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Neutron Stars

Possible final stage of   
stellar evolution

Maximum mass:  solar masses  
Radius:  km

∼ 2.2 − 3
∼ 12



Neutron Star Masses and Radii

Different models for the equation of  
state (EOS) have different maximum 

masses and radii

Mass and radius constraints from radio, 
X-ray (NICER) and gravitational wave 
observations help inform EOS models

Demorest et al. 2010

Gao et al. 2015

Reddy 2021



Neutron Star Mergers: GW170817

Gravitational 
Waves Gamma-ray burst

Kilonova: 
UV, optical, 
infrared…

Merger remnant  
+ disk



Between the “whoop” and the “ding”…

 GWs 
whoop!
→

 GRB 
ding!
→ When is the GRB launched?

Binary neutron star merger

Here goes the LIGO + Fermi
visualization

Or: Is the central engine  
a black hole  

or  
a neutron star?



… a hypermassive neutron star?

HMNS lives for < 1s, spins fast, jiggles and emits kHz GWs  
too high for current GW detectors!

black holeneutron stars HMNS

Can the HMNS power the short GRB? 

(In the astro community: millisecond magnetar scenario)

Takami, Rezzolla & Baiotti, 2014



HMNS signal:

short-lived 
time-evolving 
dissipative*

quasi-periodic oscillations 
(QPOs)

⇓

Takami, Rezzolla & Baiotti, 2014

HMNS Quasi-periodic oscillations

*simulations also have numerical dissipation!

Could the 
GRB show 

these QPOs?



Examples of  quasi-periodic oscillations

Motta et al. 2018

black hole X-ray binary XTE J1550-564
X-ray tail of  SGR 1806-20 giant flare

Miller, Chirenti & Strohmayer 2019



GRB QPOs?

Takami, Rezzolla & Baiotti, 2015

Nedora et al. 2019

Stergioulas et al. 2011

Model for the modulation of  
the SGRB: How does it work?

surface oscillations can 
produce a deviation of the 
beam direction

Question: is it detectable?

adapted from Lorimer & Kramer, 2004

[Strohmayer, 1992]

Jet needs to break free from ejecta;
relatively free polar region helps

[Rosswog, 2004; Perego et al. 2017]

adapted from Lorimer & Kramer, 2004

How does the HMNS 
oscillate?

How (and when) could the 
oscillations transmitted to 

the GRB?

Dynamical origin Characteristic modes



What we are looking for:
Oscillations that 

last for approx  (lifetime of an HMNS)

have frequencies in the range  

100 ms

500 − 5,000 Hz

How: Bayesian model comparison
Model 0: White noise only

Model 1: White noise + QPO

total burst duration

half-overlapping segments
(approx )100 ms

We analyze each burst divided into 
short segments and quote the Bayes 
factor in favor of the noise + QPO 
model for each segment

nσ =
1
2

Iaosc
Δt
Δf



Initial analyses: Lessons learned

Causes of  fake QPOs 

Cosmic rays 

Detector artifacts* 

(Data corruption) 

Red noise contamination 

*https://swift.gsfc.nasa.gov/analysis/
bat_digest.html#spurious-signal



Opening the treasure trove

Something in the 
BATSE data? 

Let’s look more closely.

More than 700 short 
GRBs analyzed 

Each GRB split in 
smaller segments for 

analysis 

Nothing pops up in 
Fermi or Swift data



Opening the treasure trove

… and bang! Two signals. 
The combined false 

positive rate is  
1 in 3.3 million!

Both signals have: 
2 QPOs each 

with similar frequencies 
and good agreement with 

simulations

Nov 1 1993 July 11 1991



CGRO transformed GRB science

Launched in 1991 
De-orbited in 2000

Compton Gamma-Ray 
Observatory 

was one of  NASA’s 
Great Observatories



Past and Future
Future missions:

BATSE BAT GBM StarBurst 
2026

COSI 
2027

AMEGO-
X

Effective 
area (cm2) 2,000/

LAD 1.400 240 3.000
256

(physical 
area)

1.200

Timing
(microsec) 2 100 2 2 3 10

2

“Why BATSE”?



False positive estimate 



Interpretation?

These signals are consistent with an HMNS:

QPO 1 High frequency! 
~ 1kHz 

lower amplitude

QPO 2 Higher frequency! 
~ 2.6 kHz, higher amplitude 

info on NS composition

Important: The redshift of  
these GRBs is not know; the 

QPO frequencies are detected 
in the detector frame!



Here goes the pretty simulation



Learning about the neutron star equation of  state

QPOs + NR

adapted from Reddy, 2021adapted from Lioutas et al., 2021

NICER + GWs + GRB



Leveraging numerical relativity results

Guedes et al. 2024

4 Guedes et al.

Figure 1. Top: ` = m = 2 waveform mode (h22) for the postmerger GW signal (left) and the maximum rest-mass density
for the postmerger remnant normalized by the maximum stable central density for a nonrotating star with that EOS (⇢̄max ⌘
⇢max/⇢TOV) (right) from the merger of two NSs of mass 1.35 M� described by the piecewise polytropic approximation to the
SLy EOS (Read et al. 2009). The vertical dashed lines indicate the merger time tmerger and final time tfinal within which we
perform the Fourier transform. Middle: Power spectral density (PSD) of h22 (left) and ⇢̄max (right) between tmerger and tfinal.
The vertical dashed lines indicate the peak frequencies in the spectra, f2 (left) and f0 (right), while the dotted lines in the
left panel shows the beat frequencies f2 ± f0. Bottom: Spectrogram for h22 (left) and ⇢̄max (right). Note that the frequencies
are approximately constant during the time span of the analysis and f0 ! ⇡ 0 as t ! ⇡ tfinal as expected since the remnant
collapses to a black hole.

2.3. Priors, likelihoods, and posteriors

We use the best fits for the quasiuniversal relations f02(⇤̃) and f̄2(⇤̃) and their standard deviations �f02 and �f̄2 (see

Table 2), to obtain the joint posterior P on ⇤̃, M, and z, by using the standard Bayesian expression (see, e.g., Miller
et al. 2020 for application to EOS inference from NS observations):

P (⇤̃,M, z) / p(⇤̃,M, z)L(⇤̃,M, z), (4)

Table 2. Fitting coe�cients for the quasiuniversal relations f̄2(⇤̃) and f02(⇤̃), using the fitting function in Eq. (3). We also
quote: �Q, the standard deviation for the parameters; �r, the standard deviation for the relative residues r ⌘ 1�QNR/Qfit; the
�2 statistic, �2 ⌘

PN
i=1

r2i , where N is the number of data points (i.e., number of simulations for various EOSs and mass-ratios);

the Kullback-Leibler divergence, DKL ⌘
PN

i=1
Piln(Pi/Qi), between the distribution P for the relative residuals r and a normal

distribution Q with zero mean and standard deviation �r.

Q Q0 n1 n2 d1 d2 �Q �r �2 DKL

f̄2 1.463 9.930⇥102 7.556⇥10�1 1.948⇥102 6.973⇥10�1 1.711⇥10�1 5.028⇥10�2 2.477⇥10�1 9.447

f02 2.146 5.248⇥103 1.031⇥101 �7.873⇥102 1.557⇥101 3.981⇥10�1 1.249⇥10�1 1.529 1.369

Example post-merger GW waveform 
(1.35 + 1.35, SLy EOS)

Frequencies: 
•  
•  
•

f1 = f2 − f0
f2
f3 = f2 + f0

 is the quadrupolar mode, strongly excited 
 is the radial mode, not so easy to determine
f2

f0

Victor Guedes 
UVa



Leveraging numerical relativity results
Oscillations in the maximum (central) 

density of  the remnant star

 is the peak frequencyf0

 is easy to determinef0

4 Guedes et al.

Figure 1. Top: ` = m = 2 waveform mode (h22) for the postmerger GW signal (left) and the maximum rest-mass density
for the postmerger remnant normalized by the maximum stable central density for a nonrotating star with that EOS (⇢̄max ⌘
⇢max/⇢TOV) (right) from the merger of two NSs of mass 1.35 M� described by the piecewise polytropic approximation to the
SLy EOS (Read et al. 2009). The vertical dashed lines indicate the merger time tmerger and final time tfinal within which we
perform the Fourier transform. Middle: Power spectral density (PSD) of h22 (left) and ⇢̄max (right) between tmerger and tfinal.
The vertical dashed lines indicate the peak frequencies in the spectra, f2 (left) and f0 (right), while the dotted lines in the
left panel shows the beat frequencies f2 ± f0. Bottom: Spectrogram for h22 (left) and ⇢̄max (right). Note that the frequencies
are approximately constant during the time span of the analysis and f0 ! ⇡ 0 as t ! ⇡ tfinal as expected since the remnant
collapses to a black hole.

2.3. Priors, likelihoods, and posteriors

We use the best fits for the quasiuniversal relations f02(⇤̃) and f̄2(⇤̃) and their standard deviations �f02 and �f̄2 (see

Table 2), to obtain the joint posterior P on ⇤̃, M, and z, by using the standard Bayesian expression (see, e.g., Miller
et al. 2020 for application to EOS inference from NS observations):

P (⇤̃,M, z) / p(⇤̃,M, z)L(⇤̃,M, z), (4)

Table 2. Fitting coe�cients for the quasiuniversal relations f̄2(⇤̃) and f02(⇤̃), using the fitting function in Eq. (3). We also
quote: �Q, the standard deviation for the parameters; �r, the standard deviation for the relative residues r ⌘ 1�QNR/Qfit; the
�2 statistic, �2 ⌘

PN
i=1

r2i , where N is the number of data points (i.e., number of simulations for various EOSs and mass-ratios);

the Kullback-Leibler divergence, DKL ⌘
PN

i=1
Piln(Pi/Qi), between the distribution P for the relative residuals r and a normal

distribution Q with zero mean and standard deviation �r.

Q Q0 n1 n2 d1 d2 �Q �r �2 DKL

f̄2 1.463 9.930⇥102 7.556⇥10�1 1.948⇥102 6.973⇥10�1 1.711⇥10�1 5.028⇥10�2 2.477⇥10�1 9.447

f02 2.146 5.248⇥103 1.031⇥101 �7.873⇥102 1.557⇥101 3.981⇥10�1 1.249⇥10�1 1.529 1.369



New (quasi-)universal relations

Guedes et al. 2024

 is the chirp mass of  the binary 
 has a tight correlation with the 

binary tidal deformability 

ℳ
f̄2 ≡ ℳf2

Λ̃

 has a larger spread, but this relation 
is independent of  the redshift

f02 ≡ f2/f0

Tight bound on NS radius with QPOs in short GRBs 5

Figure 2. Quasiuniversal relations f̄2(⇤̃) and f02(⇤̃). We show the EOS variation (left, see the di↵erent colors) and mass-
ratio (q) variation (right, see the colorbar) of these relations. The solid lines are the best fits for these relations (using the
fitting function in Eq. (3)) and the dashed lines represent the 1� (68.3%) credible regions. We also show the relative residues
1�QNR/Qfit, where Q 2 {f̄2, f02}, for these relations and the corresponding 1� credible regions.

where p(⇤̃,M, z) is the prior (normalized so that the integral over all values of ⇤̃, M, and z is unity), L(⇤̃,M, z) is the
likelihood of the data given the model, and the proportionality is because the posterior, like the prior, is a probability
density and thus must be normalized.

Prior—We decompose the prior as:

p(⇤̃,M, z) = p(⇤̃,M)p(z), (5)

where we take into account the correlation between ⇤̃ and M (see, e.g., Zhao & Lattimer 2018) when writing the joint
prior on these parameters, i.e.,

p(⇤̃,M) = p(⇤̃)p(M|⇤̃). (6)

For the range in M that we consider here ([1.04, 1.31] M�), which is determined by our set of NR simulations, the
relation M vs. ⇤̃ is approximately linear (with a Pearson correlation coe�cient of ⇠ �0.5). We can thus find the best
fit M(⇤̃) = a0 + a1⇤̃ (with a0 = 1.332 M� and a1 = �2.216⇥ 10�4 M�) and corresponding standard deviation (�M
= 7.068⇥ 10�2 M�). Then, we can write:

p(M|⇤̃) / exp

 
� (M�M(⇤̃))2

2�2
M

!
. (7)

We assume p(⇤̃) to be uniform in the range informed by the NR simulations ([357, 2053]). We consider p(z) to
correspond to the redshift distribution in Guetta & Piran (2005), obtained from the luminosity function determined
from the peak flux distribution of short GRBs in the BATSE data. We consider the distribution that takes into account
the star formation rate and the merger time delay of BNSs for short GRBs, with a peak in z ⇠ 0.5 (see their Fig. 3),
and that agrees with more recent data (see, e.g., Fig. 4 in Berger 2014); we consider the same range for z ([0, 5]).



New (quasi-)universal relations

Same points, but highlighting the variation in 
mass ratio: these relations are free from 
assumptions about the binary masses

Tight bound on NS radius with QPOs in short GRBs 5

Figure 2. Quasiuniversal relations f̄2(⇤̃) and f02(⇤̃). We show the EOS variation (left, see the di↵erent colors) and mass-
ratio (q) variation (right, see the colorbar) of these relations. The solid lines are the best fits for these relations (using the
fitting function in Eq. (3)) and the dashed lines represent the 1� (68.3%) credible regions. We also show the relative residues
1�QNR/Qfit, where Q 2 {f̄2, f02}, for these relations and the corresponding 1� credible regions.

where p(⇤̃,M, z) is the prior (normalized so that the integral over all values of ⇤̃, M, and z is unity), L(⇤̃,M, z) is the
likelihood of the data given the model, and the proportionality is because the posterior, like the prior, is a probability
density and thus must be normalized.

Prior—We decompose the prior as:

p(⇤̃,M, z) = p(⇤̃,M)p(z), (5)

where we take into account the correlation between ⇤̃ and M (see, e.g., Zhao & Lattimer 2018) when writing the joint
prior on these parameters, i.e.,

p(⇤̃,M) = p(⇤̃)p(M|⇤̃). (6)

For the range in M that we consider here ([1.04, 1.31] M�), which is determined by our set of NR simulations, the
relation M vs. ⇤̃ is approximately linear (with a Pearson correlation coe�cient of ⇠ �0.5). We can thus find the best
fit M(⇤̃) = a0 + a1⇤̃ (with a0 = 1.332 M� and a1 = �2.216⇥ 10�4 M�) and corresponding standard deviation (�M
= 7.068⇥ 10�2 M�). Then, we can write:

p(M|⇤̃) / exp

 
� (M�M(⇤̃))2

2�2
M

!
. (7)

We assume p(⇤̃) to be uniform in the range informed by the NR simulations ([357, 2053]). We consider p(z) to
correspond to the redshift distribution in Guetta & Piran (2005), obtained from the luminosity function determined
from the peak flux distribution of short GRBs in the BATSE data. We consider the distribution that takes into account
the star formation rate and the merger time delay of BNSs for short GRBs, with a peak in z ⇠ 0.5 (see their Fig. 3),
and that agrees with more recent data (see, e.g., Fig. 4 in Berger 2014); we consider the same range for z ([0, 5]).



Bayesian inference

Assumption: We can identify the QPOs  and 
 detected in GRBs 910711 and 931101B 

with  and  

Using the quasi-universal relations 
 ,   and  

we can constrain  
 and the redshift  

for each GRB 

with the product of  the likelihoods 

ν2
ν0

f2 f0

f̄2 × Λ̃ f02 × Λ̃ ℳ × Λ̃

ℳ, Λ̃ z

ℒ(ν02 | f02(Λ̃))ℒ(ν2 | f obs
2 (ℳ, Λ̃, z))

Guetta & Piran 2005

Redshift prior distribution for short GRBs



Posterior Distributions
6 Guedes et al.

Figure 3. Results for the parameter estimation using the observed QPOs (see Table 1) in GRBs 910711 (left) and 931101B
(right), and the quasiuniversal relations f̄2(⇤̃) and f02(⇤̃) (see Fig. 2). O↵-Diagonal: 2D marginalized posterior probability
distributions for (⇤̃,M), (M, z), and (z, ⇤̃). The three di↵erent color tones represent the 1� (68.3%), 2� (95.4%), and 3�
(99.7%) credible regions from dark to light. Diagonal: 1D marginalized posterior probability distributions (solid) as well as
prior (dotted) for ⇤̃, M, and z. The dashed lines represent the median and the ±1� values.

Likelihood—The likelihood can be written as:

L(⇤̃,M, z) = L⌫02(⇤̃)L⌫2(⇤̃,M, z), (8)

where:

L⌫02(⇤̃) ⌘ L(⌫02|f02(⇤̃)) / exp

 
� (⌫02 � f02(⇤̃))2

2(�2
⌫02

+ �2
f02

)

!
, (9)

L⌫2(⇤̃,M, z) ⌘ L(⌫2|fobs
2 (⇤̃,M, z)) / exp

 
� (⌫2 � fobs

2 (⇤̃,M, z))2

2(�2
⌫2

+ �2
fobs
2

(M, z))

!
, (10)

with the definitions fobs
2 (⇤̃,M, z) ⌘ f̄2(⇤̃)/M(1 + z) and �fobs

2
(M, z) ⌘ �f̄2/M(1 + z). In Eqs. (9) and (10), we sum

the standard deviations (from our model and the data) in quadrature because we assume that the uncertainties are
uncorrelated with each other.
In Fig. 3, we show the results for the 1D and 2D marginalized posterior probability distributions for the parameters

⇤̃, M, and z considering the measurements for the two GRBs in Table 1. We summarize the results in the first three
columns of Table 3, where we quote the mean and ±1� ranges for the parameters. The posterior distributions are very
informative, when compared to the prior distributions, with the values of ⇤̃ and M being consistent with expected
values for BNS mergers, and with the low values of z being consistent with the expectation that GRBs 910711 and
931101B occurred relatively close to us (Chirenti et al. 2023).
In order to validate our results, we experimented with more conservative ranges for the priors in ⇤̃ and M ([300,

5000] and [0.9, 1.4] M�, respectively). The results for the posteriors are consistent with the previous results within the
±1� ranges. However, we stress that the extended ranges for the priors rely on the assumption that the quasiuniversal
relations, f̄2(⇤̃) and f02(⇤̃) (see Fig. 1), and the correlation between M and ⇤̃ can be extrapolated. We also tried
using a redshift distribution for short GRBs that does not take into account the delay time for BNS mergers (see Fig.
3 of Guetta & Piran 2005) as a prior for z and the results are also consistent with Table 3.

2.4. Estimating the source-frame frequencies and constraining the neutron-star mass-radius relation

Guedes et al. 2024



Constraining  and the EOSR1.4
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Figure 4. Left: Posterior probability distributions for the radius of a 1.4 M� NS for GRB 910711, GRB 931101B, and both.
The dashed lines represent the median and the ±1� values. Right: Credible regions (1� and 2�) on the mass-radius plane from
joint constraint for both GRBs. We also show the mass-radius curves for the EOSs used in the NR simulations, and the credible
regions for the joint mass-radius measurements obtained from GW observations for GW170817 (Abbott et al. 2018a) and X-ray
observations for PSR J0030+0451 (e.g., Miller et al. 2019) and PSR J0740+6620 (e.g., Miller et al. 2021).

distribution with standard deviation �RM , that is provided by Godzieba & Radice (2021) as a function of M (see their
Fig. 7). We thus have:

P (RM ) =

ZZ
1p

2⇡�RM (M)
exp

✓
� (R0

M �RM )2

2�2
RM

(M)

◆
P (⇤̃(M, R0

M ),M)dR0
MdM. (18)

In the left panel of Fig. 4, we show the estimate of the radius of a 1.4 M� NS and the credible regions on the mass-
radius plane, considering the measurements for the two GRBs in Table 1. We quote the mean and ±1� ranges for the
radii (for M 2 [1.4, 2.14] M�) in Table 4.
Considering the two GRBs, we infer R1.4 = 12.48+0.41

�0.41 km, which, under our assumptions, is the tightest measurement
of R1.4 to date, besides being consistent with the most current estimates, e.g., Dittmann et al. (2024) reports R1.4 =
12.57+0.49

�0.48 km (based on constraints on the nuclear symmetry energy, masses of high-mass pulsars, LIGO data, NICER
data, and EOS modelling using Gaussian processes). The mass-radius constraint, shown in the right panel of Fig. 4, is
consistent with joint mass-radius measurements for GW170817 (Abbott et al. 2018a) as well as for PSR J0030+0451
(e.g., Miller et al. 2019) and PSR J0740+6620 (e.g., Miller et al. 2021).

3. DISCUSSION

We associate the frequencies of the QPOs in GRBs 910711 and 931101B reported by Chirenti et al. (2023) with BNS
postmerger oscillation modes and obtain constraints on the redshift of these GRBs, as well as on the chirp mass and
binary tidal deformability of the BNS systems whose mergers were presumably their source. We use the redshift to
estimate the intrinsic oscillation frequencies of the fundamental quadrupolar mode and the radial mode of the merger
remnant in each case, and the chirp mass and tidal deformability to estimate the radius of a 1.4 M� NS and constrain
the mass-radius relation. Therefore, our study introduces a novel way to constrain the EOS of NS matter, using

Table 4. Inferred radii of NSs with mass in the range [1.4, 2.14] M� (restricted from the validity of the quasiuniversal relations
in Godzieba & Radice 2021), that we determined with the binary tidal deformability ⇤̃ and the chirp mass M for each GRB
and both. The value for R1.4 is consistent with current bounds, e.g., R1.4 = 12.57+0.49

�0.48 km (Dittmann et al. 2024).

GRB R1.4 [km] R1.5 [km] R1.6 [km] R1.7 [km] R1.8 [km] R1.9 [km] R2.0 [km] R2.14 [km]

910711 12.55+0.56
�0.53 12.59+0.55

�0.52 12.61+0.54
�0.51 12.61+0.54

�0.51 12.59+0.55
�0.51 12.55+0.58

�0.56 12.52+0.61
�0.60 12.44+0.65

�0.63

931101B 12.43+0.60
�0.59 12.47+0.58

�0.56 12.51+0.56
�0.56 12.52+0.57

�0.56 12.51+0.57
�0.56 12.48+0.60

�0.60 12.44+0.62
�0.62 12.36+0.66

�0.65

910711+931101B 12.48+0.41
�0.41 12.52+0.41

�0.39 12.55+0.40
�0.39 12.56+0.40

�0.38 12.54+0.40
�0.39 12.50+0.43

�0.40 12.47+0.45
�0.44 12.39+0.47

�0.47

Guedes et al. 2024

 

Godzieba & Radice, 2021
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FIG. 1. (left) one-dimensional 90% symmetric marginal posterior credible regions for the radius as a function of mass conditioned
on current data. We show results with only pulsar masses (denoted PSR) and pulsar masses, GW observations, and NICER X-ray
pulse profiling (denoted PGX). We additionally show maximum-likelihood EoSs from subsets of the prior conditioned on the size
of the latent energy per particle �(E/N) of phase transitions that overlap with the central densities of NSs between 1.1–2.3 M�
(small : �(E/N)  10 MeV and large: �(E/N) � 100 MeV). (right) Correlations between the radius at two reference masses:
M = 1.4 and 2.0 M�. While the one-dimensional marginal distributions are similar, EoSs with small �(E/N) show stronger
correlations between R1.4 and R2.0 than EoSs with large �(E/N). This is because the radius can change rapidly when �(E/N) is
large, as is evident in the maximum-likelihood EoS.

and, motivated by these considerations, Sec. II B pro-
poses novel features that can be used to identify the pres-
ence of a phase transition and extract physically relevant
properties without the need for a direct parametrization.
Our new features are based on the mass dependence of
the moment of inertia (I) and the density dependence
of the speed of sound, although similar features can also
be derived from other macroscopic observables. We apply
our methodology to current astrophysical data in Sec. III.
Current astrophysical data (Fig. 1) disfavor the strongest
of possible phase transitions, but only when those tran-
sitions occur within NSs between ⇠ 1–2 M�. Even the
presence of multiple stable branches cannot be unambigu-
ously ruled out, although they are disfavored compared
to EoS with a single branch and smaller phase transi-
tions. Section IV examines the prospects for detecting
and characterizing phase transitions with large catalogs
of simulated GW detections. We obtain Bayes factors of
⇠ 10 : 1 in favor of phase transitions with O(102) events,
a larger catalog than is likely [65] within the lifetime of
advanced LIGO [3] and Virgo [4]. We discuss our conclu-
sions in the context of previous studies in the literature
as well as possible future research in Sec. V.

II. PHENOMENOLOGICAL IDENTIFICATION
OF PHASE TRANSITIONS

We begin by reviewing the basic phenomenology of
phase transitions from microscopic and macroscopic per-
spectives in Sec. II A and then introduce our novel model-
independent features in Sec. II B. We discuss our ability
to identify phase transitions in the context of the mas-
querade problem in Sec. II C.

A. Phase Transition Morphology

The basic phenomenology associated with the phase
transitions we consider is a softening of the EoS over some
density range. The following microscopic picture is often
invoked. Consider two species of degenerate, noninteract-
ing fermions with light (ml) and heavy (mh > ml) rest
masses, respectively. At zero temperature, the system
will fill all states up to the Fermi energy (EF ) choosing
between light and heavy fermions to balance their chem-
ical potentials. The partial pressure contributed by each
fermion will be determined by their respective number
densities. The relation between EF and the fermion rest
masses then determines the system’s composition.

If EF < mh, only light fermions exist. As the den-
sity increases, the pressure must increase as additional

Essick et al. 2023

Pulsar masses, NICER radii and GWs
Take-home thought: GRB GW 910711 & GRB GW 931101B?

Guedes+ 2024 (arXiv:2408.16534)

Thank you!



Between the whoop and the ding of  a binary 
NS merger, an HMNS can be formed. We 

looked for them and found two:  
GRB 910711 and GRB 931101B. 

Future gravitational wave detectors (2030s) 
will be sensitive to these kHz frequencies too!  
In the meantime, we’ll be looking for them 
with gamma rays and we can already use 
them to constrain the EOS inside NSs.

Take-home thought: GRB GW 910711 & GRB GW 931101B?

Guedes+ 2024 (arXiv:2408.16534)

Thank you!



Backup slides



Yes! 
We see jets from NSs all the time 
(pulsars, magnetars, LMXBs…) 

Typically, Lorentz factor  of  the 
jet corresponds to the escape 

velocity of  the star

Γ

Can Neutron Stars launch jets?

Other stars can also launch jets: e.g. 
• TTauri (young, low mass, variable stars) 
• planetary nebulae (red giant on its way to become a white dwarf)



Maybe! 
Observed -ray extended 

emission, X-ray plateaus, and 
optical rebrightening can signal 
late time energy injection from 

magnetar central engine 

But GRBs typically have 
 

(but see Dereli-Bégué et al. 2022)

γ

Γ ∼ 100 − 1000

Can Neutron Stars launch GRBs?

Recent simulations: 
• see e.g. Mösta et al. 2020, Bamber et al. 2024 
• it is easier to simulate jets with black holes 
• HMNS scenario requires dynamo amplification of  B field

Gao et al. 2015

GRB 080503



BATSE GRB distribution

How special are these bursts?



False positive estimate I



Light curves and power spectra

Chirenti et al. 2023



False positive estimate III

The combined false positive probability is ∼ 3 × 10−7



From gamma rays to radio?

Sarin et al. 2022

Where do we look? 
R.A.: 209.9º 
Dec: -16.4º 
Error: 9.3º 

(for GRB 910711)

“Challenge accepted!” 
- radioastronomer




