

High-resolution x-ray spectroscopy of muonic lithium

Towards improved nuclear charge radii

Katharina von Schoeler | ETH Zürich | QUARTET collaboration | Bormio Conference 2025

Absolute nuclear charge radii

Precise measurements of low-Z absolute nuclear charge radii are crucial as

- 1. Input for laser spectroscopy of muonic and electronic atoms for
 - Precision QED tests & searches for new physics
 - Extraction of fundamental constants
 - ...
- 2. benchmarks for ab-initio nuclear theory
- 3. ...

rms charge radius:

```
\langle r^2 \rangle = \frac{1}{Ze} \int r^2 \rho(r) d\tau
Nuclear charge
density distribution
```

Uncertainties in nuclear charge radii

Uncertainties in nuclear charge radii

Lithium nuclear charge radii

From electron scattering and isotope shifts

Whole isotopic chain is limited by current best Li charge radii:

 $R_{rms}(^{6}Li) = 2.589(39) \text{ fm}$

 $R_{rms}(^{7}Li) = 2.444(42) \text{ fm}$

from elastic electron scattering experiments.

Lithium nuclear charge radii

From muonic atom spectroscopy

Radius uncertainty >100% from 1968 measurement:

Volume 20, Number 10		PHYSICAL	REVIEW LETT	ERS	4 March 1968
	ENERGY AND WII	OTH MEASUREMEN	NTS OF LOW- Z PIO	NIC X-RAY	TRANSITIONS*
Element	E _{ex}	(Libborn)	Radius (fm) -	Equivaler	t Uniform Charge
Element	E _{ex} This Work	SP Other	Radius (fm) - This Wor	Equivaler k	t Uniform Charge Electron Scattering
Element Li ⁶	E _{ex} This Work 18.64 <u>+</u> 0.07	p Other 18.1 <u>+</u> 0.4 ^b	Radius (fm) - This Wor 4.96 <u>+</u> 6.0	Equivaler k	t Uniform Charge Electron Scattering 3.28 <u>+</u> 0.06 ^e

Muonic x-ray spectroscopy

In a nutshell

Strategy: form muonic atom and observe $2p \rightarrow 1s$ transition for maximum radius sensitivity

How to measure those x-rays?

The choice of detectors

Requirements:

- Energy range ~18 210 keV
- High resolution < 50 eV
- High efficiency

(µLi to µNe 2p → 1s)

(μ^{6} Li to μ^{7} Li isotope shift: 50 eV, line shape with FS & HFS, background, ...) (limited beam time)

Metallic Magnetic Calorimeter (MMC)

DOI: 10.1109/TASC.2009.2012724

DOI: 10.1109/TASC.2009.2012724

DOI: 10.1109/TASC.2009.2012724

"maXs-30" MMC from Heidelberg

Detector performance

- Operated at approx. 20 mK
- High efficiency: > 90% from 8 22 keV
- High resolution of ~10-20 eV at 18 keV
- 64 absorbers: each 500 μm x 500 μm x 20 μm
- max. rate per pixel \leq 0.5-1 Hz

Calculated detection efficiency. Limited by absorber thickness at high energies and to the entrance window thickness at low energies.

DOI: 10.1007/s10909-024-03141-x

"maXs-30" MMC from Heidelberg

Detector design

Absorber pair wise coupled

- \rightarrow Reduced sensitivity towards global temperature changes
- \rightarrow (Reduced number of readout channels necessary)

Temperature sensitive design:

Setup October 2024

Setup October 2024

Lithium targets:

Background identification

Background identification

• Electron hits not only recognizable by pulse shape but also via coincidences between pixels

Spatial distribution of coincident triggers on the detector e.g.:

Michel electrons shoot through absorbers into silicon substrate and heat-up pixels "from the backside"

Temperature correction

Muonic Lithium MMC Data 2024

Preliminary results

50 pixels, ~70 hours measurement time

Muonic Lithium MMC Data 2024

Preliminary results

50 pixels added, 70h measurement

Muonic Lithium MMC Data 2024

Preliminary results

Muonic atoms beyond QUARTET

muX

radioactive targets

→ Deformed heavy nuclei. E.g. ²²⁶Ra is a candidate for APV experiments. Radius needed as an input

Not so light muonic atoms

Challenge for radioactive targets: stopping 30 MeV/c muons in µg-quantities

Muonic atom spectroscopy with microgram target material

A. Adamczak¹, A. Antognini^{2,3}, N. Berger^{4,5}, T. E. Cocolios⁶, N. Deokar^{4,5}, Ch. E. Düllmann^{5,7,8,9}, A. Eggenberger³, R. Eichler², M. Heines⁶, H. Hess¹⁰, P. Indelicato¹¹, K. Kirch^{2,3}, A. Knecht^{2,a}, J. J. Krauth^{5,12}, J. Nuber^{2,3}, A. Ouf¹², A. Papa^{2,13}, R. Pohl^{5,12}, E. Rapisarda², P. Reiter¹⁰, N. Ritjoho^{2,3}, S. Roccia¹⁴, M. Seidlitz¹⁰, N. Severijns⁶, K. von Schoeler³, A. Skawran^{2,3}, S. M. Vogiatzi^{2,3}, N. Warr¹⁰, F. Wauters^{4,5}

https://doi.org/10.1140/epja/s10050-023-00930-y

Not so light muonic atoms

Challenge for radioactive targets: stopping 30 MeV/c muons in µg-quantities

Muonic x-ray spectroscopy on implanted targets

Michael Heines ^{a,*}, Luke Antwis ^b, Silvia Bara ^a, Bart Caerts ^c, Thomas E. Cocolios ^a, Stefan Eisenwinder ^d, Julian Fletcher ^b, Tom Kieck ^e, Andreas Knecht ^f, Megumi Niikura ^g, Narongrit Ritjoho ^h, Lino M.C. Pereira ^c, Randolf Pohl ⁱ, André Vantomme ^c, Stergiani M. Vogiatzi ^{f,j}, Katharina von Schoeler ^{f,j}, Frederik Wauters ⁱ, Roger Webb ^b, Qiang Zhao ^c, Sami Zweidler ^j

https://doi.org/10.1016/j.nimb.2023.05.036

Summary

 QUARTET: high-precision measurements of low-Z charge radii from Li to Ne via muonic atom spectroscopy

- First promising measurements of muonic lithium with an MMC were conducted at PSI in 2024, analysis ongoing
- Improved, faster MMCs under development

