Low mass DARK SECTOR SEARCHES

with deuteron photodisintegration

Cornelis J.G. Mommers, Phys. Rev. D 109, 095010 & Phys. Lett. B 858 139031

Group Marc Vanderhaeghen, Johannes Gutenberg University Mainz

Low mass DARK SECTOR SEARCHES

with deuteron photodisintegration

• Increasing interest

• Strong interest in $\mathcal{O}(MeV)$ boson X

- Strong interest in $\mathcal{O}(MeV)$ boson X
- Parameter space of proton coupling and electron coupling as $f(m_X)$ well-explored, many experiments planned or ongoing

- Strong interest in $\mathcal{O}(MeV)$ boson X
- Parameter space of proton coupling and electron coupling as $f(m_X)$ well-explored, many experiments planned or ongoing
- However, few constraints on *just* the neutron coupling *in 10-100 MeV mass range*

- Strong interest in $\mathcal{O}(MeV)$ boson X
- Parameter space of proton coupling and electron coupling as $f(m_X)$ well-explored, many experiments planned or ongoing
- However, few constraints on *just* the neutron coupling *in 10-100 MeV mass range*
- Reason: hard to probe, no free neutron target

- Strong interest in $\mathcal{O}(MeV)$ boson X
- Parameter space of proton coupling and electron coupling as $f(m_X)$ well-explored, many experiments planned or ongoing
- However, few constraints on *just* the neutron coupling *in 10-100 MeV mass range*
- Reason: hard to probe, no free neutron target
- But bounds would be useful: Probe flavor-dependent couplings $g_{u/d} \sim (2g_{p/n} - g_{n/p})/3$ Constrain X17?

ATOMKI anomaly: X17

Cornelis J.G. Mommers, Phys. Rev. D 109, 095010 & Phys. Lett. B 858 139031

Timeline: X17 + theory

ATOMKI group reports anomalous signals in... Phys. Lett. B 858 139031 (2024) 2016 ⁸Be decays 12C, scenario 2 12C, scenario 3 0.004 2021 ⁴He decays 2022 0.002 ¹²C decays $|\mathcal{B}^{A}_{b}|$ 2022-**Tensions in theory?** All colored regions should -0.002 now overlap at least at one -0.004 point, but they don't! -0.004-0.0020.000 0.002 0.004 $|g_n^A|$

More theory developments...

Now

On the Atomki nuclear anomaly after the MEG-II result

D. Barducci,^a D. Germani,^b M. Nardecchia,^b S. Scacco,^b C. Toni^{c,d}

ABSTRACT: Recent experimental results from the Atomki collaboration have reported the observation of anomalous effects in Beryllium, Helium and Carbon nuclear transitions that could hint at physics beyond the Standard Model. However, the MEG-II experiment has recently found no significant anomalous signal in the Beryllium transition ${}^8\text{Be}^* \rightarrow {}^8\text{Be} + e^+e^-$. In view of this result, we critically re-examine the possible theoretical interpretations of the anomalies observed by the Atomki experiment in terms of a new boson X with mass around 17 MeV. The present work aims to study the phenomenology of a spin-2 state and revisit the possibility of a pure CP-even scalar, which was initially dismissed due to its inability to explain the Beryllium anomalous signal. Our analysis shows that a spin-2 state is highly disfavoured by the SINDRUM constraint while a scalar boson could explain the Helium and Carbon anomalies while being compatible with other experimental constraints.

Separate data on proton and neutron coupling needed!

• Reason: to constrain the more exotic flavor-dependent dark matter models & X17

Separate data on proton and neutron coupling needed!

- Reason: to constrain the more exotic flavor-dependent dark matter models & X17
- How to measure the neutron coupling? Use quasi-free neutrons!

Separate data on proton and neutron coupling needed!

- Reason: to constrain the more exotic flavor-dependent dark matter models & X17
- How to measure the neutron coupling? Use quasi-free neutrons!
- How to measure quasi-free neutrons? Deuteron photodisintegration!
- Previously: similar measurements for extraction neutron polarizability (Phys. Rev. Lett. 88, 162301)

Diagram topologies to one loop

Pole diagrams

Diagram topologies to one loop

Pole diagrams

Rescattering diagrams

Diagram topologies to one loop

Pole diagrams

Rescattering diagrams

MEC diagrams

Dominant diagram topologies

Dominant diagram topologies

Suppressing proton contributions

- As a first step consider only PWIA (currently calculating DWIA + MEC)
- Goal: extract neutron observables
- Question: how to suppress proton plane-wave contribution?

- In deuteron rest frame can show:
 - $\mathcal{M}_{\text{PWIA}}^n \propto \Psi_d(\mathbf{p}_p)$
 - $\mathcal{M}_{\text{PWIA}}^p \propto \Psi_d(-\mathbf{p}_n)$

- In deuteron rest frame can show:
 - $\mathcal{M}_{\text{PWIA}}^n \propto \Psi_d(\mathbf{p}_p)$
 - $\mathcal{M}_{PWIA}^{p} \propto \Psi_{d}(-\mathbf{p}_{n})$
- Non-relativistic deuteron wave-function consists of *s* wave and *d* wave.
- Dominant contribution: s wave

- In deuteron rest frame can show:
 - $\mathcal{M}_{\text{PWIA}}^n \propto \Psi_d(\mathbf{p}_p)$
 - $\mathcal{M}_{PWIA}^{p} \propto \Psi_{d}(-\mathbf{p}_{n})$
- Non-relativistic deuteron wave-function consists of *s* wave and *d* wave.
- Dominant contribution: s wave
- Go to region $|\mathbf{p}_p| \to 0$

- In deuteron rest frame can show:
 - $\mathcal{M}_{PWIA}^n \propto \Psi_d(\mathbf{p}_p)$
 - $\mathcal{M}_{\text{PWIA}}^p \propto \Psi_d(-\mathbf{p}_n)$
- Non-relativistic deuteron wave-function consists of *s* wave and *d* wave.
- Dominant contribution: s wave
- Go to region $|\mathbf{p}_p| \to 0$
- + $\Delta\approx 2.2~{\rm MeV}$ deuteron binding energy

Signal (I)

• Consider PWIA in more detail: $\int \int \frac{1}{\sqrt{2}} \int \frac{1}$

Time-like nucleon Compton

- Born
- π⁰ t-channel
 exchange
- Neutron scalar polarizability

Bethe-Heitler

+ crossed

Signal (II)

• Consider PWIA in more detail:

- New boson X can appear as narrow resonance on top of QED background
- Restrict kinematics s.t. $(p_+ + p_-)^2 = p_{e^+e^-}^2 = m_X^2$
- Then: BH negligible

Cornelis J.G. Mommers, Phys. Rev. D 109, 095010 & Phys. Lett. B 858 139031

Binning data

- Real world: cannot set $(p_+ + p_-)^2 = p_{e^+e^-}^2 = m_X^2$ exactly
- Bin data:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi} \to \overline{\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}} = \frac{1}{\delta m_{ee}} \int_{m_X - \delta m_{ee}/2}^{m_X + \delta m_{ee}/2} \mathrm{d}m_{ee} \, \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}$$

with bin width δm_{ee}

• N.B. possible $\delta m_{ee} \sim \mathcal{O}(0.1 \text{ MeV}/c^2)$

Binning data

- Real world: cannot set $(p_+ + p_-)^2 = p_{e^+e^-}^2 = m_X^2$ exactly
- Bin data:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi} \to \overline{\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}} = \frac{1}{\delta m_{ee}} \int_{m_X - \delta m_{ee}/2}^{m_X + \delta m_{ee}/2} \mathrm{d}m_{ee} \, \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}$$

with bin width δm_{ee}

• N.B. possible $\delta m_{ee} \sim \mathcal{O}(0.1 \text{ MeV}/c^2)$

Binning data

Cornelis J.G. Mommers, Phys. Rev. D 109, 095010 & Phys. Lett. B 858 139031

MESA

• Mainz Energy-Recovering Superconducting Accelerator

MESA

- Mainz Energy-Recovering Superconducting Accelerator
- Low energy, high intensity electron beam + gas jet target

MESA

- Mainz Energy-Recovering Superconducting Accelerator
- Low energy, high intensity electron beam + gas jet target
- Expected 2025
MESA

- Mainz Energy-Recovering Superconducting Accelerator
- Low energy, high intensity electron beam + gas jet target
- Expected 2025
- Double-sided superconducting Energy-Recovery Linac

MESA

- Mainz Energy-Recovering Superconducting Accelerator
- Low energy, high intensity electron beam + gas jet target
- Expected 2025
- Double-sided superconducting Energy-Recovery Linac
- Beam energy: $E \sim 105 \text{ MeV}$
- Luminosity: $\mathcal{L} \sim 10^{35} \text{ cm}^{-2} \text{s}^{-1}$

MESA

- Mainz Energy-Recovering Superconducting Accelerator
- Low energy, high intensity electron beam + gas jet target
- Expected 2025
- Double-sided superconducting Energy-Recovery Linac
- Beam energy: $E \sim 105 \text{ MeV}$
- Luminosity: $\mathcal{L} \sim 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
- MAGIX is a pair of multipurpose spectrometers, expected precision $\delta m_{ee} < 0.1 \text{ MeV}/c^2$

Projections MAGIX@MESA (I)

Cornelis J.G. Mommers, Phys. Rev. D 109, 095010 & Phys. Lett. B 858 139031

Projections MAGIX@MESA (II)

Cornelis J.G. Mommers, Phys. Rev. D 109, 095010 & Phys. Lett. B 858 139031

• Shifting interest in new light boson (LDM, X17, etc.)

- Shifting interest in new light boson (LDM, X17, etc.)
- Neutron observables not as constrained

- Shifting interest in new light boson (LDM, X17, etc.)
- Neutron observables not as constrained
- Access neutron observables with deuteron photodisintegration + tagging, previously successful

- Shifting interest in new light boson (LDM, X17, etc.)
- Neutron observables not as constrained
- Access neutron observables with deuteron photodisintegration + tagging, previously successful
- Extensions:
 - same principles w/ more neutron-rich system, enhancement signal

- Shifting interest in new light boson (LDM, X17, etc.)
- Neutron observables not as constrained
- Access neutron observables with deuteron photodisintegration + tagging, previously successful
- Extensions:
 - same principles w/ more neutron-rich system, enhanged
 - if no signal, neutron polarizabilities? (currently W)

nal

Theory		Experiment		
	$\Delta E_{TPE} \pm \delta_{theo} \ (\Delta E_{TPE})$	Ref.	$\delta_{exp}(\Delta_{LS})$	Ref.
$\mu { m H}$	$33~\mu\mathrm{eV}\pm 2~\mu\mathrm{eV}$	Antognini et al. (2013)	$2.3 \ \mu \mathrm{eV}$	Antognini et al. (2013)
$\mu \mathrm{D}$	$1710 \ \mu eV \pm \frac{15 \ \mu eV}{15}$	Krauth et al. (2015)	$3.4 \ \mu \mathrm{eV}$	Pohl et al. (2016)
$\mu^{3}\mathrm{He^{+}}$	$15.30~{ m meV}\pm 0.52~{ m meV}$	Franke et al. (2017)	0.05 meV	
$\mu^4 \text{He}^+$	$9.34 \text{ meV} \pm \frac{0.25 \text{ meV}}{-0.15 \text{ meV} \pm 0.15 \text{ meV}}$	Diepold et al. (2018) Pachucki et al. (2018)	$0.05 \mathrm{meV}$	Krauth et al. (2020)
			1	

.....

.

Low mass DARK SECTOR SEARCHES

with deuteron photodisintegration

Cornelis J.G. Mommers, Phys. Rev. D 109, 095010 & Phys. Lett. B 858 139031

Group Marc Vanderhaeghen, Johannes Gutenberg University Mainz

Backup slides

Timeline: X17 + theory

ATOMKI group reports anomalous signals in...

• **8Be decays** Phys. Rev. Lett. 116, 042501 (2016)

2016

2021

2022

- **⁴He decays** Phys. Rev. C 104, 044003 (2021)
- ¹²C decays Phys. Rev. C 106, L061601 (2022)

Phys. Rev. C 106, L061601 (2022)

Timeline: X17 + theory

ATOMKI group reports anomalous signals in...

- **8Be decays** Phys. Rev. Lett. 116, 042501 (2016)
- **4He decays** Phys. Rev. C 104, 044003 (2021)
- ¹²C decays Phys. Rev. C 106, L061601 (2022)
- **2022-** Tensions in theory?

2016

2021

2022

now

See JHEP 02 154 (2023), Phys. Rev. D 108, 015009 (2023), Phys. Rev. D 108, 055011 (2023), Phys. Lett. B 858 139031 (2024), and *many* others!

Phys. Rev. C 106, L061601 (2022)

Meanwhile, in experiment...

(HU) ATOMKI **VNU** (VN) (CH) **MEG-II (IT)** PADME (CA) CCPAC (DE) MAGIX JLAB **(US) NEW JEDI (FR)** (CH) n_TOF (CZ) **CTU** Others...

Meanwhile, in experiment...

ATOMKI (HU)**VNU** VN) **MEG-II** (CH)PADME (CA)CCPAC MAGIX (DE) JLAB (US) NEW JEDI (FR) n TOF CZ) Others...

Article Checking the ⁸Be Anomaly with a Two-Arm Electron Positron Pair Spectrometer

Tran The Anh¹, Tran Dinh Trong^{2,*}, Attila J. Krasznahorkay³, Attila Krasznahorkay³, József Molnár³, Zoltán Pintye³, Nguyen Ai Viet¹, Nguyen The Nghia^{1,*}, Do Thi Khanh Linh⁴, Bui Thi Hoa¹, Le Xuan Chung⁴ and Nguyen Tuan Anh⁵

Abstract: We have repeated the experiment performed recently by ATOMKI Laboratory (Debrecen, Hungary), which may indicate a new particle called X17 in the literature. In order to obtain a reliable and independent result, we used a different structure of the electron–positron pair spectrometer at the VNU University of Science. The spectrometer has two arms and simpler acceptance and efficiency as a function of the correlation angle, but the other conditions of the experiment were very similar to the published ones. We could confirm the presence of the anomaly measured at $E_p = 1225$ keV, which is above the $E_p = 1040$ keV resonance.

claimer: list of planned &

Meanwhile, in experiment...

ATOMKI (HU) VNU N **MEG-II** (CH) PADME (\mathbf{IT}) (CA)CCPAC MAGIX (DE) JLAB (US) **NEW JEDI (FR)** n_TOF (CZ) CTU Others...

Eur. Phys. J. C manuscript No. (will be inserted by the editor)

Search for the X17 particle in $^{7}\text{Li}(p,e^{+}e^{-})^{8}\text{Be}$ processes with the MEG II detector. See previous talk!

The MEG II collaboration

Abstract The observation of a resonance structure in the opening angle of the electron-positron pairs in the ⁷Li(p,e^+e^- ⁸Be reaction was claimed and interpreted as the production and subsequent decay of a hypothetical particle (X17). Similar excesses, consistent with this particle, were later observed in processes involving ⁴He and ¹²C nuclei with the same experimental technique. The MEG II apparatus at PSI, designed to search for the $\mu^+ \rightarrow e^+ \gamma$ decay, can be exploited to investigate the existence of this particle and study its nature. Protons from a Cockroft-Walton accelerator, with an energy up to 1.1 MeV, were delivered on a dedicated Li-

based target. The γ and the e⁺e⁻ pair emerging from the ⁸Be^{*} transitions were studied with calorimeters and a spectrometer, featuring a broader angular acceptance than previous experiments. We present in this paper the analysis of a four-week data-taking in 2023 with a beam energy of 1080 keV, resulting in the excitation of two different resonances with Q-value 17.6 MeV and 18.1 MeV. No significant signal was found, and limits at 90 % C.L. on the branching ratios (relative to the γ emission) of the two resonances to X17 were set, $R_{17.6} < 1.8 \times 10^{-6}$ and $R_{18.1} < 1.2 \times 10^{-5}$.

aimer: list of planned &

Some key observations

- Mass X17 ~ 17 MeV/c²
- Parity analysis: State (MeV) Scalar (0⁺) Pseudoscalar (0⁻) Axial vector (1⁺) Vector (1⁻) ⁸Be(18.15), 1⁺ (J^P) ⁸Be(17.64), 1⁺ \checkmark \checkmark \checkmark \checkmark ⁴He(21.01), 0⁻ \checkmark \checkmark ⁴He(20.21), 0⁺ \checkmark ¹²C(17.23), 1⁻
- X17 couples (at least) to protons, neutrons and electrons
- Existing constraints from NA48/2, may imply a vector X17 couples weakly to protons ("protophobia") $\pi^0 \rightarrow \gamma(X \rightarrow e^+e^-)$

Projections MAGIX@MESA

- Assuming we see a signal (bump), what is the smallest value of the neutron coupling we would be able to exclude (=reach)
- Recall relation no. events and cross section, $N = \sigma \int_0^T dt \mathcal{L} = \sigma L$ Poisson statistics, $SD = s = \sqrt{N}$

• So,
$$\sigma_S / \sigma_B = N_S / N_B = n_\sigma s_B / N_B = n_\sigma / \sqrt{N_B} = n_\sigma / \sqrt{\sigma_B L}$$

• Finally,
$$\sigma_S = \sigma_X = g_n^2 \overline{\sigma}_X \implies \text{reach} = |g_n| = \left[\frac{\sigma_{\text{QED}}}{\overline{\sigma}_X} \frac{n_\sigma}{\sqrt{L\sigma_{\text{QED}}}}\right]^{1/2}$$

Kinematics

- $\mathcal{M}_{n\leftarrow 2}$ Lorentz scalar $\Rightarrow 3n-4$ independent variables
- Pick following eight variables (in deuteron rest frame):

Table ATOMKI decays

Ref.	State (MeV)	Transition	(J^P)
[2]-[4], [6]	$^{8}\text{Be}(18.15)$	$1^+ \rightarrow 0^+$	(M1, isoscalar)
[2]-[4], [6]	${}^{8}\text{Be}(17.64)$	$1^+ \rightarrow 0^+$	(M1, isovector)
[5], [7]-[9]	$^{4}\text{He}(21.01)$	$0^- \rightarrow 0^+$	(M0)
[5], [7]-[9]	${}^{4}\text{He}(20.21)$	$0^+ \rightarrow 0^+$	(E0)
[10]	$^{12}C(17.23)$	$1^- \rightarrow 0^+$	(E1, isovector)

States (MeV)	$m_X \ (MeV)$	Γ_X (eV)	B
$^{8}\text{Be}(18.15)$	$16.70 \pm 0.35(\text{stat}) \pm 0.5(\text{syst})$	$1.1(2) \times 10^{-5}$	5.8×10^{-6}
${}^{8}\text{Be}(18.15), {}^{8}\text{Be}(17.64)$	17.01(16)	$1.2(2) \times 10^{-5}$	$6(1) \times 10^{-6}$
${}^{4}\text{He}(21.01), {}^{4}\text{He}(20.21)$	$16.94 \pm 0.12(\text{stat}) \pm 0.21(\text{syst})$		
${}^{4}\text{He}(21.01), {}^{4}\text{He}(20.21)$	$16.84 \pm 0.16(\text{stat}) \pm 0.20(\text{syst})$	3.9×10^{-5}	$1.2(4) \times 10^{-1}$
$^{12}C(17.23)$	$17.03 \pm 0.11(\text{stat}) \pm 0.20(\text{syst})$	$1.6(1) \times 10^{-4}$	$3.6(3) \times 10^{-6}$

Theory analysis

- Assume definite parity (J^P)
- Example: ⁸Be(18.15), 1⁺
- $\bullet \; A \to XB$

$$\mathbf{J}_A = \mathbf{S}_X + \mathbf{S}_B + \mathbf{L} \qquad P_A = P_X \times P_B \times (-1)^L$$
$$\mathbf{1} = \mathbf{S}_X + \mathbf{0} + \mathbf{L} \qquad +1 = P_X \times (+1) \times (-1)^L$$

$\mathbf{S}_X = \mathbf{0} \implies |L - 1| \le 0 \le L + 1 \implies L = 1$ $\mathbf{S}_X = \mathbf{1} \implies |L - 1| \le 1 \le L + 1 \implies L = 0, 1, 2$

 $J^P = 0^-, 1^+, 1^-$

Theory analysis

• Assume definite parity (J^P)

State (MeV)	Scalar (0+)	Pseudoscalar (0 ⁻)	Vector (1 ⁻)	Axial vector (1+)
⁸ Be(18.15), 1 ⁺		\checkmark	\checkmark	\checkmark
⁸ Be(17.64), 1 ⁺		\checkmark	\checkmark	\checkmark
⁴ He(21.01), 0 ⁻		\checkmark		\checkmark
⁴ He(20.21), 0 ⁺	\checkmark		\checkmark	
¹² C(17.23), 1⁻	\checkmark		\checkmark	\checkmark

Diagrams in detail (QED)

Figure 2: The direct and crossed diagram for the BH process.

Figure 1: The direct and crossed diagram for the Born process.

Figure 3: The diagram for the pion-pole amplitude.

Diagrams in detail (signal)

Projections MAGIX@MESA (II)

- Assuming we see a signal (bump), what is the smallest value of the neutron coupling we would be able to exclude (=reach)
- Recall relation no. events and cross section, $N = \sigma \int^{T} dt \mathcal{L} = \sigma L$
- Poisson statistics, $SD = s = \sqrt{N}$
- Then, $\sigma_{S+B}/\sigma_B \approx \sigma_S/\sigma_B + 1 \implies$ Sensitivity $S = \sigma_{S+B}/\sigma_B 1 = \sigma_S/\sigma_B$
- So, $S = N_S/N_B = n_\sigma s_B/N_B = n_\sigma/\sqrt{N_B} = n_\sigma/\sqrt{\sigma_B L}$

• Finally,
$$\sigma_S = \sigma_X = g_n^2 \overline{\sigma}_X \implies \text{reach} = |g_n| = \left[\frac{\sigma_{\text{QED}}}{\overline{\sigma}_X} \frac{n_\sigma}{\sqrt{L\sigma_{\text{QED}}}}\right]^{1/2}$$

Verifying the QED background (I)

Verifying the QED background (II)

Influence phase space reach

FIG. 9. The dependence of the reach on the size of the integrated phase space for a vectorlike X normalized to its value at the start of the x-axis. Here we vary (a) E_{γ} , (b) ϕ_{\pm} or (c) θ_{\pm} while keeping the rest of the kinematic variables fixed to detector setting 2 (see text). We set $m_X = 65 \text{ MeV}/c^2$ and $\delta m_X = 0.1 \text{ MeV}/c^2$.