

Direct Dark Matter Detection with Liquid Xenon Time Projection Chambers

61st International Winter Meeting on Nuclear Physics, Bormio

Laura Baudis University of Zurich January 28, 2025

Most of our Universe is invisible

• Evidence for dark matter across many time and length scales

- Early and late cosmology (CMBR, LSS)
- Clusters of galaxies
- Galactic rotation curves
- Big Bang Nucleosynthesis

Planck (esa.int): "An almost perfect Universe"

- ► **ACDM:** describes (almost?) all observations well
- The fundamental nature of dark matter is still a mystery

• What is it, how does it interact?

What is the dark matter?

"A component of the universe that is totally invisible is an open invitation to speculation"

B. Ryden

Direct dark matter detection

 χ (p') χ (p) NRs Observe DM collisions with nuclei (NRs) or with electrons in Nucleus the atomic shell (ERs) •Look for absorption of light bosons via e.g., the axio-ERs χ. electric effect **N** (q=p-p')

Direct dark matter detection

• Inputs from several fields required to model the expected rates

Techniques and experiments

Ar: DEAP-3600 Xe: XMASS Nal: ANAIS DAMA/LIBRA, COSINE, SABRE

Towards the neutrino fog

LB and Stefano Profumo, PDG 2024

Why liquid xenon detectors?

- Leading sensitivity at intermediate/high DM masses since ~2007
- Advantages
 - \bullet scalable \Rightarrow large target masses
 - e readily purified ⇒ ultra-low backgrounds
 - high density \Rightarrow self-shielding
- SI and SD (129Xe, 131Xe) interactions
- Many other science opportunities (second order weak decays of ¹²⁴Xe, ¹²⁶Xe, ¹³⁴Xe, ¹³⁶Xe; solar and supernova neutrinos)

Upper limits for a 50 GeV WIMP

Two-phase xenon TPCs

5D detectors: (x,y,z,E,t)

 Observe light (S1, primary scintillation) and charge signals (S2, secondary scintillation) when a particle interacts in the dense liquid

- Output States of the states
- Energy reconstruction
- Particle discrimination: ratio of charge/light (ERs vs. NRs)

Electronic and nuclear recoils

ER versus NR discrimination

- S2 over S1 depends on the type of particle (dE/dx): in particular, it is different for ERs versus NRs
- Discrimination power depends on an interplay between the drift field (that changes the mean recombination fraction (r) and the recombination fluctuations Δr; and the e-ion recombination factor for ERs is more significantly affected by the field) and total S1 light collection (higher field means less S1 light and thus larger statistical fluctuations)
- Typically (99.5 99.99)% ER rejection at ~50% NR acceptance

Laura Baudis, UZH:: Direct dark matter detection with LXe TPCs

Interaction rates: DM-nucleus

$$R \sim 0.13 \ \frac{\text{events}}{\text{kg year}} \left[\frac{A}{100} \times \frac{\sigma_{WN}}{10^{-38} \,\text{cm}^2} \times \frac{\langle v \rangle}{220 \,\text{km s}^{-1}} \times \frac{\rho_0}{0.3 \,\text{GeV cm}^{-3}} \right]$$

Spin-dependent

B.S. Hu et al, PRL 128, 2022

Interaction rates: DM-electron

Heavy dark photon A' mediator

Ultra-light dark photon A' mediator

Interaction rates: DM absorption

• Absorption of bosonic DM (ALPs, dark photons) \Rightarrow peak-like signatures

• Rates: ~ $\phi x \sigma \sim \rho x v/m x \sigma$ (here for $\rho = 0.3$ GeV/cm³)

e⁻

Ongoing LXe experiments

LUX-ZEPLIN

XENONnT

PandaX-4T

LNGS, 5.9 t

JinPing, 3.7 t

- TPCs with 2 arrays of 3-inch ø PMTs
- Kr & Rn removal techniques (to mitigate ⁸⁵Kr and ²²²Rn backgrounds)
- Ultra-pure water shields, neutron & muon vetos

LUX-ZEPLIN and XENONnT

LUX-ZEPLIN top PMT array XENONnT top PMT array

V.C. Antochi et al., JINST 16 (2021) 08, P08033

LUX-ZEPLIN and XENONnT

• Spatial distribution of events in the TPCs

LUX-ZEPLIN

XENONnT

LUX-ZEPLIN and XENONnT

Distribution of events in S2 versus S1 space in the TPC

LUX-ZEPLIN

XENONnT

Recent results: DM-nucleus

• DM mass range: ~ 3 GeV - 10 TeV

XENONnT

LUX-ZEPLIN

Recent results: DM-electron

• DM mass range: ~ 50 MeV - 10 GeV

Recent results: DM absorption

• DM mass range: ~ 0.5 keV - 100 keV

Dark photons

Axion like particles

XENONnT, PRL 129, 2022; LZ, PRD 108, 2023

XENONnT at LNGS

XENONnT at LNGS

• Several science runs (SRO, SR1, SR2), analyses ongoing

XENONnT at LNGS

• Several science runs (SRO, SR1, SR2), analyses ongoing: examples

*pp and ⁷Be solar neutrinos

★bosonic DM

*solar axions

*double beta decay ¹³⁶Xe (Qββ = 2.46 MeV)
*double electron capture ¹²⁴Xe (Q_{DEC} = 2.86 MeV)

*⁸B solar neutrinos *WIMP DM (SI, SD)

*inelastic DM*EFT DM models

Second order weak decays

Double

electron

capture

 $T_{1/2} = (1.8 \pm 0.5_{\text{stat}} \pm 0.1_{\text{sys}}) \times 10^{22} \text{ y}$

natureTHE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

XENON, Nature 568, 2019

Solar neutrino flux at low energies (pp and ⁷Be)

26

scattering

- Observed ⁸B neutrinos via CEvNS
- In LXe: ~99% of events < 4 keV NR energy
- Expect: ~ 10⁴ events/(200 t y)

$$\nu_x + A \to \nu_x + A$$

*Complementary measurements to experiments using CC reactions

* "Flavour democratic" (C. Lunardi, Neutrino-2024)

• **First** step into the "neutrino fog" by a DM experiment

- Measured ⁸B flux: (4.7 +3.6 2.6) x 10⁶ cm⁻²s⁻¹
- $5-\sigma$ discovery and precision measurement in reach with XENONnT data

XENONnT: PRL 123, 2024

Highlights of the Year

December 16, 2024 • Physics 17, 181

Physics Magazine Editors pick their favorite stories from 2024.

APS/Alan Stonebraker

Neutrino Fog Rolling into Sight

After years of null results, dark matter searches might finally have a real signal to contend with. Alas, the signal doesn't come from dark matter particles but from a stream of neutrinos produced by nuclear reactions in the Sun (see **Research News: First Glimpses of the Neutrino Fog**). In 2024, the PandaX and XENON collaborations independently reported that their detectors have likely started to see this "neutrino fog." Whereas in the long run the neutrino fog could pose a threat to dark matter searches, researchers agree that its impact won't be felt until next-generation experiments kick off in a decade or so. What's more, dark matter experiments could be turned into multipurpose detectors for probing various aspects of neutrino physics.

XENONnT: PRL 123, 2024

Some history...

 CEvNS-based detectors were proposed as "neutrino observatories" in the mid eighties (1984, Drukier & Stodolsky)

- These detectors were then proposed to detect "some possible candidates for dark matter" (1985, Goodman and Witten)
- Forty year later: dark matter detectors observed solar neutrinos via CEvNS for the first time* (2024, XENONnT and PandaX-4T)

Principles and applications of a neutral-current detector for neutrino physics and astronomy

PHYSICAL REVIEW D

A. Drukier and L. Stodolsky Phys. Rev. D **30**, 2295 – Published 1 December 1984

ABSTRACT

We study detection of MeV-range neutrinos through elastic scattering on nuclei and identification of the recoil energy. The very large value of the neutral-current cross section due to coherence indicates a detector would be relatively light and suggests the possibility of a true "neutrino observatory." The recoil energy which must be detected is very small (10-10³ eV), however. We examine a realization in terms of the superconducting-grain idea, which appears, in principle, to be feasible through extension and extrapolation of currently known techniques. Such a detector could permit determination of the neutrino energy spectrum and should be insensitive to neutrino oscillations since it detects all neutrino types. Various applications and tests are discussed, including spallation sources, reactors, supernovas, and solar and terrestrial neutrinos. A preliminary estimate of the most difficult backgrounds is attempted.

Received 21 November 1984

DOI: https://doi.org/10.1103/PhysRevD.30.2295

31

15 JUNE 1985

*not with superconducting grains, but with large liquid Xe detectors

VOLUME 31, NUMBER 12

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544

(Received 7 January 1985)

tic halos. This may be feasible if the galactic halos are made of particles with coherent weak in-

teractions and masses $1-10^6$ GeV; particles with spin-dependent interactions of typical weak

strength and masses $1-10^2$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galac-

Future liquid xenon TPCs

XLZD (XENON-LZ-DARWIN)

PandaX-xT

78 t LXe (60 t active target)2 arrays of 3-inch PMTs

47 t LXe (43 t active target)2 arrays of 2-inch PMTs

DARWIN R&D

- R&D for next-generation liquid xenon detector since ~2010
- Several large-scale demonstrators: Xenoscope, Pancake, LowRad (3 ERCs)
- Photosensors, TPC design, large-scale purification, etc

Xenoscope at UZH LB et al., JINST 16, 2021, EPJ-C 83, 2023

Pancake in Freiburg A. Brown at al., JINST 19, 2024

LowRad in Münster C. Weinheimer et al.

33

"1 Rn atom in 100 moles of Xe"

Laura Baudis, UZH:: Direct dark matter detection with LXe TPCs

Xenoscope

New run planned for 2025, starting in April

Liquid xenon commissioning run with full TPC in 2024: 2411.08022

XENON-LUX-ZEPLIN-DARWIN

- New collaboration to build & operate next-generation detector
- Demonstrated experience in large-scale LXe TPCs
- July 2021: MoU signed by 104 research group leaders from 16 countries
- Several meetings (KIT, UCLA, RAL); since fall 2024 full collaboration
- Executive committee and WGs in place; design book submitted

XENON-LUX-ZEPLIN-DARWIN

KIT, summer 2022

UCLA, spring 2023

RAL, spring 2024

XLZD underground sites

- Three experimental sites are being considered within XLZD: LNGS, a new lab at Boulby (UK) and SURF (USA)
- Example: the LNGS option in Hall-C of the underground lab (between LEGEND-1000 and DarkSide-50k)

XLZD underground sites

LNGS, summer 2024

XLZD nominal design

- Nominal plan: 60 t LXe in TPC (78 t total), early science with 45 t LXe*
- Two arrays of 3-inch PMTs, 1182/array
- 2.97 m e⁻ drift, 2.98 m diameter
- Drift field: 240-290 V/cm
- Extraction field: 6-8 kV/cm
- Double-walled Ti cryostat, 7 cm LXe "skin" detector around the TPC

XLZD TPC

Background goals

• ER and NR regions: dominated by cosmic neutrinos

Science goals

Physics case for a large liquid xenon detector: JoPG and arXiv:2203.02309 (600 authors)

WIMPs

Definite search for medium to high WIMP masses

- reach the systematic limit of the neutrino fog (~ 1000 tonnes × years exposure)
- 3-σ discovery at SI cross section of 3 × 10⁻⁴⁹ cm² at 40 GeV mass

Projected SI upper limits for 200 t y and 1000 t y exposures

Systematic limit imposed by CEvNS from atmospheric neutrinos

At contour n: obtaining a 10 times lower cross section sensitivity requires an increase in 42 exposure of at least 10ⁿ

WIMPs

Median discovery potential 200 t y and 1000 t y exposures

- reach the systematic limit of the neutrino fog (~ 1000 tonnes × years exposure)
- 3-σ discovery at SI cross section of 3 × 10⁻⁴⁹ cm² at 40 GeV mass

Confidence intervals for 200 t x y (1-, 2-, 3- σ : yellow, orange, red) Dashed line: \equiv 1 event per t-y

$0\nu\beta\beta$ decay of ¹³⁶Xe

- ¹³⁶Xe: present at 8.9% abundance in ^{nat}Xe
- Energy resolution of large two-phase Xe TPCs at $Q_{\beta\beta}$: < 1% (σ/E)

LUX-ZEPLIN, JINST 18, 2023

$0\nu\beta\beta$ decay of ¹³⁶Xe

- Ongoing searches in LZ and XENONnT
- LZ sensitivity: T_{1/2} ~ 1.1 x 10²⁶ y, Phys.Rev.C 102 (2020) 1

XENONnT, preliminary; ¹³⁶Xe 0vββ region blinded

$0\nu\beta\beta$ decay of ¹³⁶Xe

- XLZD: competitive sensitivity to dedicated experiments
- Assumptions: 0.1 μ Bq/kg ²²²Rn, materials radiopurity already identified

XLZD preliminary

Other 2nd order weak decays

¹²⁴Xe, ¹²⁶Xe, ¹³⁴Xe

- Some with interesting topologies $Ov/2vEC\beta^+$, $Ov/2v\beta^+\beta^+$
- Can also probe SM/nuclear physics

XENON, Nature 568, 2019, PRC 106, 2022

Solar neutrino signals

• Neutrino signals: NRs (CEvNS), ERs (all other reactions)

B. Dutta, E. Strigari, Annu. Rev. Nucl. Part. Sci. 2019

Solar v-electron scattering

 Main challenge: reduce ²²²Rn (²¹⁴Pb β-decay) background to x 10 below the pp rate (0.1 μBq/kg)

Solar v-nucleus scattering

- Main goal: observe ⁸B neutrinos via CEvNS
- In LXe: ~99% of events expected < 4 keV NR energy
- Expect: 10^4 events/(200 t y) for 2-fold S1 and 5 n_e S2*

A

 \mathcal{V}

A

Look for non-standard interactions

Main goal: observe ⁸B neutrinos via CEvNS

Solar v-nucleus scattering

Conclusions & Outlook

- Liquid xenon detectors: at the forefront of direct DM searches
- LZ, PandaX, XENONnT: many results by early 2025, continue to take data towards design exposures and sensitivities
- DARWIN: leading the R&D efforts towards next-generation detectors
- XLZD (XENON-LZ-DARWIN): new international collaboration to build and operate a ≥ 60 tonne scale LXe TPC; PandaX-xT: upgrade to 20 t, then will construct 50 tonne scale detector
- Main goal: test WIMP paradigm into the neutrino fog (& other DM candidates)
- Neutrino physics: search for Ovββ-decay in ¹³⁶Xe, address inverted ordering scenario, observe solar and SN neutrino, other second order weak decays

Bormio 2033 (?) A new particle ;-)

Mass =?

● J = ? \circ $\tau > ?$

. . .

•
$$\sigma(\chi + \bar{\chi} \to SM + SM) = ?$$

• $\sigma(\chi + SM \to \chi + SM) = ?$

Thank you

Additional material

Approaching the neutrino fog

- Here shown for nuclear recoils (v floor as boundary to "v fog")
- Region where experiments leave the Poissonian regime*

The "fog" for different targets

Effect of ν fluxes uncertainties

 10^{4}

56

* σ where the DM discovery limit scales as ~ $(Mt)^{-1/n}$

XLZD nominal design

- Neutron and muon vetoes
- Underground site: several options are being considered (LNGS, Boulby extension, SURF, SNOLAB)
- Large-scale underground
 demonstrator planned

XLZD n and μ shields, schematic view

XI.ZD: endorsement

XENON-LUX-ZEPLIN-DARWIN

- APPEC Mid-Term Roadmap
- Helmholtz Roadmap
- P5 report
- UKRI infrastructure funds allocated for design study
- Several national roadmaps in Europe

P5 report

4.1.4 - Major Initiative: G3, the Ultimate WIMP Dark Matter Search

The next phase of the search for WIMP dark matter requires experiments capable of reaching roughly order-of-magnitude weaker interaction strengths than current experiments. A large Generation-3 (G3) WIMP dark matter search would build on the most successful designs of the current G2 experiments, providing sensitivity to dark matter-Standard Model interactions that are small enough that neutrinos become an irreducible background (the "neutrino fog").

This improvement in reach would provide coverage of important benchmark WIMP models, such as most remaining potential dark matter parameter space under the constrained minimal supersymmetric extension to the Standard Model. Such a G3 experiment would also perform important measurements of solar and possibly supernova neutrinos. A G3 direct detection experiment would be the ultimate WIMP search within the current approach; moving past the reach of the G3 experiment and deeper into the neutrino fog would require significant changes in method and technology.

Although supporting more than one G3 experiment would be beneficial, expected costs are high enough, especially compared to the costs of the portfolio of smaller dark matter projects, that funding two does not appear feasible. Our recommendation supports one G3 experiment, preferably sited on US soil to help maintain US leadership (Recommendation 2d). Investment in the expansion of SURF, taking advantage of the DUNE excavation infrastructure and potential private funding, would enable such siting. Continued support by both DOE and NSF is needed to maximize the science and US leadership. A second, complementary G3 experiment would maximize the discovery potential and would teach us more about dark matter if one of the G2 experiments has promising results.

APPEC report

leadership role in Dark Matter direct detection, underpinned by the pioneering LNGS programme, to realise at least one nextaeneration xenon (order 50 tons) and one

RECOMMENDATIONS:

argon (order 300 tons) detector, respectively, of which at least one should be situated in Europe. APPEC strongly encourages detector R&D to reach down to the neutrino floor on the shortest possible time scale for WIMP searches for the widest possible mass range.

iew of the external structure of XENON

Light dark matter searches

SN v-nucleus scattering ν

- Sensitivity to all v flavours: few events/ton expected from SN at ~10 kpc
- Main challenge: low energies, understand few-e⁻ backgrounds
- XLZD: sensitivity beyond SMC; part of SNEWS2.0

Atmospheric neutrinos

• In general, exposures > few 100 t y are needed for $5-\sigma$ detection

Newstead, Lang, Strigari, PRD 104, 2021

DSNB with CEvNS

- Understanding of core-collapse SN depends on probing DSNB with all flavours
- So far, only upper limits in ν_e and $\bar{\nu}_e$ flux by SNO and SuperK (19 cm⁻²s⁻¹, 2.7 cm⁻²s⁻¹), limits on in $\nu_{\mu,\tau}$ and $\bar{\nu}_{\mu,\tau}$ fluxes much weaker (per flavour, ~10³ cm⁻²s⁻¹), XLZD could probe these down to ~ 10 cm⁻²s⁻¹ or better, depending on fiducial mass

Suliga, Beacom, Tambora, PRD 105, 2022

Laura Baudis, UZH:: Direct dark matter detection with LXe TPCs

Approaching the neutrino fog

• Current & future noble liquid experiments

Snowmass, Topical Group on Particle Dark Matter Report, 2209.07426: "A critical feature of the neutrino fog is that it will move to lower cross section if uncertainties in the neutrino fluxes are reduced, opening up new space for continuing searches."

100 GeV WIMP discovery limits

C. O'Hare, PRD 102, 2020

63

Laura Baudis, UZH:: Direct dark matter detection with LXe TPCs

Energy thresholds in Xe TPCs

- S1 + S2: ~ 1 keV with 3-fold coincidence (ER) (hits in \geq 3 PMTs within ~50-100 ns); lower threshold (< 1 keV) with 2-fold coincidence (with lower signal efficiency)
- S2-only: ~ 0.2 keV, with 5 e⁻ 100 e⁻ detected (probe ER and NR interactions), down to W-value, with 1 e⁻ - 5 e⁻ signal (mostly probe ER interactions due to large uncertainty in quenching factor for NRs at lowest energies)

At least 3 PMTs see a signal, summed signal > 3 phd

LZ, PRD 108, 2023

PandaX-4T, PRL 130, 2023

AC backgrounds in TPCs

- Combinatorial background at low energies can be significant
- Main sources for isolated S1 and isolated S2 signals
 - Primary scintillation (S1s)
 - Dark counts (pile-up) \propto nr. channels
 - Charge-insensitive regions
 - Delayed photons
 - Electroluminiscence (S2s)
 - Bulk xenon S2-only events
 - Delayed electrons
 - Electrode events

65

Example from XENONnT

Ionisation only backgrounds

- Radioactivity
- Solar neutrinos
- Instrumental
 - Spurious emission of single and few electrons from the cathode
 - Delayed e⁻ after large S2 signals: trapped e⁻ at the liquid/gas interface; e⁻ emitted from impurities, etc
- Important to understand & mitigate origin, develop background models

Ionisation only backgrounds

123, 2019

- Radioactivity
- Solar neutrinos
- Instrumental
 - Spurious emission of single and few electrons from the cathode
 - Delayed e⁻ after large S2 signals: trapped e⁻ at the liquid/gas interface; e⁻ emitted from impurities, etc
- Important to understand & mitigate origin, develop background models

