New measurement of the $K^+ \rightarrow \pi^+ v \bar{v}$ Branching ratio at the NA62 experiment

R. Piandani

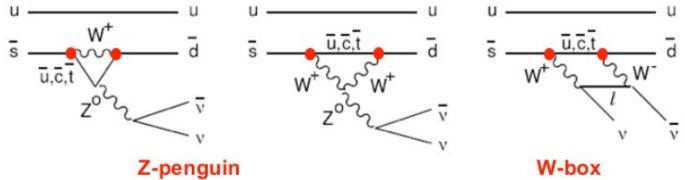
Univ. Autonoma de San Luis Potosi Mexico and CERN

on behalf of the NA62 Collaboration 61st International Winter Meeting on Nuclear Physics Bormio (Italy) 27/01 -31/01 2025

Outline

✓ The Golden Channel: $K^+ \rightarrow \pi^+ \nu \nu$

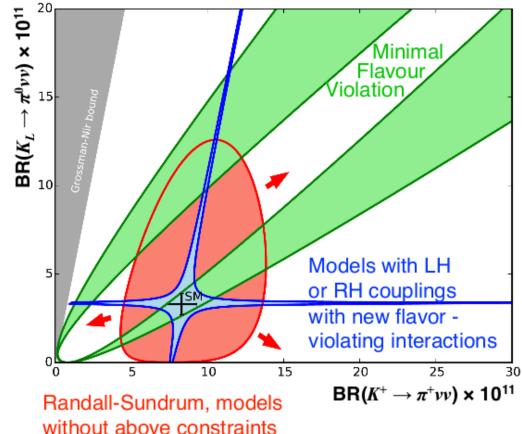
✓ The NA62 Experiment at CERN


✓ NA62: Analysis strategy, Run1 results and upgrades

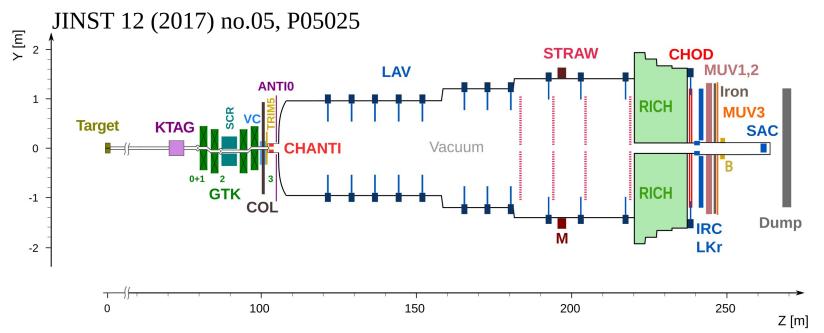
✓ NA62: 2021-2022 analysis

✓ NA62: 2021-2022 and 2016-2022 combined Br results

 $K^+ \rightarrow \pi^+ \nu \nu$ in the Standard Model The $K^+ \rightarrow \pi^+ \nu \nu$ process is extremely clean from the theoretical point of view (Matrix Element obtained from the well known Ke3 process): optimal to test the SM $s \rightarrow d\nu \nu$ Flavour-changing neutral current transition (forbidden at tree level) heavily suppressed by GIM.


Current theoretical prediction:

BR(K⁺ → $\pi^+\nu\nu$)_{SM} = (8.60 ± 0.42)·10⁻¹¹ Buras at al. EPJC 82 (2022) 7, 615 BR(K⁺ → $\pi^+\nu\nu$)_{SM} = (7.86 ± 0.61)·10⁻¹¹ D'Ambrosio et al. , JHEP 09 (2022) 148 • Differences between the two predictions come from different choice of CKM parameters: see Eur. Phsy. J. C 84 (2024) 4, 377


Current experimental result (NA62 Run 1): BR(K⁺ $\rightarrow \pi^+ \nu \nu$)_{EXP} = (10.6 ± 4.0)·10⁻¹¹

$K^+ \rightarrow \pi^+ \nu \nu$ and NP

- Coorrelation between BR of K⁺ and K_L modes within different BSM models JHEP 11 (2015) 166 Both channels needed to be measured
- Correlations with other observables ($\epsilon'/\epsilon, \Delta M_B$, B decays) JHEP 12 (2020) 097, PLB 809 (2020) 135769

The NA62 Beam and Detector

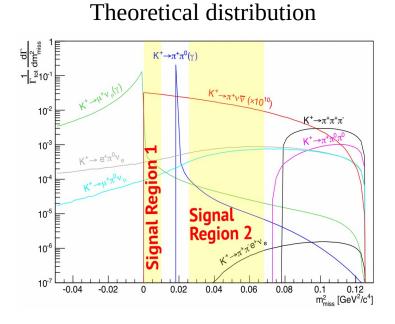
400 GeV/c protons from the SPS on a beryllium target produce secondary charged beam: 6% are 75 GeV/c K⁺ mixed with π^+ (70%) and protons (23%), 1% momentum spread (rms), ~100 µrad divergence.

~10 MHz of raw input data to the L0 trigger (FPGA) from detectors;

- ~1 MHz of events passing the first trigger level,
- L1 and L2 trigger (software) guarantee a maximum of $\mathcal{O}(10)$ kHz of acquisition rate.

NA62 Data taking

- ° 2014: Pilot Run
- 2015: Commissioning Run
- 2016: ~ 30 days
- 2017: ~ 160 days
- 2018: ~ 220 days
- [°] 2019 2020: LS2, no beam
- 2021: ~ 120 days
- 2022: ~ 200 days


0

- 2023: ~ 140 days
- 2024: ~ 200 days

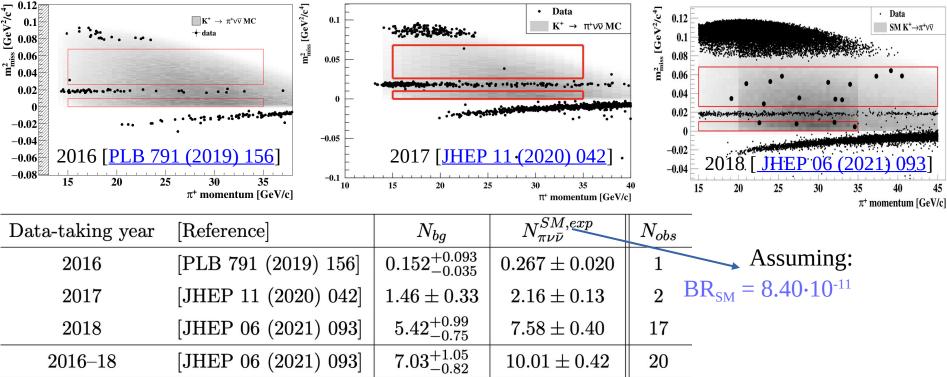
Run 1

Run 2

NA62 Analysis strategy

Br of the main SM bkg to [PDG] Br(K⁺ $\rightarrow \mu^+ \nu_{\mu}$) = (63.56 ± 0.11)% Br(K⁺ $\rightarrow \pi^+ \pi^0$) = (20.67 ± 0.08)% Br(K⁺ $\rightarrow \pi^+ \pi^- \pi^+$) = (5.583 ± 0.024)% Br(K⁺ $\rightarrow \pi^+ \pi^- e^+ \nu_e$) = (4.247 ± 0.024) 10⁻⁵ **Fundamental variable:**

 $m_{miss}^2 = (P_{K^+} - P_{\pi^+})^2$


Main bakgrounds entering the two signal regions (SRs) in the distribution:

- $K^+ \rightarrow \pi^+ \pi^0$ and $K^+ \rightarrow \mu^+ \nu$ due to non-Gaussian resolution effects and radiative tails
- $K^+ \rightarrow \pi^+ \pi^- \pi^+$ due to non-Gaussian resolution effects
- Three or four body decays with a neutrino in the final state

Main experimental requirements:

 $\mathcal{O}(100 \text{ ps})$ timing between sub-detectors $\mathcal{O}(10^4)$ background rejection from kinematics $\mathcal{O}(10^7)$ Muon (from K⁺ $\rightarrow \mu^+ \nu$) suppression from PID $\mathcal{O}(10^7) \pi^0$ (from K⁺ $\rightarrow \pi^+ \pi^0$) suppression from photon rejection

NA62 Run 1 (2016-2018) Results

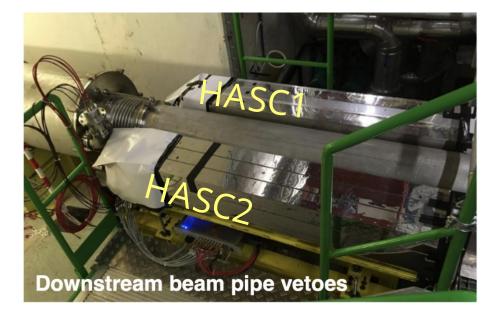
Statistical combination

$$\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu}) = (10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9_{syst}) \times 10^{-11} @68\% CL$$

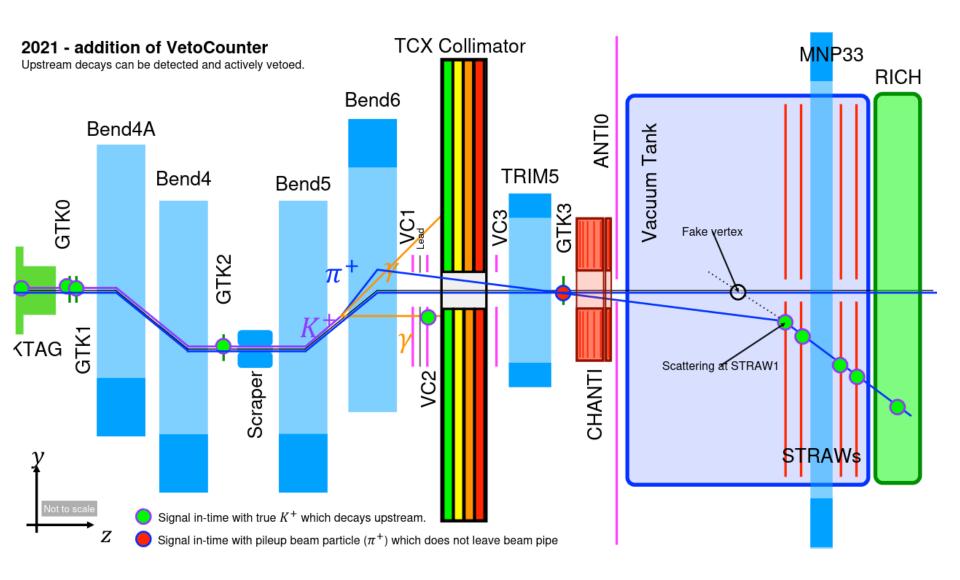
Background-only hypothesis: $p = 3.4 \cdot 10^{-4}$ \implies significance = 3.4 σ

NA62 upgrades in view of Run 2

• New detectors were installed during LS2:


- a 4th station in the GTK beam spectrometer; the GTK achromat system was also rearrenged
- three Veto Counter stations and the ANTIO hodoscope, both upstream of the decay volume,

to improve the upstream decays veto


- an additional veto detector (HASC2) at end of beam-line
- The beam intensity was increased by ~35% with respect to 2018 [450 $\stackrel{\longrightarrow}{\longrightarrow}$ 600 MHz].
- The trigger configuration was improved.

NA62 upgrades (one example)

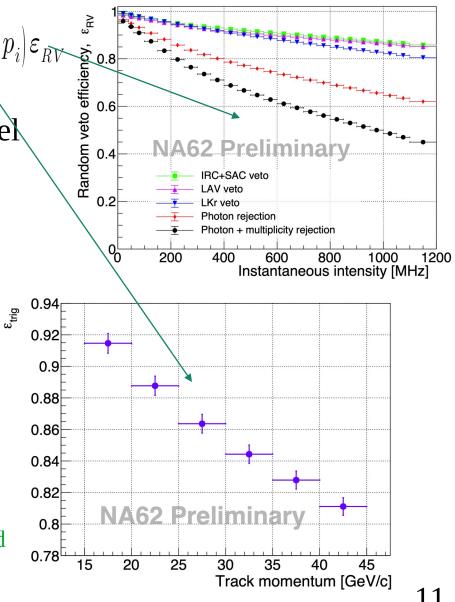
$K^+ \rightarrow \pi^+ \nu \nu Run 2$ (2021-22) analysis

$$N_{\pi\nu\overline{\nu}}^{exp}(p_{i}) = \frac{\mathcal{B}_{\pi\nu\overline{\nu}}^{SM}}{\mathcal{B}_{SES}(p_{i})} = \frac{\mathcal{B}_{\pi\nu\overline{\nu}}^{SM}}{\mathcal{B}_{\pi\pi}} \frac{A_{\pi\nu\overline{\nu}}(p_{i})}{A_{\pi\pi}(p_{i})} D_{0} N_{\pi\pi}(p_{i}) \varepsilon_{trig}(p_{i}) \varepsilon_{RV}$$

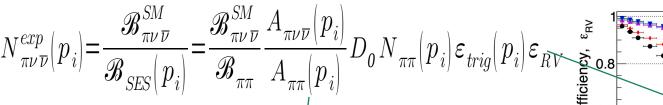
 $K^+ \rightarrow \pi^+ \pi^0$ used as normalisation channel

 $\varepsilon_{trig} = \frac{\varepsilon_{sig}}{\varepsilon_{norm}}$ Trigger efficiency ratio:

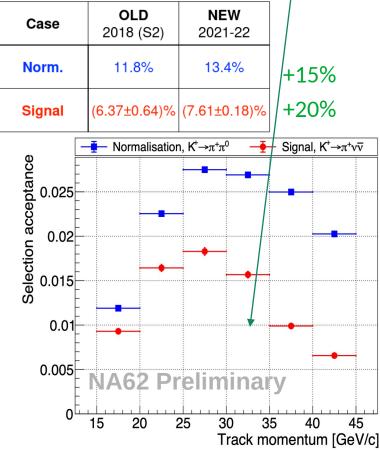
• 2021-22: new control trigger definition with several conditions overlapping the trigger used for the signal

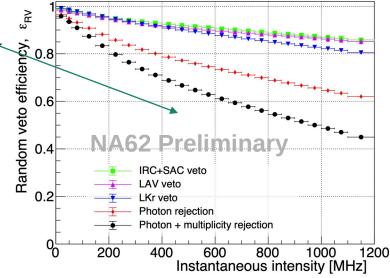

 \rightarrow Partial cancellation in the ratio

• 2018: different trigger conditions between signal and normalisation


 \rightarrow No cancellation 2021-2022: (85.9 ± 1.4)%

2018: (89 ± 5) %


Factor 3 improvement in the precision with reduced sys uncertainty

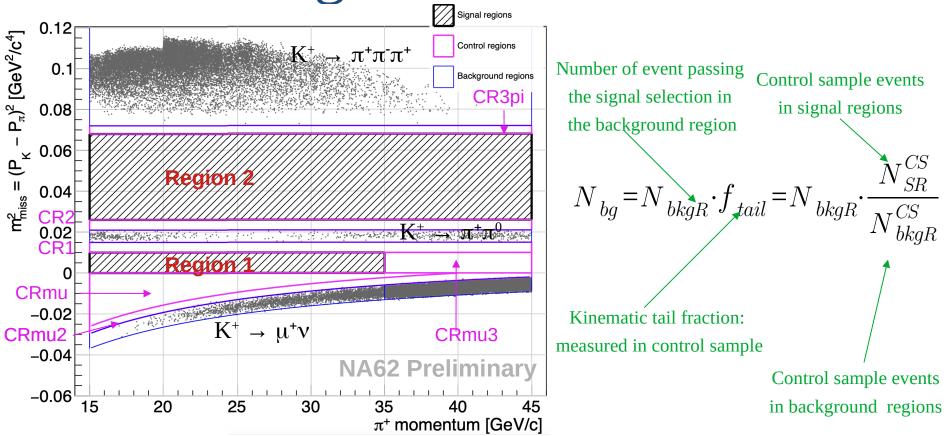


$K^+ \rightarrow \pi^+ \nu \nu Run 2$ (2021-22) analysis

 $K^+ \rightarrow \pi^+ \pi^0$ used as normalisation channel

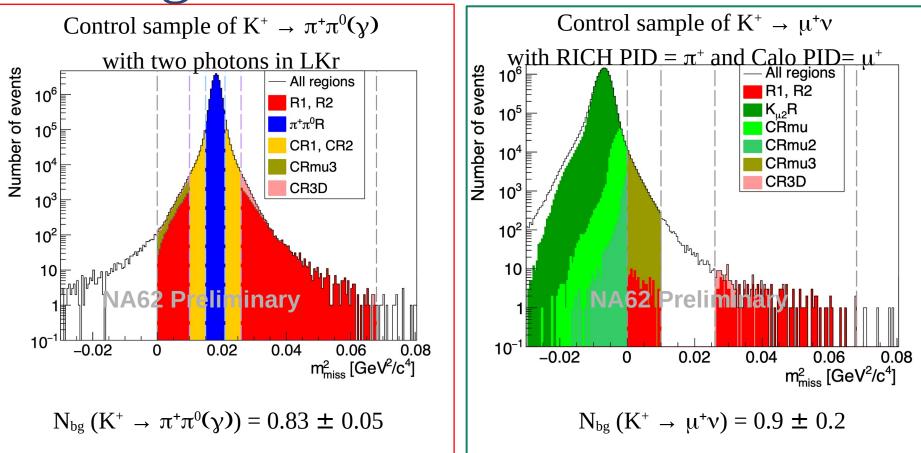
- New K⁺-π⁺ matching
- Re-tuned vertex condition
- Relaxation of some vetoes
- Improved precision and better sys evaluation

Acceptances evaluation made at 0 intensity Intensity effects taken into account with the random veto correction

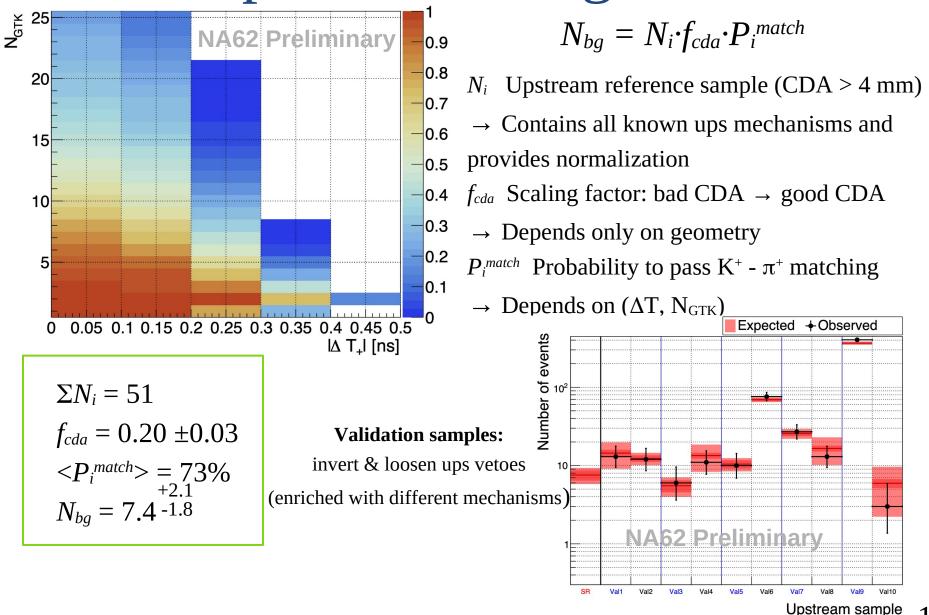

	$K^+ \rightarrow \pi^+ \nu \nu$ sensitivity				
$N_{K} = \frac{N_{\pi\pi} D_{0}}{\mathcal{B}_{\pi\pi} A_{\pi\pi}} \qquad \qquad$		$\mathcal{B}_{SES} = -$	$\frac{1}{\lambda^{T}}$		
$\frac{\partial \sigma}{\pi\pi}\pi\pi\pi\pi$					
	$N_{\pi\pi}^{\text{eff}}$	Effective number of normalisation events	$(1.953 \pm 0.005) \times 10^8$		
	$A_{\pi\pi}$	Normalisation acceptance	$(13.410 \pm 0.005)\%$		
	N_K	Effective number of K^+ decays	$(2.85 \pm 0.01) \times 10^{12}$		
	$A_{\pi\nu\bar{\nu}}$	Signal acceptance	$(7.62 \pm 0.22)\%$		
	$\varepsilon_{ m trig}$	Trigger efficiency ratio	$(85.9 \pm 1.4)\%$		
	$\varepsilon_{\rm RV}$	Random veto efficiency	$(63.2 \pm 0.6)\%$		
	$\mathcal{B}_{\mathrm{SES}}$	Single event sensitivity	$(8.48 \pm 0.29) \times 10^{-12}$		
	$N_{\pi\nu\bar{\nu}}^{\rm SM}$	Number of expected SM $K^+ \to \pi^+ \nu \bar{\nu}$ events	9.91 ± 0.34		

Uncertainty significantly improved: $6.3\% \rightarrow 3.5\%$

- trigger efficiency cancellation
- improved acceptances and ϵ_{RV} evaluation


Assuming $BR_{SM} = 8.4 \cdot 10^{-11}$: $N_{\pi\nu\nu}$ (2021-2022): 9.91 ± 0.34 $N_{\pi\nu\nu}$ (2016-2018): 10.01 ± 0.42

Background evaluation


Backgrounds due to mis-reconstruction in the m²_{miss} tails

Backgrounds from kinematic tails

 $K^+ \rightarrow \pi^+ \pi^- \pi^+$: Used MC to evaluate $f_{tail} N_{bg} (K^+ \rightarrow \pi^+ \pi^- \pi^+) = 0.11 \pm 0.03$

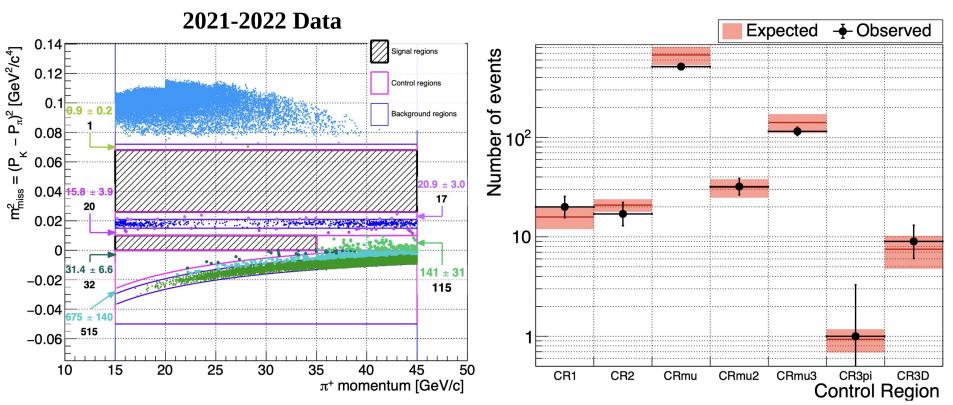
Upstream background

16

Summary of expectations

Backgrounds

$K^+ \to \pi^+ \pi^0(\gamma)$	0.83 ± 0.05
$K^+ \to \pi^+ \pi^0$	0.76 ± 0.04
$K^+ \to \pi^+ \pi^0 \gamma$	0.07 ± 0.01
$K^+ \to \mu^+ \nu(\gamma)$	1.70 ± 0.47
$K^+ \to \mu^+ \nu$	0.87 ± 0.19
$K^+ \to \mu^+ \nu \gamma$	0.82 ± 0.43
$K^+ \to \pi^+ \pi^+ \pi^-$	0.11 ± 0.03
$K^+ \to \pi^+\pi^- e^+ \nu$	$0.89^{+0.34}_{-0.28}$
$K^+ \to \pi^0 \ell^+ \nu$	< 0.001
$K^+ \to \pi^+ \gamma \gamma$	0.01 ± 0.01
Upstream	$7.4^{+2.1}_{-1.8}$
Total	$11.0^{+2.1}_{-1.9}$

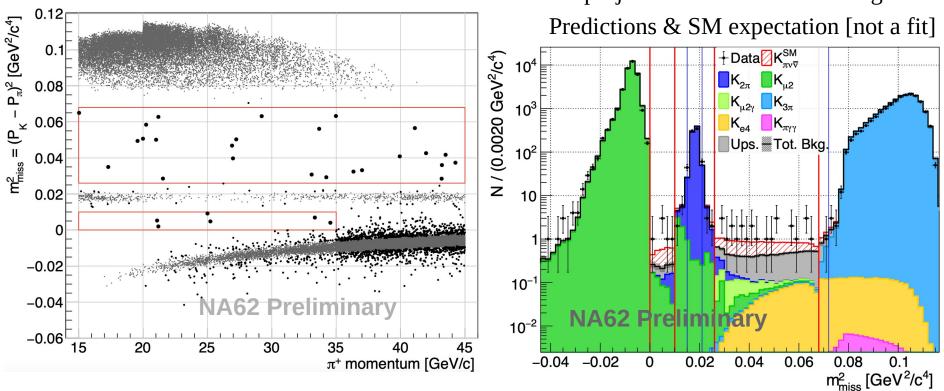

Sensitivity

 $\mathcal{B}_{SES} = (8.48 \pm 0.29) \cdot 10^{-12}$

Assuming $BR_{SM} = 8.4 \cdot 10^{-11}$: N_{$\pi\nu\nu$} (2021-2022): 9.91 ± 0.34 N_{$\pi\nu\nu$} (2016-2018): 10.01 ± 0.42

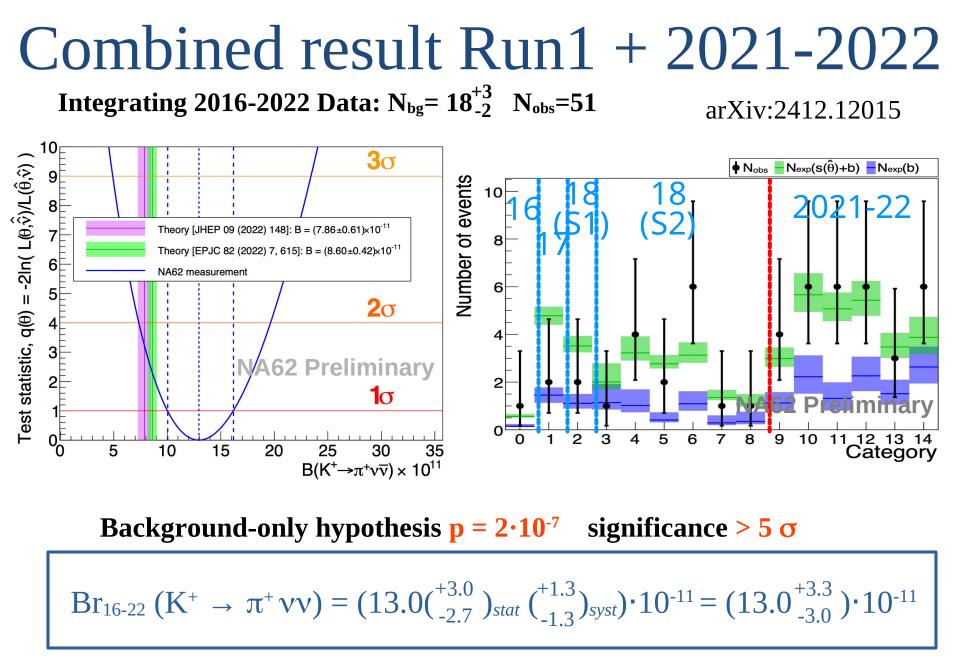
- $N^{\text{SM}}_{\pi\nu\nu}$ per SPS spill = $2.5 \cdot 10^{-5}$ in 2022 It was $1.7 \cdot 10^{-5}$ in 2018 \implies signal yield increased by 50%
- Sensitivity for BR ~ $\sqrt{S + B}/S = 0.5$ Similar but improved with respect 2018 analysis for the same amount of data 17

Control regions opening



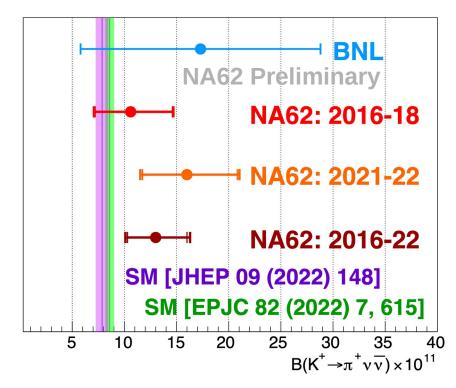
Good agreement between the expectations and the observed number of background events in the CRs the background evaluation is validated

Signal regions opening


2021-2022 Data

Expected SM events:10 Expected backgrounds: $11^{+2.1}_{-1.9}$ Observed events: 31

arXiv:2412.12015


World data and SM predictions

BNL E787/E949 experiment Phys.Rev.D 79 (2009) 092004

NA62 2016-2018 JHEP 06 (2021) 093

NA62 2021-2022 this talk: $(16.0^{+5.0}_{-4.5}) \cdot 10^{-11}$

NA62 2016-2022 +3.3 this talk: $(13.0^{-3.0}) \cdot 10^{-11}$

- The NA62 results are consistent within the years
- The fraction uncertainty decreased from 40% to 25%
- The background-only hypothesis is rejected with a significance > 5 σ
- Central value moved up: now 1.5-1.7 σ above SM

Need full NA62 data-set to clarify SM agreement or tension

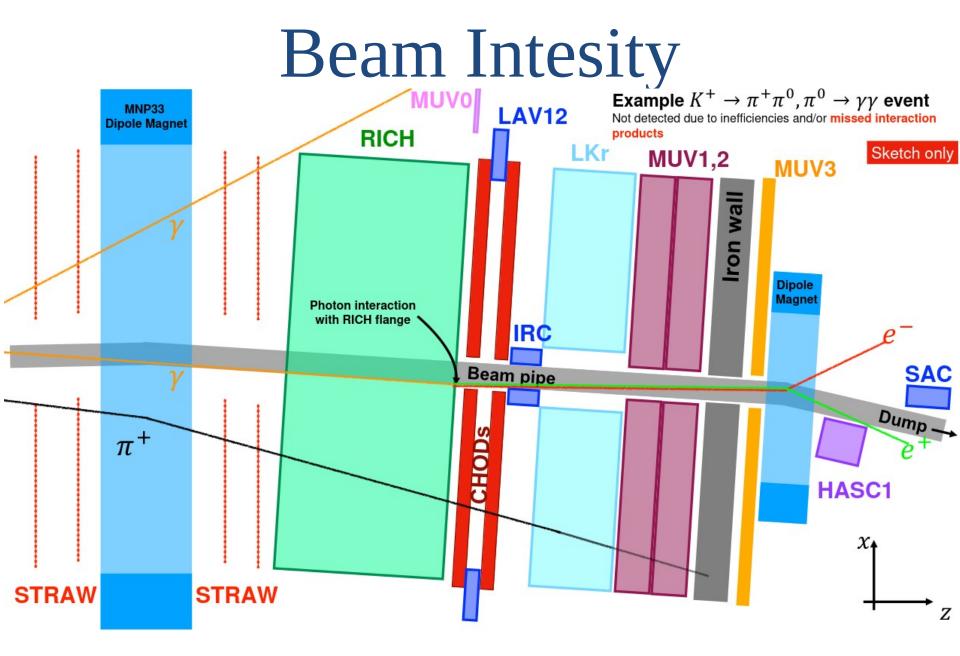
Conclusions

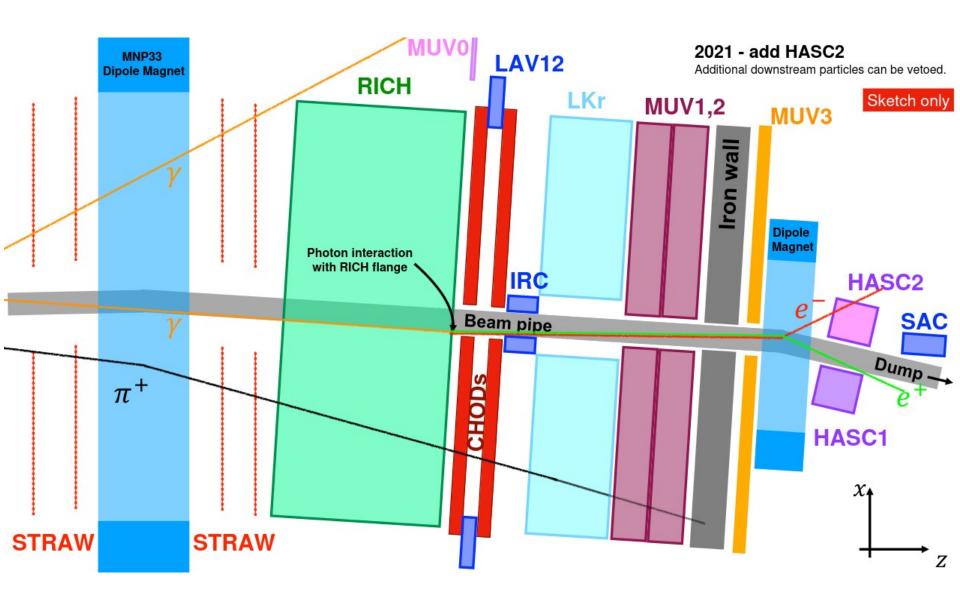
 \Box New study of K⁺ $\rightarrow \pi^+ \nu \nu$ using NA62 20201-2022 data presented:

– Improved signal yield per SPS spill by 50%

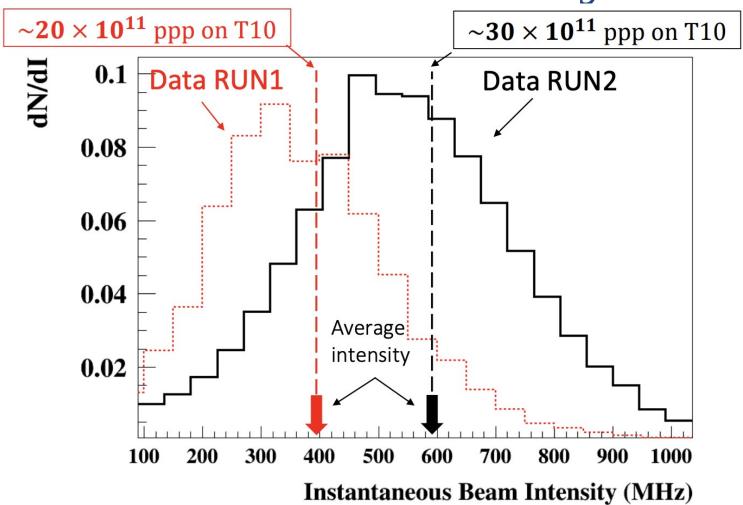
$$- N_{bg} = 11.0^{+2.1}_{-1.9}$$
 $N_{obs} = 31$

 $- \operatorname{Br}_{21-22} \left(\mathrm{K}^{+} \to \pi^{+} \nu \nu \right) = \left(16.2 \begin{pmatrix} +4.9 \\ -4.3 \end{pmatrix}_{stat} \begin{pmatrix} +1.4 \\ -1.4 \end{pmatrix}_{svst} \right) \cdot 10^{-11}$

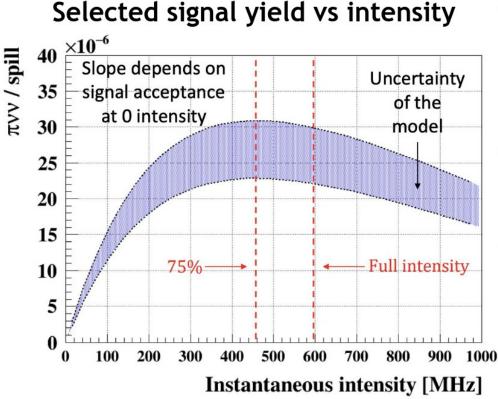

Combining 2016-2018 with 2021-2022


- $N_{bg} = 18^{+3}_{-2} \quad N_{obs} = 51 \quad (9+6 \text{ categories to extract the Br}) \\ Br_{16-22} (K^+ \rightarrow \pi^+ \nu \nu) = (13.0(_{-2.7})_{stat} (_{-1.3})_{syst}) \cdot 10^{-11}$
- Background-only hypothesis excluded with significance > 5σ

□ First observation of $K^+ \rightarrow \pi^+ \nu \nu$ decay: Br in agreement with SM prediction within 1.7σ

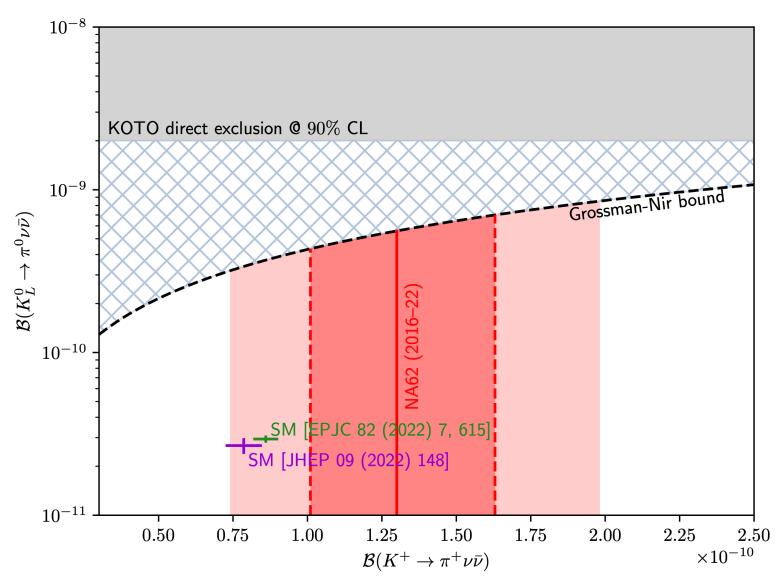

- □ Needed the full Run1-Run2 data-set to confirm SM agreement or tension
- □ 2023 LS3 data-set collection & analysis ongoing

Spares



Beam Intensity

- Avarage beam intensity increased
- NA62 "Full intensity" with 4.8 spill length = 600 MHz


Optimum NA62 Beam Intensity

- Saturation of expected signal yield with intensity. Mainly due to:
 - Paralyzable effects from TDAQ dead time and trigger veto windows.
 - Offline selection, due to veto conditions.
- Main sources of uncertainty for model:
 - Online time-dependent mis-calibrations.
 - Fit uncertainty.
- From August 2023 operate at optimal intensity (~75% of full) to maximise πννsensitivity
 - Maximise signal yield
 - lower expected background
 - Higher DAQ efficiency

Studies of 2021-2022 data at high intensity were crucial to define the optimal beam intensity

Results in context

