

Astrophysical constraints on the neutron star equation of state from short gamma-ray bursts

On behalf of co-authors: Simone Dichiara, Victor Guedes, Amy Lien, Cole Miller, Rob Preece, David Radice and Kent Yagi

Bormio Conference, 27/01/2025

Cecilia Chirenti

Based on: Nature **613** 253 (2023) and arXiv:2408.16534

Life Cycle of a Star

Maximum mass: $\sim 2.2 - 3$ solar masses Radius: $\sim 12 \text{ km}$

Neutron Stars

Possible final stage of stellar evolution

Neutron Star Masses and Radii

Demorest et al. 2010

Different models for the equation of state (EOS) have different maximum masses and radii Mass and radius constraints from radio, X-ray (NICER) and gravitational wave observations help inform EOS models

Neutron Star Mergers: GW170817

Gravitational Waves

Kilonova: UV, optical, infrared...

Stellar Merger Model for a Short-Duration Gamma-Ray Burst

Gamma-ray burst

Merger remnant + disk

Between the "whoop" and the "ding"...

Binary neutron star merger

 \rightarrow **GRB** ding!

 $\rightarrow \mathbf{GWs}$ whoop!

When is the GRB launched?

Or: Is the central engine a black hole or a neutron star?

... a hypermassive neutron star?

HMNS

Takami, Rezzolla & Baiotti, 2014

neutron stars

(In the astro community: millisecond magnetar scenario)

black hole

HMNS lives for < 1s, spins fast, jiggles and emits kHz GWs too high for current GW detectors!

Can the HMNS power the short GRB?

HMNS Quasi-periodic oscillations

HMNS signal:

short-lived time-evolving dissipative*

quasi-periodic oscillations (QPOs)

*simulations also have numerical dissipation!

Takami, Rezzolla & Baiotti, 2014

Could the GRB show these QPOs?

Examples of quasi-periodic oscillations

black hole X-ray binary XTE J1550-564

Motta et al. 2018

X-ray tail of SGR 1806-20 giant flare

Miller, Chirenti & Strohmayer 2019

Dynamical origin

Takami, Rezzolla & Baiotti, 2015

How does the HMNS oscillate?

How (and when) could the oscillations transmitted to the GRB?

Nedora et al. 2019

Characteristic modes

Stergioulas et al. 2011

adapted from Lorimer & Kramer, 2004

What we are looking for:

Oscillations that

*last for approx 100 ms (lifetime of an HMNS)
*have frequencies in the range 500 - 5,000 Hz

How: Bayesian model comparison

Model 0: White noise only

Model 1: White noise + QPO

We analyze each burst divided into short segments and quote the Bayes factor in favor of the noise + QPO model for each segment

 $n_{\sigma} = \frac{1}{2} I a_{\rm osc} \sqrt{\frac{\Delta t}{\Delta f}}$

half-overlapping segments (approx 100 ms)

total burst duration

Initial analyses: Lessons learned

Causes of fake QPOs

Cosmic rays

Detector artifacts*

(Data corruption)

Red noise contamination

*https://swift.gsfc.nasa.gov/analysis/ bat_digest.html#spurious-signal

Opening the treasure trove

More than 700 short GRBs analyzed

Each GRB split in smaller segments for analysis

Nothing pops up in Fermi or Swift data

Something in the BATSE data? Let's look more closely.

Opening the treasure trove

... and **bang**! Two signals. The combined false positive rate is 1 in 3.3 million!

Both signals have: 2 QPOs each with similar frequencies and good agreement with simulations

CGRO transformed GRB science

Launched in 1991 De-orbited in 2000

Compton Gamma-Ray Observatory was one of NASA's Great Observatories

Past and Future

"Why BATSE"?

	BATSE	BAT	GBM 2	StarBurst 2026	COSI 2027	AMEGO- X
Effective area (cm ²)	2,000/ LAD	I.400	240	3.000	256 (physical area)	I.200
Timing (microsec)	2	IOO	2	2	3	IO

Future missions:

False positive estimate

Interpretation?

These signals are consistent with an HMNS:

QPO 1 High frequency! $\sim 1 \mathrm{kHz}$ lower amplitude

QPO 2 *Higher* frequency! ~ 2.6 kHz, higher amplitude info on NS composition

Important: The *redshift* of these GRBs is not know; the QPO frequencies are detected in the detector frame!

Learning about the neutron star equation of state

$QPO_{S} + NR$

adapted from Lioutas et al., 2021

adapted from Reddy, 2021

Leveraging numerical relativity results

Guedes et al. 2024

Victor Gue UVa

Example post-merger GW waveform (1.35 + 1.35, SLy EOS)

 f_2 is the quadrupolar mode, strongly excited f_0 is the radial mode, not so easy to determine

Leveraging numerical relativity results

Oscillations in the maximum (central) density of the remnar (central)

 f_0 is the peak frequency

 f_0 is easy to dete

New (quasi-)universal relations

Guedes et al. 2024

 $\bar{f}_2 \equiv M f_2$ has a tight correlation with the binary tidal deformability $\tilde{\Lambda}$

 $f_{02} \equiv f_2 / f_0$ has a larger spread, but this relation is independent of the redshift

New (quasi-)universal relations

Same points, but being the variation in mass ratio: these relations are free from assumptions about the binary masses

Bayesian inference

Assumption: We can identify the QPOs ν_2 and ν_0 detected in GRBs 910711 and 931101B with f_2 and f_0

Using the quasi-universal relations $\bar{f}_2 \times \tilde{\Lambda}, f_{02} \times \tilde{\Lambda}$ and $\mathcal{M} \times \tilde{\Lambda}$

we can constrain $\mathcal{M}, \tilde{\Lambda}$ and the redshift *z* for each GRB

with the product of the likelihoods $\mathscr{L}(\nu_{02} | f_{02}(\tilde{\Lambda})) \mathscr{L}(\nu_2 | f_2^{\text{obs}}(\mathscr{M}, \tilde{\Lambda}, z))$

Guetta & Piran 2005

Posterior Distributions

Guedes et al. 2024

Constraining $R_{1.4}$ and the EOS

$$R_{M}(\mathcal{M},\tilde{\Lambda}) = \alpha \left(\frac{\mathcal{M}}{1M_{\odot}}\right) \left(\frac{\tilde{\Lambda}}{800}\right)^{\frac{1}{4}}$$
Godzieba & Radice, 2021

Guedes et al. 2024

Constraining $R_{1.4}$ and the EOS

Pulsar masses, NICER radii and GWs

Essick et al. 2023

Simulated Gravitational Waves

Between the *whoop* and the *ding* of a binary NS merger, an HMNS can be formed. We looked for them and found two: GRB 910711 and GRB 931101B.

•

Detected Gamma-ray QPOs

> Future gravitational wave detectors (2030s) will be sensitive to these kHz frequencies too! In the meantime, we'll be looking for them with gamma rays and we can <u>already</u> use them to constrain the EOS inside NSs.

Backup slides

Can Neutron Stars launch jets?

Yes!

We see jets from NSs all the time (pulsars, magnetars, LMXBs...)

Typically, Lorentz factor Γ of the jet corresponds to the escape velocity of the star

Other stars can also launch jets: e.g.

- TTauri (young, low mass, variable stars)
- planetary nebulae (red giant on its way to become a white dwarf)

Can Neutron Stars launch GRBs?

Maybe!

Observed γ -ray extended emission, X-ray plateaus, and optical rebrightening can signal late time energy injection from magnetar central engine

But GRBs typically have $\Gamma \sim 100 - 1000$ (but see Dereli-Bégué et al. 2022)

Recent simulations:

- see e.g. Mösta et al. 2020, Bamber et al. 2024
- it is easier to simulate jets with black holes
- HMNS scenario requires dynamo amplification of B field

BATSE GRB distribution

How special are these bursts?

False positive estimate I

Light curves and power spectra

Chirenti et al. 2023

False positive estimate III

GRB	Trigger #	$T_{90} (ms)$	Counts	$\operatorname{Prob}(\Delta \ln \mathcal{L}_0^2 > 56.4)$	$\operatorname{Prob}(\Delta \ln \mathcal{L}_0^2 > 33.3)$
910711 910508 931101B 910625 910703 940621C 930113C	$512 \\ 207 \\ 2615 \\ 432 \\ 480 \\ 3037 \\ 2132$	$14\\ 30\\ 34\\ 50\\ 62\\ 66\\ 90$	$1790 \\ 1254 \\ 524 \\ 1810 \\ 2278 \\ 710 \\ 612$	$\begin{array}{c} 5.9\times10^{-5}\\ 2.2\times10^{-6}\\ 2.6\times10^{-6}\\ 7.2\times10^{-7}\\ 1.8\times10^{-7}\\ 2.0\times10^{-10}\\ 4.1\times10^{-11} \end{array}$	$\begin{array}{c} 9.2\times 10^{-3}\\ 1.6\times 10^{-3}\\ 1.3\times 10^{-3}\\ 9.3\times 10^{-4}\\ 7.5\times 10^{-4}\\ 7.9\times 10^{-6}\\ 2.9\times 10^{-6}\end{array}$

The combined false positive probability is $\sim 3 \times 10^{-7}$

From gamma rays to radio?

Where do we look? **R**.A.: 209.9° Dec: -16.4° Error: 9.3°

(for GRB 910711)

Sarin et al. 2022

"Challenge accepted!" - radioastronomer

