

Bormio Conference

27–31 Jan 2025 Bormio, Italy Europe/Berlin timezone

61st International Winter Meeting on Nuclear Physics

27 - 31 January 2025 **Bormio, Italy**

Light Dark Matter searches M.Battaglieri (INFN)

Light Dark Matter searches

Standard Model of particles and interaction

e @lab12

INFN

some anomalies ...

1935: Zwicky, Coma and Dark Matter The gravity of the Stars is not enough to hold clusters together

beside visible matter there should be something else **DARK MATTER**

- ★ Gravitational lensing
- ★ Mass balance
- ★ CMB

★

- \star Clusters of galaxies
- \star Cluster collisions

Compelling astrophysical indications about DM existence

Dark Matter (DM) vs Baryonic Matter (BM)

★ How much DM w.r.t. BM?

 \star Does DM participate to non-gravitational interactions? \star Is DM a new particle?

- \star Constraint on DM mass and interactions
 - should be 'dark' (no em interaction)
 - should weakly interact with SM particles
 - should provide the correct relic abundance
 - should be compatible with CMB power spectrum

 \star We can use what we know about standard model particles to build a DM theory Use the SM as an example: $SM = U(I)_{EM} \times SU(2)_{Weak} \times SU(3)_{Strong}$

Particles, interactions and symmetries

Known particles & new forcecarriers

<u>ab12</u>

INFN

Particles: quarks, leptons

Force-carriers: gluons, γ, W, Z, graviton (?), Higgs, ... Two options:

- \star

3

... assuming that the gravity is not modified and DM undergoes to other interactions

New matter interacting trough the same forces New matter interacting through new forces

Any guess about the DM mass and interaction? Yes, if we do a couple of assumptions: ★ DM thermal origin in the early Universe DM was in thermal equilibrium with regular matter (via annihilation) \star DM as thermal relic from the hot early Universe Minimal DM abundance is left over to the present day Correct DM density for an annihilation xsec: $\langle \sigma v \rangle \sim 3 \times 10^{-26} \text{ cm}^3/\text{s} \sim 1/(20 \text{ TeV})^2$ WIMPs (Weakly Interacting Massive Particles)

- Massive DM with massive mediator
- For ~100 GeV DM mass, weak-scale mediators provide reasonable annihilation rate and range of DM-scattering rates

Thermal origin suggests DM interactions and mass in the vicinity of the weak-scale

 g_2 , $\sigma_n \sim \frac{\alpha_2^2 \mu_n^2}{m_Z^4} \sim 10^{-38} \text{ cm}^2$ Ζ exchange $\sigma_n \lesssim 10^{-44} \ {\rm cm}^2$ Higgs exchange

Exploring the WIMP's option

Slow-moving cosmological weakly interacting massive particles

- DM detection by measuring the (heavy) nucleus recoil • Constraints on the interaction strength from the DM Direct Detection limits
 - Scattering through Z boson ($\sigma \sim 10^{-39}$ cm²): ruled out
 - Approaching limits for scattering through the Higgs ($\sigma \sim 10^{-45}$ cm²)
 - Close to irreducible neutrino background

* No signal observed in Direct Detection * Experiments have reduced sensitivity to (light) DM (<I GeV)

Mz

Direct Detection

I MeV

e. 8 Lab12

INFN

WIMPs paradigm is not the only option (keeping the DM thermal origin)

 $\langle \sigma v \rangle \sim g^2_{\text{Dark}} g^2_{\text{SM}} M^2_{\text{DM}}/M^4_{\text{mediator}}$

Light Dark Matter

I GeV

Light Dark Matter (<TeV) naturally introduces light mediators

10 TeV

WIMPs

New interaction

Introducing a new force in nature

*Hidden sector (HS) present in string theory and super-symmetries

*HS not charged under SM gauge groups (and v.v.)
 no direct interaction between HS and SM
 HS-SM connection via messenger particles

A simple way to go beyond the SM (not yet excluded!): $SU(3)_C \times SU(2)_L \times U(1)_Y \times extra U(1)$

Color Electroweak Hypercharge Hidden sector

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\chi}{2} X_{\mu\nu} F^{\mu\nu} + \frac{m_{\gamma'}^2}{2} X_{\mu} X^{\mu}$$

 Ψ can be a huge mass scale particle (M_{Ψ}~IEeV) coupling to both SM and HS

 γ'/A' couples to SM via electromagnetic current (kinetic mixing) $\Rightarrow A_{\mu} \rightarrow A_{\mu} + \varepsilon a_{\mu} \quad \chi = \varepsilon \sim 10^{-6} - 10^{-2} (\alpha^{DarkProton} = \varepsilon^2 \alpha_{\mu})$

A lesson from history

An historical example of a 'Standard Model' and 'hidden sector'

- ★ Back in the '30 the Standard Model of the elementary particles was: photon, electron and nucleons
- ★ Beta decay:

Continuous spectrum!

 $n \rightarrow p + e^- + v$

 \star Perfect example of a hidden sector!

- neutrino is electrically neutral
- very weakly interacting and light
- interacts with "Standard Model" through "portal" $(p\gamma^{\mu}n)(e\gamma^{\mu}v)$

Today?

- \star Higgs discovery represent the triumph of SM
- ★ but there are still some missing pieces: Dark Matter, baryon asymmetry, neutrino oscillations ...
- \star No guarantee of discoveries but exciting times to look for new physics!

Light Dark Matter

\star Experimental limits

Light Dark Matter with a (almost) weak interaction (new force!)

- Direct Detection is difficult
 - Low mass elastic scattering on heavy nuclei produces small recoil
 - eV-range recoil requires a different detection technology
 - Directionality may help to go behind existing limits at large masses

Accelerators-based DM search

covers an unexplored mass region extending the reach outside the classical DM hunting territory

Light Dark Matter

I MeV

I GeV

Dark Sector or Hidden Sector (DM not directly charged under SM interactions)

Can be explored at accelerators!

elab12

8

Light Dark Matter searches

nuclei produces small recoil etection technology existing limits at large masses

High intensityModerate energy

Direct Detection

10 TeV

WIMPs

Mz

Dark Photon Signatures

Vector mediated Light Dark Matter

• Vector-Portal: DM-SM interaction mediated by U(1) gaugeboson (dark photon or A') couples to electric charge

A' interaction scenarios

- Secluded: no constraints by cosmology for accelerator based experiments. Any ε allowed
- Visible decay: final state contains SM particles
- Invisible decay: A' decays to Dark Sector invisible particles

Experimental techniques

Light Dark Matter searches

INFN

e.

Fixed target vs. collider

Fixed Target

$\begin{array}{c} E_{1} & A' & E_{1} x \\ & E_{1} & E_{1} (1 - x) \\ & & \\ \hline Nucleus \\ 10^{11} e^{-} & 10^{23} \\ & atoms \\ & in \\ & target \\ \end{array}$

$$\sigma \sim rac{lpha^3 Z^2 \epsilon^2}{m^2} \sim O(10 \ pb)$$

high backgrounds limited A' mass

e+e- colliders

low backgrounds higher A' mass

* $I/M_{A'}$.vs. I/E_{beam} *Coherent scattering from Nucleus (~Z²)

A' visible and invisible decay at accelerators

e N \rightarrow N $\gamma' \rightarrow$ N Lepton Lepton+

Fixed target:

→ JLAB, MAINZ

Fixed target: $p \ N \rightarrow N \ \gamma' \rightarrow p$ Lepton Lepton+ \rightarrow FERMILAB, SERPUKHOV

Meson decays: $\pi^{0}, \eta, \eta', \omega, \rightarrow \gamma' \gamma (M)$ \rightarrow Lepton Lepton + $\gamma (M)$ \rightarrow KLOE, BES3, WASA-COSY, PHENIX

INFN elab12

Light Dark Matter searches

High Energy Hadron Colliders: $pp \rightarrow lepton jets$ \rightarrow ATLAS, CMS, CDF&D0 e^+e^- colliders $N\propto\epsilon^2$ + meson decays BaBar @ SLAC High Energy Ring

Annihilation: $e+e- \rightarrow \gamma' \gamma \rightarrow \mu \mu \gamma$ \rightarrow BABAR, BELLE-II, KLOE, CLEO

A' Production mechanisms - e[±]

The Weizsacker-Williams approximation (A'-strahlung)

- The incoming electron 'see' a fast-moving cloud of effective photons to scatter from
- Photons are almost on-shell (low Q2) \rightarrow transverse photons ~ e⁻ γ_{Real} scattering
- Same treatment as the regular bremstrahlung
- Regularisations occurs in the case of interest $M_{A'} >> M_{e-}$
- Effective photon flux χ is critical, accounting for nuclear effect using FF

A' Production - positrons

e 💰 lab12

INFN

- NON-RESONANT annihilation
 - A' along (e+e-) direction
 - RESONANT annihilation

- Two-body process
- A' forward-peaked along e⁺ direction
- $E_{A'} = E_R = m^2_{A'}/2_{me}$

- Known and used
- Collider (missing mass experiments)

 $\sigma_r = \sigma_{\text{peak}} \frac{\Gamma_{A'}^2 / 4}{(\sqrt{s} - m_{A'})^2 + \Gamma_{A'}^2 / 4}$

12

• Thin target experiments (visible decay)

$e+e- \rightarrow \gamma' \gamma \rightarrow \mu \mu \gamma$ → BABAR, BELLE, KLOE, CLEO

Light Dark Matter searches

XI7 search at JLab

- Search for the X | 7 in e + e invariant mass
- Presented to JLab PAC 49 in Aug 21 and granted a C2 approval
- Presented to JLab PAC 50 in Aug 2022 and granted A rate (full approval)
- Scheduled to run soon

e. 2 lab12

INFN

Search for Hidden Sector New Particles in the 3 – 60 MeV Mass Range

Proposal submitted to JLab PAC49

INFN e. @lab12

Light Dark Matter searches

INFN elab12

17

Light Dark Matter searches

Hunting for A' at accelerators visible decay

Fixed target: e N \rightarrow N $\gamma' \rightarrow$ N Lepton⁻ Lepton⁺ → JLAB, MAINZ Fixed target: $p N \rightarrow N \gamma' \rightarrow p$ Lepton⁻ Lepton⁺ → FERMILAB, SERPUKHOV Annihilation: $e+e- \rightarrow \gamma' \gamma \rightarrow \mu \mu \gamma$ → BABAR,BELLE,KLOE Meson decays: π^0 , η , η' , ω' , $\rightarrow \gamma' \gamma \rightarrow \text{Lepton}^- \text{Lepton}^+ \gamma$ → KLOE, BES3, NA48, HC

coupling vs mass

8

e. 8 Lab 12

INFN

8

Hunting for A' at accelerators visible decay

Fixed target: $e \ N \rightarrow N \gamma' \rightarrow N$ Lepton- Lepton+ \rightarrow JLAB, MAINZ Fixed target: $p \ N \rightarrow N \gamma' \rightarrow p$ Lepton- Lepton+ \rightarrow FERMILAB, SERPUKHOV Annihilation: $e+e- \rightarrow \gamma' \gamma \rightarrow \mu\mu \gamma$ \rightarrow BABAR,BELLE,KLOE Meson decays: π^0 , η , η' , $\omega' \rightarrow \gamma' \gamma \rightarrow$ Lepton- Lepton+ γ \rightarrow KLOE, BES3, NA48, HC

No positive signal (so far) but limits in parameter space coupling vs mass

19

19

e. 8 Lab 12

เทศท

Fixed target: e N \rightarrow N γ → JLAB, MA Fixed target: $p N \rightarrow N$ → FERMILA Annihilation: $e+e- \rightarrow \gamma^{\dagger}$ → BABAR,B Meson decays: π^0 , η , η' , → KLOE, BE

> No positive si limits in pa couplir

> > S.Gori

e @lab12

INFN

20

20

e⁺ annihilation on fixed (thin) target - invisible -

- Novosibirsk
- LNF

elab12

- Cornell
- Jefferson Lab

colliders **BaBar** @ SLAC

Two step process I) An electron radiates an A' and the A' promptly decays to a χ (DM) pair II) The χ (in-)elastically scatters on a e-/nucleon in the detector producing a visible recoil (GeV)

Experimental signature in the detector:

X-electron \rightarrow EM shower ~GeV energy

BDX @ JLab

Approved by JLab 2018 PAC with max rate (A)

Waiting to be scheduled

e-@lab12

INFN

Accumulating 10²² EOT in ~2y BDX sensitivity is 10-100 times better than existing limits on LDM

- High energy beam available: I I GeV
- The highest available electron beam current: ~65 uA
- The highest integrated charge: 10²² EOT (41 weeks)
- Drilled shaft downstream of Hall-A BD
- BDX detector (recycling BaBar Csl and/or PANDA PbWO4 crystals)
- Expected to run in parallel to the Moeller experiment (2027-2030)

BDX detector: EMCalorimeter + Veto

- 4 modules 2x(20x20)crystals each
- 3200 PbWO4 crystals (repurposed)
- 1200 crystal from PRAD-II/JLab
- Negotiating with PANDA to loan ~3k ECal PbWO crystals
- 6x6 mm² Hamamatsu SiPM
- Veto: Plastic scintillator + WLS fibres

BDX-MINI @JLab

BDX-MINI: pilot experiment to prove the validity and feasibility of the BDX experiment

- Two wells dug for bg muon tests
- E_{beam}=2.2 GeV, no muons
- Limited reach but first physics result!

• 44 PbWO4 PANDA/FT-Cal crystals (~1% BDX active volume) • 6x6 mm2 SiPM readout •2 active plastic scintillator vetos: cylindrical and octagonal (8 sipm each) + 2x lids + Passive W shielding

M.Battaglieri et al. EPJC (2021) 81:164

 $\epsilon^2 \alpha_D (m_{\chi}/m_{A'})^4$ Ŋ

• Data-taking completed, analysis completed • Results provide exclusion limits similar to the best existing experimnts (EI37, NA64, BaBar, ...)

Light Dark Matter searches

- Run form Dec 2019 to Aug 2020
- Collected 4e21 EOT (40% BDX!) in ~4 months (+ cosmics)
- Good detector performance with high duty factor

 $\alpha_{\rm D}$ = 0.5 ; $m_{\!_{\chi}}$ = 3 $m_{\!\chi}$

P2 target

~1000 crystals and photomultipliers from the former A4 experiment

- $\alpha D=0.5$ and $m\gamma'=3 \cdot m\chi$
- 3 10²² EOT
- Energy detection threshold 14 MeV

e-@lab12

• Detector efficiency 90% • No backgrounds

Missing energy/momentum BD experiments

"Disappearance" of a sizable fraction of the beam energy/ momentum. SM recoil Thermal Relic Targets & Current Constraints LDMX Phase I @ 4 GeV 0.1-0.3 X₀ target (no p_T cut) **BDX** Dark Matter χ Excited State χ^{\star} MiniBooNH $\epsilon^{2} \alpha_{D}^{0} (m^{\chi}/m)$ $10^{-10} 10^{-10}$ $10^{-11} 10^{-11}$ 10^{-o} BaBar NA64 E137 -Dirac Fermion Relic 10-12 > 10^{-13} LDMX Phase II @ 8 GeV 10^{-14} 0.1-0.3 X₀ target 10^{-15} 10-16 10^{2} 10

- Active beam-dump experiment
- Missing energy exp (e $Z \rightarrow e Z' A'$ with $A' \rightarrow invisible$)
- 100 GeV SPS electron beam at SPS
- Active target (calorimeter)
- Exclusion plots based on 3x10⁹ EOT

... and future BD experiments

• LDMX: missing momentum exp proposed at SLAC-LCLS-II 4 GeV e- beam, (Active beamdump)

MissingMomentum vs BeamDump (disappearance vs appearance) ... more sensitive in the exclusion plots but less reliable/convincing in case of positive finding!

The two experimental approaches are complementary

 m_{γ} [MeV]

Belle II

 10^{3}

T	1-1	1		t bailing		ť1a
Experiment	lad	beam	particle yield/L	technique	portais	timescale
current						
ATLAS [1382]	CERN	pp, 13-14 TeV	up to 3 ab ⁻¹	visible, invis.	(1,2,3,4)	2042
Belle II [1219]	KEK	e^+e^- , 11 GeV	up to 50 ab-1	visible, invis.	(1,2,3,4)	2035
CMS [1383]	CERN	pp, 13-14 TeV	up to 3 ab ⁻¹	visible, invis.	(1,2,3,4)	2042
Dark(Spin)Quest [1256]	FNAL	p, 120 GeV	$10^{18} \rightarrow 10^{20}$	visible	(1,2,3,4)	2024
FASER [1052]	CERN	pp, 14 TeV	150 fb ⁻¹	visible	(1,2,3,4)	2025
LHCb [1384]	LHC	pp, 13-14 TeV	up to 300 fb ⁻¹	visible	(1,2,3,4)	2042
MicroBooNE [1385]	FNAL	p, 120 GeV (NuMi)	$\sim 7 imes 10^{20} \ { m pot}$	visible	(2,4)	2015-2021
NA62 [1174]	CERN	$K^+, 75 \text{ GeV}$	a few 1013 K decays	visible, invis.	(1,2,3,4)	2025
NA62-dump [1386]	CERN	p, 400 GeV	$\sim 10^{18}~{ m pot}$	visible	(1,2,3,4)	2025
NA64 _e [1387]	CERN	e^{-}/e^{+} , 100 GeV	up to $1\cdot10^{13}e^-/e^+$	E, visible	(1,3)	< 2032
PADME [1300]	LNF	e^+ , 550 MeV	$5\cdot 10^{12} e^+$ ot	missing mass	(1)	< 2023
T2K-ND280 [1388]	JPARC	p, 30 GeV	10 ²¹ pot	visible	(4)	running
proposed						
BDX [1389]	JLAB	e ⁻ , 11 GeV	$\sim 10^{22}$ eot/year	recoil e	(1,3)	2024-2025
CODEX-b [1030]	CERN	<i>pp</i> , 14 TeV	300 fb ⁻¹	visible	(1,2,3,4)	2042
Dark MESA [1390]	Mainz	e ⁻ , 155 MeV	150 µA	visible	(1)	< 2030
FASER2 [1068]	CERN	pp, 14 TeV	3 ab ⁻¹	visible	(1,2,3,4)	2042
FLaRE [1068]	CERN	<i>pp</i> , 14 TeV	3 ab-1	visible, recoil	(1)	2042
FORMOSA [1068]	CERN	<i>pp</i> , 14 TeV	3 ab-1	visible	(1)	2042
Gamma Factory [1391]	CERN	photons	up to $10^{25} \gamma$ /year	visible	(1,3)	2035-2038?
HIKE-dump [1392, 1191]	CERN	p, 400 GeV	5 ·10 ¹⁹ pot	visible	(1,2,3,4)	<2038
HIKE-K+ [1392, 1191]	CERN	$K^+, 75 \text{GeV}$	1014 K decays	visible, inv.	(1,2,3,4)	<2038
HIKE-K _L [1392, 1191]	CERN	K_L , 40 GeV	10 ¹⁴ K decays	visible, inv.	(1,2,3,4)	<2042
LBND (DUNE) [1393]	FNAL	p, 120 GeV	$\sim 10^{21}~{ m pot}$	recoil e, N	(1,2,3,4)	< 2040
LDMX [1271]	SLAC	e^- , 4,8 GeV	$2 \cdot 10^{16} \text{ eot}$	p, visible	(1)	< 2030
M ³ [1394]	FNAL	μ, 15 GeV	10 ¹⁰ (10 ¹³) mot	ø	(1)	proposed
MATHUSLA [1395]	CERN	pp, 14 TeV	3 ab ⁻¹	visible	(1,2,3,4)	2042
milliQan [1070]	CERN	pp, 14 TeV	0.3-3 ab ⁻¹	visible	(1)	< 2032
MoeDAL/MAPP [1396]	CERN	pp, 14 TeV	30 fb ⁻¹	visible	(4)	< 2032
Mu3e [1397]	PSI	29 MeV	$10^8 ightarrow 10^{10} \mu/\mathrm{s}$	visible	(1)	< 2038?
NA64 _µ [1398]	CERN	μ, 160 GeV	up to 2×10^{13} mot	¥	(1)	< 2032
PIONEER [1399]	PSI	55-70 MeV, π^+	$0.3 \cdot 10^6 \pi/s$	visible	(4)	phase I approved
SBND [1400]	FNAL	p, 8 GeV	$6 \cdot 10^{20}$ pot	recoil Ar	(1)	< 2030
SHADOWS [1401]	CERN	p, 400 GeV	5 · 10 ¹⁹ pot	visible	(2,3,4)	<2038
SHiP [1402]	CERN	$p,400~{ m GeV}$	$2 \cdot 10^{20}$ pot	visible, recoil	(1,2,3,4)	<2038

From CERN-FIPs workshop report, (SNOWMASS22): several experiments planned/proposed (LHC, SLAC, Mainz, FNAL, KEK, PSI, LPARC) with a variety of beams (proton, leptons, photons), energies (from 150 MeV to 14 TeV) and experimental techniques (visible, invisible, recoil, ..) with a timeline that reaches ~2042

e @lab12

INFN

C.Antel et al. Feebly interacting particles: Fips 2022 workshop report, 2023

Conclusions

- * Existence of Dark Matter is a compelling reason to investigate new forces and matter over a broad range of mass
- * Accelerator-based (Light)DM search provides unique feature of distinguish DM signal from any other cosmic anomalies or effects
- * Extensive experimental plans at high intensity e-facility: JLab, LNF, Cornell, Mainz, SLAC (+ p beam at FNAL and CERN)
- * A new generation of dedicated and optimised experiments at high intensity frontier will test the relic (light) dark matter scenario
- * Jefferson Lab is the world-leader facility for present and near-future LDM searches: APEX, HPS, DarkLight, BDX (and possibly e+ annihilation and LDMX)
- * Significant interests from funding agencies (DOE/NSF) and labs (CERN and JLab) to run small scale experiments with a great discovery potential

* Discovery or decisive tests of simplest scenarios will possible in the next ~5-8 years!

