

RECENT RESULTS FROM
THE BESIII EXPERIMENTG. CIBINETTO (INFN FERRARA)

ernational Winter Meeting on Nuclear Physics

27 - 31 January 2025

Hadrons

- Dominant part of visible matter in the universe
- To fully understand the strong interaction *
 - Understanding the rich and complex features of its bound states, hadrons *

- How are hadrons formed from quarks and gluons?
- What is the origin of confinement?
- How is the mass of hadron generated in QCD?
- What is the dynamics of effective DoF in hadrons?

Hadron physics

Structure

Precise tests and rare processes

Spectroscopy

Interactions

Outline of the talk

- * The BESIII experiment
- * Hadron structure: Baryon Form Factors
- * SM precision tests with semileptonic decays
- * Hadron interactions: Study of Antihyperon-Nucleon Scattering
- * Spectroscopy
 - * Light hadrons
 - * Heavy exotics
- * The BESIII upgrade program

The BESIII experiment @ BEPCII

- $E_{CM} = 1.84 4.95 \ GeV$
- Region below 2 GeV directly accessible (via ISR)
- $\mathscr{L}_{peak} = 1.1 \times 10^{33} \ cm^{-2} s^{-1}$
- Energy spread: $\Delta E \sim 5 \times 10^{-4}$

Barr	el
$\sigma_T =$: (

End	cap
σ_T	= 7

The BESIII experiment @ BEPCII

- $E_{CM} = 1.84 4.95 \ GeV$
- Region below 2 GeV directly accessible (via ISR)
- $\mathscr{L}_{peak} = 1.1 \times 10^{33} \ cm^{-2} s^{-1}$
- Energy spread: $\Delta E \sim 5 \times 10^{-4}$
- World's largest sample of
 - $J/\psi \rightarrow 10$ billions
 - $\psi(2S) \rightarrow 3$ billions
 - ψ(3770) −> 20 fb⁻¹
- About 22 fb⁻¹ of data for Exotic Charmonium Spectroscopy

Spectroscopy & decays of light hadrons and charmonium, charm physics, precision measurements, tests of fundamental symmetry

 $R = \sigma(e^+e^- \rightarrow hadrons)/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$

HADRON STRUCTURE

 $q^2 > 0$ High-q² B_1 B_2 \sim e^+ $e^+e^- \rightarrow B\overline{B}$ \bar{B}_2 $\bar{B}B \rightarrow e^+e^$ e^{-} **BES III BELLE II** q^2 $(m_1 - m_2)^2 (m_1 + m_2)$ PANDA

$e^+e^- \rightarrow \Lambda_c^+\overline{\Lambda}_c^-$

- * Energy scans from 4.61 to 4.95 GeV
 - * Sharp rise in cross section near threshold
 - * Disagreement with Belle data near 4.6 GeV

* No discernible oscillations of the effective form factors G_{eff}

- Different from the case of proton and neutron
- * With the polar-angle distribution of Λ_c^+
 - * $|G_E|$ and $|G_M|$ are extracted
 - * Energy dependence of $R = |G_E/G_M|$:
 - Damped oscillations with frequency ~3.5 times larger than for the proton

PRL 131, 191901 (2023)

Complete decomposition of Σ^+ EMFFs

Using a fully differential angular description of the final state particles

$$e^{+}e^{-} \rightarrow \Sigma^{+}(\rightarrow p\pi^{0})\overline{\Sigma}^{-}(\rightarrow \overline{p}\pi^{0})$$

$$W(\xi) \propto \mathcal{F}_{0}(\xi) + \alpha \mathcal{F}_{5}(\xi) \quad \text{Unpolarized part}$$

$$+ \alpha_{1}\alpha_{2}(\mathcal{F}_{1}(\xi) + \sqrt{1 - \alpha^{2}}\cos(\Delta\Phi)\mathcal{F}_{2}(\xi) + \alpha \mathcal{F}_{6}(\xi)) \quad (\alpha + \sqrt{1 - \alpha^{2}}\sin(\Delta\Phi)(-\alpha_{1}\mathcal{F}_{3}(\xi) + \alpha_{2}\mathcal{F}_{4}(\xi)), \quad \text{Polarized}$$

$$W(\xi) \propto \mathcal{F}_{0}(\xi) + \alpha \mathcal{F}_{5}(\xi) \quad \text{Unpolarized part}$$

$$\mathcal{F}_{0}(\xi) = 1 \quad \mathbf{f}_{1}(\xi) = \sin^{2}\theta\sin\theta_{1}\sin\theta_{2}\cos\phi_{1}\cos\phi_{2} - \cos^{2}\theta\cos\theta_{1}\cos\phi_{2}$$

$$\mathcal{F}_{2}(\xi) = \sin\theta\cos\theta(\sin\theta_{1}\cos\theta_{2}\cos\phi_{1} - \cos\theta_{1}\sin\theta_{2}\cos\phi_{2})$$

$$\mathcal{F}_{3}(\xi) = \sin\theta\cos\theta\sin\theta_{1}\sin\phi_{1}$$

$$\mathcal{F}_{4}(\xi) = \sin\theta\cos\theta\sin\theta_{1}\sin\theta_{2}\sin\phi_{2}$$

$$\mathcal{F}_{5}(\xi) = \cos^{2}\theta$$

$$\mathcal{F}_{6}(\xi) = \sin^{2}\theta\sin\theta_{1}\sin\theta_{2}\sin\phi_{1}\sin\phi_{2} - \cos\theta_{1}\cos\theta_{2}.$$

$$P_{y} = \frac{\sqrt{1 - \alpha^{2}\sin\theta\cos\theta}}{1 + \alpha\cos^{2}\theta}\sin(\Delta\Phi)$$

Complete decomposition of Σ^+ EMFFs

- * Polarization is observed at $\sqrt{s}=2.396$, 2.644 and 2.90 GeV with a significance of 2.2σ , 3.6σ and 4.1σ
- Relative phase is determined for the first * time in a wide q^2 range
 - * G_E/G_M and $\Delta \Phi$ line-shape is compared with $\overline{Y}Y$ model [PRD] 103,014028 (2021)], different tendency in $\Delta \Phi$
 - $\Delta \Phi$ evolution is an important input for understanding its asymptotic behavior and the dynamics of baryons

PRECISION TESTS OF THE SM AND RARE PHENOMENA

Test of Lepton Flavor Universality with $D^0 \rightarrow K^*(892)^- \mu^+ \nu_\mu$

- * $D^0 \rightarrow K^- \pi^0 \mu^+ \nu_\mu$ based on 7.93 fb⁻¹ data collected at the center-of-mass energy of 3.773 GeV
- * Amplitude analysis to extract S and P-wave components
- * The dominant P-wave component is observed with a fraction of

 $f_{K^*(892)^-} = (94.24 \pm 0.35_{stat} \pm 0.29_{sys})\%$

Semileptonic D decays provide a good opportunity to rigorously test the Standard Model through lepton flavor universality

PRL 134, 011803 (2025)

 $B(D^0 \to K^*(892)^- \mu^+ \nu_\mu) = (2.073 \pm 0.039 \pm 0.032)\%$

 $B(D^0 \to K^*(892)^- \mu^+ \nu_{\mu})$ $\frac{1}{B(D^0 \to K^*(892)^- e^+ \nu_e)} = 1.020 \pm 0.030_{stat} \pm 0.028_{syst}$

 $B(D^0 \to K^*(892)^- e^+ \nu_{\rho})$ from PRD 99, 011103 (2019)

Test of Lepton Flavor Universality with $D^0 \rightarrow K^*(892)^- \mu^+ \nu_\mu$

- * $D^0 \rightarrow K^- \pi^0 \mu^+ \nu_\mu$ based on 7.93 fb⁻¹ data collected at the center-of-mass energy of 3.773 GeV
- * Amplitude analysis to extract S and P-wave components
- * The dominant P-wave component is observed with a fraction of

 $f_{K^*(892)^-} = (94.24 \pm 0.35_{stat} \pm 0.29_{svs})\%$

Compatible with light cone sum rules predictions

PRL 134, 011803 (2025)

Theory	B (%)	r_V	r_2
LCSR [7,16]	$2.01^{+0.09}_{-0.08}$	1.39	0.60
χUA [17]	1.98	•••	•••
CCQM [6]	2.80	1.22 ± 0.24	0.92 ± 0.18
CQM [8,18]	3.09	1.56	0.74
LFQM [9]		1.36	0.83
HM _χ T [10]	••••	1.60	0.50
Experiments	B (%)	r_V	r_2
BESIII [39]	•••	$1.46 \pm 0.07 \pm 0.02$	$0.67 \pm 0.06 \pm 0.02$
FOCUS [11]	1.89 ± 0.24	$1.71 \pm 0.68 \pm 0.34$	$0.91 \pm 0.37 \pm 0.10$
This Letter	$2.073 \pm 0.039 \pm 0.032$	$1.37 \pm 0.09 \pm 0.03$	$0.76 \pm 0.06 \pm 0.02$

Nature Communications | (2025)16:681 Observation of a rare beta decay of the charmed baryon with a Graph Neural Network

- Provides unique insights into the fundamental mechanism of strong and electro-weak interactions
 - non-perturrbative QCD effects
 - CKM matrix parameters
- The Cabibbo-suppressed decay $\Lambda_c^+ \rightarrow n e^+ \nu_e$ presents significant challenges

Dominant background events from $\Lambda_c^+ \to \Lambda e^+ \nu_e, \Lambda \to n\pi^0$

Observation of a rare beta decay of the

Based on 4.5 fb⁻¹ data collected at center-of-mass energies from 4.6 to 4.7 GeV

$$\mathcal{B}(\Lambda_c^+ \to ne^+ \nu_e) = \left(0.357 \pm 0.034_{\text{stat.}} \pm 0.014_{\text{syst.}}\right)\%$$

consistent with LQCD prediction PRD 97, 034511 (2018)

Impossible to measure the transition FF

- Important reduction of systematic uncertainties thanks to the huge J/ψ data sample
- For the first time, the CKM matrix element $|V_{ch}|$ is extracted via a charmed baryon decay as

 $|V_{cd}| = 0.208 \pm 0.011_{\text{exp.}} \pm 0.007_{\text{LQCD}} \pm 0.001_{\tau_{\Lambda^+}}$

consistent with results from charmed meson (semi-)leptonic decays

charmed baryon with a Graph Neural Network

HADRON INTERACTIONS (Λ) N

N

S

ac

o predict uclei. nd the utron stars

Measurement of $\Lambda p \rightarrow \Lambda p$ Cross Section

Almost monoenergetic Λ/Λ beam from 10 billions $J/\psi \to \Lambda\Lambda$

* $P_{\Lambda} = 1.074 \pm 0.017 \ GeV/c$

Target: proton, the hydrogen nuclei in the cooling oil of the beam pipe

* $\Lambda \to p\pi^-$ and $\overline{\Lambda} \to \overline{p}\pi^+$: look for 5 tracks in the final state

R_{xy} signal region [3.0-3.5] cm

Main background from $J/\psi \rightarrow \Lambda \Lambda$ where no scattering with proton occurs

*

PRL 132, 231902 (2024)

Study of Antihyperon-Nucleon Scattering $\Lambda p \rightarrow \Lambda p$ and

To remove events with scattering against Au, Be and C nuclei $P(p_{oil}) = |P_{\Lambda/\overline{\Lambda}} + P_p - (P_{e^+e^-} - P_{\Lambda/\overline{\Lambda}})| < 0.04 \ GeV/c$

Study of Antihyperon-Nucleon Scattering $\Lambda p \rightarrow \Lambda p$ and Measurement of $\Lambda p \rightarrow \Lambda p$ Cross Section

PRL 132, 231902 (2024)

- Slight tendency of forward scattering * for $\Lambda p \to \Lambda p$
- Strong forward peak for $\overline{\Lambda}p \to \overline{\Lambda}p$ 米

 $\sigma(\Lambda p \to \Lambda p) = (12.2 \pm 1.6_{\text{stat}} \pm 1.1_{\text{syst}}) \text{ mb}$

 $\sigma(\bar{\Lambda}p \rightarrow \bar{\Lambda}p) = (17.5 \pm 2.1_{\text{stat}} \pm 1.6_{\text{syst}}) \text{ mb}$

HADRON SPECTROSCOPY

Intro to hadron spectroscopy

- * Hadron spectroscopy: establish the spectrum and study the exotic hadrons properti
- * Exotic states observed experimentally hadro- guarkonium nature is still far from being understoc

https://qwg.ph.nat.tum.de/exoticshub/ PATLAS BEID BESI CMS LHCb

Physical meson: a linear superposition of all allowed color-singlet configurations

UPDATED JUNE 2024

Observation of Exotic Isoscalar State $\eta_1(1855)$ in $J/\psi \rightarrow \gamma \eta \eta$

* PWA of $J/\psi \rightarrow \gamma \eta \eta'$ using 10 Billion of J/ψ data

* $\eta \rightarrow \gamma \gamma$ and $\eta' \rightarrow \gamma \pi^+ \pi^- / \eta \pi^+ \pi^-$

- * An isoscalar 1⁻⁺ state, $\eta_1(1855)$, has been M_k statistical significance larger than 190 $\mathcal{B}(J$
- * Mass is consistent with LQCD calculation fo -2.1 GeV/c^{2})

X(2370): Glueball-like particle in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta'$

- * PWA using 10 Billion of J/ψ data @ BESIII
- * Minimal background contribution: $J/\psi \rightarrow \pi^0 K_S^0 K_S^0 \eta'$ and $J/\psi \rightarrow K_S^0 K_S^0 \eta'$ since they are forbidden by exchange symmetry and CP conservation

* $\eta' \rightarrow \gamma \pi^+ \pi^- / \eta \pi^+ \pi^-; K_S^0 \rightarrow \pi^+ \pi^-$

- * Strong enhancement near $K_S^0 K_S^0$ mass threshold from f₀(980)
- Clear connection between f₀(980) and the structure around 2.4 GeV
- * $M(K_S^0 K_S^0) < 1.1 \text{GeV}$ to select the f₀(980)

PRL 132, 181901 (2024)

	10	<u>.</u>						
X	X (2,		state	JPC	Dec	ay mode	M	ass (MeV/c^2)
		X(2370)) 0 ⁻⁺	$f_0(980)\eta'$		2395 ⁺¹¹ ₋₁₁	
		X	(1835)	0-+	f_{0}	(980)n'		1844
	stat	e	JPC	Decay 1	mode	Mass (MeV/	c^2)	Width (MeV/c^2)
	X(237	70)	0-+	$f_0(980)$	D)η'	2395 ⁺¹¹ ₋₁₁		188^{+18}_{-17}
	X(183	35)	0-+	$f_0(980)$	D) η ′	1844		192
	X(280)(00	0-+	$f_0(980)$	D) η ′	2799^{+52}_{-48}		660^{+180}_{-116}
	η_c		0-+	$f_0(980)$	D) η ′	2983.9		32.0
	PHSP		0-+	$\eta'(K_S^0K_S^0)$) _{S-wave}			
			Ň /	$\eta'(K_S^0K_S^0)$)D-wave			
	-		$\mathbf{\nabla}$					

- Best fit can well describe the data incluation of X(2370) is determined to X(2800): broad structure to describe the data incluation of X(2800).
 X(2800): broad structure to describe the data incluation of X(2000).
- mass resonances (X(2600)) and the tail

$M(X(2378)(23799) \pm 12397) = 12397 \text{MeV}_{0}^{2}$ $\Gamma(X(2378)(23708)^{+18}(\text{stat})^{-18}(\text{sta$

80E

60

40E

Charmonium-like states

- * Conventional $c\overline{c}$ mesons fit well with potential model
- * Abundance of new states with various probes
 - * b-hadron decays
 - * hadron/heavy-ion collisions
 - $\gamma\gamma$ processes
 - * e+e- collisions
- * BESIII dominant production: vectors and state produced from vector decays

Besides $c\overline{c}$ states, we also expect $gc\overline{c}$ hybrids, and $c\overline{c}q\overline{q}$ tetraquark states. Have they already been observed? → More theoretical/experimental efforts necessary

HOW MANY VECTORS IN CHARMONIUM ENERGY REGION?

BESII UPGRADE

The BESIII upgrade program: physics

- * Upgrade of the C.M. energy to 4.95 GeV, then up to 5.6 GeV
- * Measurements of the cross sections near threshold to provide insight of the vacuum productions of $c\overline{c}$ and $s\overline{s}$ pairs
- * Study the EM structure of charmed baryons
- * Studies of the absolute BFs of Σ_c and Ξ_c

0 00	CD			
tnev	4 5C	m		
and Ma	all			
+	-	-		
1				
-				
			1	
7.0	1			

* $e^+e^- \rightarrow \Sigma_c \overline{\Lambda}_c^- \pi$ * $e^+e^- \rightarrow \Sigma_c \overline{\Sigma}_c$ * $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ and $e^+e^- \rightarrow \Xi_c \overline{\Xi}_c$

more at arXiv:1912.05983v3

The BESIII upgrade program: machine

* BEPCII upgrade aims at increasing luminosity by a factor of 3 & increasing beam energy to 2.8 GeV

Key technologies: double beam power & optics upgrade & new high gradient of magnets

The BESIII upgrade program: CGEM

- * 3 layers of cylindrical triple-GEM detectors to replace the inner MDC
- Improve rate capability, aging and secondary vertex reconstruction
- * While retaining the current momentum and tracking performance ($\sigma_p/p \sim 0.5\%$ @ 1 GeV)
- Main System Requirements
 - * Angular coverage: 93%
 - * Low material budget (~0.5% of X₀ per layer ->1.5% of X₀ in total)

31

* High azimuthal spatial resolution $-> 130-150 \mu m$ with charge and time readout

Substantial improvements in rad hard and secondary vertex reconstruction (~300 μ m in z)

Impact on vertex reconstruction

- * Expected impact on vertex reconstruction
- * Better separation for complex topologies and improvements on secondary vertexes, both crucial for charmed baryon decays

DETECTOR CABLING

Summary and outlook

- * A selection of recent BESIII results on hadron physics has been presented
 - * Baryon Form Factor in the timelike region can be studied with great precision
 - * First observation of a rare beta decay of the charmed baryon with GNN
 - * (Anti)Hyperon-nucleon scattering campaign has started
 - * Primary role in hadron spectroscopy continues
- * BESIII will continue taking data until the end of the decade
 - * An important upgrade program is ongoing to provide more and better data

THANKS FOR YOUR ATTENTION

> Charmonium radiative decays is the ideal laboratory for light glueballs and hybrids hadron studies (clean, high statistics and gluon-rich process)

GLUON RICH STATES

maybe as backup or bonus track New insight on X(3872): line shape

Pole positions

Two sheets with respect to $D^{*0}\overline{D}^{0}$ branch cut

- Sheet I: $E E_X g\sqrt{-2\mu(E E_R + i\Gamma/2)}$
- Sheet II: $E E_X + g\sqrt{-2\mu(E E_R + i\Gamma/2)}$

 $E_{\rm I} = (7.04 \pm 0.15^{+0.07}_{-0.08}) + (-0.19 \pm 0.08^{+0.14}_{-0.19})i \,{\rm MeV}$

 $E_{\text{II}} = (0.26 \pm 5.74^{+5.14}_{-38.32}) + (-1.71 \pm 0.90^{+0.60}_{-1.96})i \text{ MeV}$

Weinberg's compositeness: Z=1: pure elementary state; Z=0: pure bound (composite) state

	LHCb	Belle	BESIII	
g	$0.108 \pm 0.003 \substack{+0.005 \\ -0.006}$	$0.29^{+2.69}_{-0.15}$	$0.16 \pm 0.10^{+1.12}_{-0.11}$	
$Re[E_I]$ [MeV]	7.10	7.12	$7.04 \pm 0.15 ^{+0.07}_{-0.08}$	
$Im[E_I]$ [MeV]	-0.13	-0.12	$-0.19\pm0.08^{+0.14}_{-0.19}$	
$Re[k^+]$ [MeV]	-13.9	-15.3	$-12.6 \pm 5.5^{+6.6}_{-6.2}$	
$Im[k^+]$ [MeV]	8.8	7.7	$12.3 \pm 6.8^{+6.0}_{-6.4}$	
<i>a</i> (fm)	-27.1	-31.2	$-16.5^{+7.0}_{-27.6}$	
r_e (fm)	-5.3	$-3.0^{+1.3}_{-1.5}$	$-4.1^{+0.9}_{-3.3}{}^{+2.8}_{-4.4}$	
$ar{Z}_A$	0.15 (0.33)	$0.08^{+0.04}_{-0.03}$	$0.18\substack{+0.06\\-0.17}\substack{+0.19\\-0.16}$	

Observations of new vector structures in $D_s^+D_{s1}(2536)^-$ and $D_s^+D_{s2}^*(2573)^-$

To study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}(2573)$

 $\mathcal{B}(D_{s1}(2536)^{-} \to (\bar{D}^*\bar{K})^{-}) = (71.8 \pm 9.6 \pm 7.0)\%$ $\mathcal{B}(D_{s2}^*(2573)^{-} \to (\bar{D}\bar{K})^{-}) = (74.8 \pm 6.2 \pm 9.2)\%$

arXiv:2407.07651

Tension between BESIII and (ISR) Belle results

Expected performance

Particle gun with different multiplicities

- * CGEM XY resolutions slightly worse at low pt
- * CGEM Z resolution much better
- * Momentum resolution worse only at very low pt

