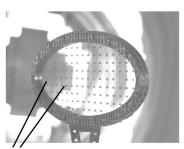


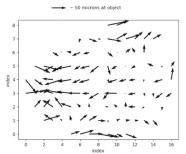

- The sensitivity S<sub>90</sub> for the 2021 data sample, defined as the median of the distribution of the 90% CL upper limits computed for an ensemble of pseudo-experiments with a null-signal hypothesis, is 8.8×10<sup>-13</sup>
- Comparable to the whole data set of MEG  $5.3 \times 10^{-13}$



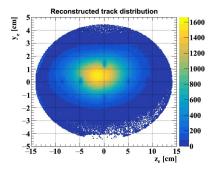
# $\mu^+ \rightarrow e^+ \gamma$ Consistency Checks



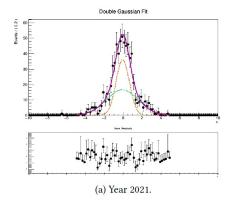


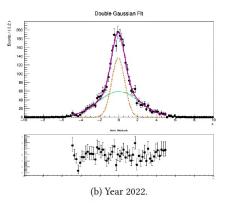


- comparison of the two analyses
   Constant PDF vs Per-event PDF
- $N_{RMD}$ ,  $N_{ACC}$ , when not constrained from sidebands, are compatible with constrained values

# Systematics Reduction $heta_{e\gamma}$ and $\phi_{e\gamma}$




- better control of the BC400 target position
  - deformation controlled with photogrammetric measurements




• target holes imaging with positrons

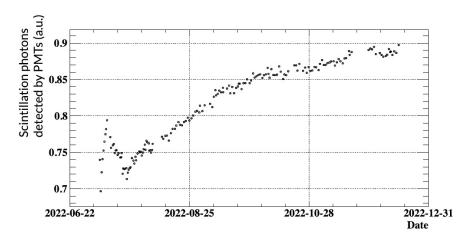


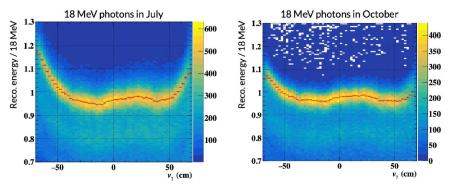
 Absolute position uncertainty from 100 μm to 35 μm





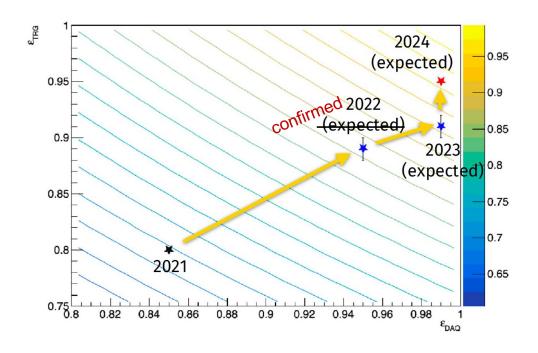
 the relative positioning of LXe and CDCH with cosmic ray tracks become


$$\sigma_Z(2021) = 410 \ \mu m$$
 $\sigma_Z(2022) = 290 \ \mu m$ 


(it was  $730 \mu m$ )

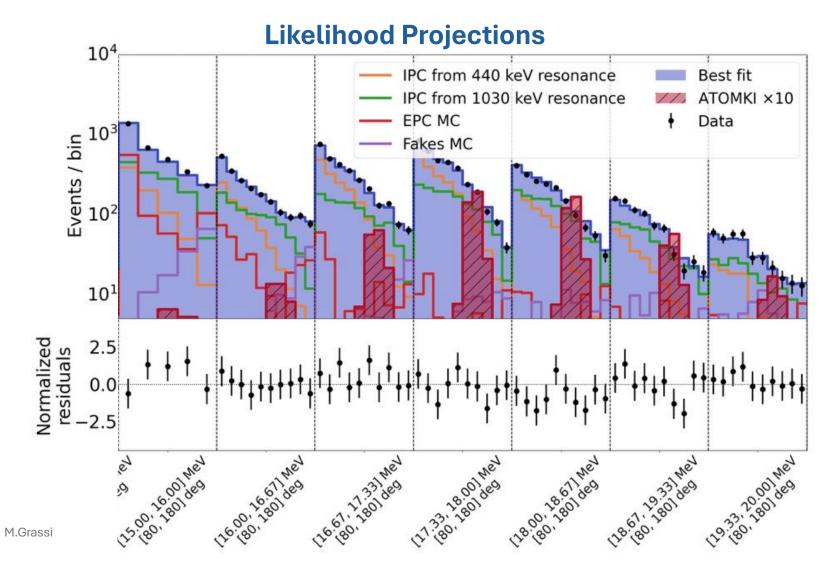
# Systematics Reduction: $E_{\gamma}$




- Xe purity and MPPC PDE vary during data taking
- time-dependent non-uniformity correction have been improved



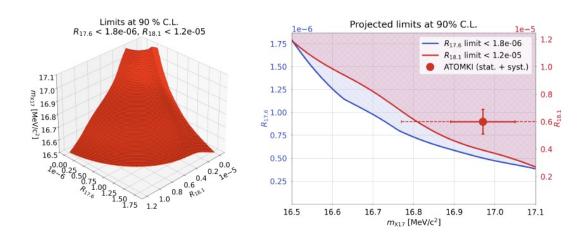



# **Statistics:** $\varepsilon_{TRG}$ and $\varepsilon_{DAQ}$





- improvements of trigger firmware, directionmatching implementation and DAQ software
  - sharper photon threshold with online trigger primitives
  - more efficient direction matching tables correlating LXe entrance face to the pTC tiles






## X17 90% Confidence Regions



three-dimensional confidence regions with profile likelihood ordering



- The 90% C.L. region includes the null hypothesis, indicating no significant excess, upper limits on the relative BR  $R_{17.6} < 1.8 \times 10^{-6}$   $R_{18.1} < 1.2 \times 10^{-5}$
- Compatibility test with the *Krasznahorkay et al.* observations: p-value 6.2%
- Compatibility test with the Feng et Al hypothesis: p-value 1.8 %

Phys.Rev.Lett. 117(7) 071803 (2016)

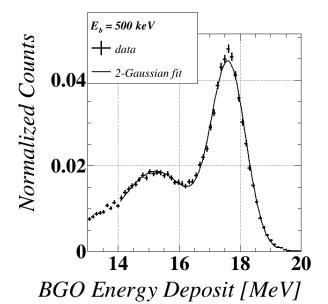
## Krasznahorkay et al. observations

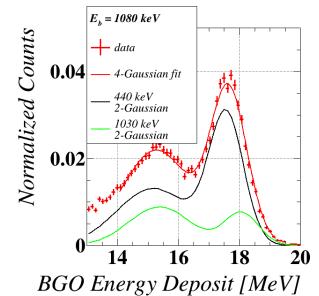


• 2016: Be(18.1)  $m(X17) = 16.7 \pm 0.35 \pm 0.5 \text{ MeV/c}^2$ Be(17.6) no statistical evident signal

■ 2017: Be(17.6)  $m(X17) = 17.0 \pm 0.5 \pm 0.5 \text{ MeV/c}^2$ 

■ 2021: He(20.2)  $m(X17) = 16.94 \pm 0.12 \pm 0.21 \text{ MeV/c}^2$ 


■ 2022: C(17.2)  $m(X17) = 17.03 \pm 0.11 \pm 0.2 \text{ MeV/c}^2$ 


• We assume the reported observations are coming from the same particle. We performed an average of the *Krasznahorkay et al.* measurements, with simple statistical combinations of the errors, resulting in  $m(X17) = 16.97 \pm 0.22$  MeV/c<sup>2</sup>

## X17 BGO data



- An auxiliary BGO calorimeter is used to independently check:
  - · the beam stability
  - target deterioration
  - relative decay rate of the excited states to the ground and first excited states





 The relative proportion of 17.6 and 18.1 lines agrees with the CDCH e+e- analysis

M.Grassi