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ON THE MEANING OF “FACTORIZATION”

Do LHC cross sections factorize?

Most fundamental:  separation of energy/distance scales 

▸ Without this principle, physics would not exist 

▸ Effective Field Theories (EFTs) describe phenomena using only the relevant 
degrees of freedom, quantum effects from shorter distances are “integrated 
out” and included in the couplings of the EFT 

▸ EFT for collider physics: Soft-Collinear Effective Theory
[Bauer, Fleming, Pirjol, Stewart (2000); 
 Bauer, Pirjol, Stewart (2001); 
 Bauer, Fleming, Pirjol, Rothstein, Stewart (2002); 
 Beneke, Chapovsky, Diehl, Feldmann (2002)]
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ON THE MEANING OF “FACTORIZATION”

Do LHC cross sections factorize?

Most fundamental:  separation of energy/distance scales 

▸ Without this principle, physics would not exist 

▸ Effective Field Theories (EFTs) describe phenomena using only the relevant 
degrees of freedom, quantum effects from shorter distances are “integrated 
out” and included in the couplings of the EFT 

▸ EFT for collider physics: Soft-Collinear Effective Theory 

▸ Relevant in QCD: separation of perturbative partonic                                        
(short-distance) from  non-perturbative hadronic                                                        
(long-distance) effects
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“PDF FACTORIZATION”

Do LHC cross sections factorize?

Stronger assumption: 

▸ Up to power corrections, all long-distance effects in hadron collider scattering 
are contained in universal parton distribution functions (PDFs) of the nucleon: 

▸ Used in all calculations of LHC processes, but proved only for Drell-Yan 
processes:   

▸ What about more complicated processes with colored particles (jets) in the 
final state?

pp → color-neutral state (γ*, W, Z, H) [Collins, Soper, Sterman (1985)]

d�pp!f (s) =
X

a,b=q,q̄,g

Z
dx1dx2 fa/p(x1, µ) fb/p(x2, µ) d�ab!f (ŝ = x1x2s, µ)

<latexit sha1_base64="8bgb6+ql9ferqbe29gfSmg83Q88="></latexit>
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JET PROCESSES AT HADRON COLLIDERS

Do LHC cross sections factorize?

CERN Document Server, ATLAS-PHOTO-2018-022-6

H ! bb̄
<latexit sha1_base64="TBT1TfRtkKj7LLTlQ+f6p2ZoNeI=">AAAB83icdVDLSgNBEOyNrxhfUY9eBoPgadmN0SS3gJccIxgTyC5hZjKbDJl9MDMrhCW/4cWDIl79GW/+jZNkBRUtaCiquunuIongSjvOh1VYW9/Y3Cpul3Z29/YPyodHdypOJWVdGotY9glWTPCIdTXXgvUTyXBIBOuR6fXC790zqXgc3epZwvwQjyMecIq1kby2p2NEPIIlIsNyxbGbjtu8rKMVadRyctVEru0sUYEcnWH53RvFNA1ZpKnASg1cJ9F+hqXmVLB5yUsVSzCd4jEbGBrhkCk/W948R2dGGaEglqYijZbq94kMh0rNQmI6Q6wn6re3EP/yBqkOGn7GoyTVLKKrRUEqkHl0EQAaccmoFjNDMJXc3IroBEtMtYmpZEL4+hT9T+6qtnthV29qlVYrj6MIJ3AK5+BCHVrQhg50gUICD/AEz1ZqPVov1uuqtWDlM8fwA9bbJ6PQkXA=</latexit>
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JET PROCESSES AT HADRON COLLIDERS

Do LHC cross sections factorize?

Perturbative expansion includes super-leading logarithms not present at :e+e−

gap: 
 Eout < Q0

unrestricted Ein ~ Q

� ⇠ �Born ⇥
�
1 + ↵sL+ ↵2

sL
2 + ↵3

sL
3 + ↵4

s L
5 + ↵5

s L
7 + . . .

 
<latexit sha1_base64="bdpLYKBQXSa5kGqr+Ysu3RPLn+E="></latexit>

)

<latexit sha1_base64="jQBrx8wHuGDoYol3+IhR3DOA06M=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJ4CklbaQUPRS8eK9gPaELZbDft0s0m7G6EEvojvHhQxKu/x5v/xm0bQUUfDDzem2FmXpBwprTjfFgrq2vrG5uFreL2zu7efungsKPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHI997v3VCoWizs9Tagf4ZFgISNYG6nrXbHRyJsNSmXHrl00nGodLcl5JSe1KnJtZ4Ey5GgNSu/eMCZpRIUmHCvVd51E+xmWmhFOZ0UvVTTBZIJHtG+owBFVfrY4d4ZOjTJEYSxNCY0W6veJDEdKTaPAdEZYj9Vvby7+5fVTHTb8jIkk1VSQ5aIw5UjHaP47GjJJieZTQzCRzNyKyBhLTLRJqGhC+PoU/U86Fdut2pXbWrl5mcdRgGM4gTNwoQ5NuIEWtIHABB7gCZ6txHq0XqzXZeuKlc8cwQ9Yb5+i7o/D</latexit>

formally larger than O(1)
[Forshaw, Kyrieleis, Seymour (2006)]state-of-the-art
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Do LHC cross sections factorize?

Really, a double-logarithmic series starting at 3-loop order:

gap: 
 Eout < Q0

unrestricted Ein ~ Q

formally larger than O(1)
[Becher, MN, Shao (2021)]

(=mL)2
<latexit sha1_base64="8AQ8Q/3HqfNzZygl6kayq7+5trU=">AAACBnicdVBNSwMxEM3W7/pV9ShCsAgVpOxWQb0VvCh4qGCr0K0lm05tMNldklmxLD158a948aCIV3+DN/+N6Reo6IOBx3szycwLYikMuu6nk5mYnJqemZ3Lzi8sLi3nVlZrJko0hyqPZKQvA2ZAihCqKFDCZayBqUDCRXBz1PcvbkEbEYXn2I2hodh1KNqCM7RSM7fhD95INbR6Bf9E+Qh3mKqev3O6fVVq5vJu0T08cHcP6ZDslcbEpV7RHSBPRqg0cx9+K+KJghC5ZMbUPTfGRso0Ci6hl/UTAzHjN+wa6paGTIFppIMVenTLKi3ajrStEOlA/T6RMmVMVwW2UzHsmN9eX/zLqyfYPmikIowThJAPP2onkmJE+5nQltDAUXYtYVwLuyvlHaYZR5tc1oYwvpT+T2qlordbLJ3t5cvlURyzZJ1skgLxyD4pk2NSIVXCyT15JM/kxXlwnpxX523YmnFGM2vkB5z3L2ixmRM=</latexit>

� ⇠ �Born ⇥
�
1 + ↵sL+ ↵2

sL
2 + (↵s⇡

2)
⇥
↵2
sL

3 + ↵3
sL

5 + . . .
⇤ 

<latexit sha1_base64="RiKBTzEzInxliOkAnEiohpO8YK0="></latexit>

)

<latexit sha1_base64="jQBrx8wHuGDoYol3+IhR3DOA06M=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJ4CklbaQUPRS8eK9gPaELZbDft0s0m7G6EEvojvHhQxKu/x5v/xm0bQUUfDDzem2FmXpBwprTjfFgrq2vrG5uFreL2zu7efungsKPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHI997v3VCoWizs9Tagf4ZFgISNYG6nrXbHRyJsNSmXHrl00nGodLcl5JSe1KnJtZ4Ey5GgNSu/eMCZpRIUmHCvVd51E+xmWmhFOZ0UvVTTBZIJHtG+owBFVfrY4d4ZOjTJEYSxNCY0W6veJDEdKTaPAdEZYj9Vvby7+5fVTHTb8jIkk1VSQ5aIw5UjHaP47GjJJieZTQzCRzNyKyBhLTLRJqGhC+PoU/U86Fdut2pXbWrl5mcdRgGM4gTNwoQ5NuIEWtIHABB7gCZ6txHq0XqzXZeuKlc8cwQ9Yb5+i7o/D</latexit>

JET PROCESSES AT HADRON COLLIDERS

Glauber phases
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IMPORTANCE OF COLOR COHERENCE

Do LHC cross sections factorize?
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+
⇣↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆

+
⇣↵s

4⇡

⌘3
✓
V

G
V

G �

3"3
�

�c
V

G �

3"3
ln

Q2

µ2
s

+ . . .

◆

+O(↵4
s
) . (5)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where

X1 = ifabc
X

j>2

Jj T
a

1 T
b

2 T
c

j
, X2 =

1

Nc

X

j>2

Jj O
(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.
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Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple
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the angular integral Jj has been given in (16) of [12].
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der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
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µ (ls) and integrating
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]
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We now compute the perturbative part of Wbare
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der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,

= +

soft soft soft

collinear

Color coherence is essential for the cancellation of collinear singularities in 
scattering processes 

▸ Intuitive concept familiar from Low’s soft-photon theorem in QED:            
soft photons only probe the charge and direction of energetic particles



Bormio Winter Meeting — January 28, 2025Matthias Neubert  — 6

IMPORTANCE OF COLOR COHERENCE

Do LHC cross sections factorize?

▸ Color coherence holds if all three particles are in the final state of a 
scattering process (time-like splitting): 

▸ Then collinear factorization holds:
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+

⇣↵s

4⇡

⌘2
✓
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G �

2"2
+ . . .

◆
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⇣↵s

4⇡

⌘3
✓
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G
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G �

3"3
�

�c
V

G �

3"3
ln

Q2

µ2
s

+ . . .

◆

+O(↵4
s
) . (5)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where

X1 = ifabc
X

j>2

Jj T
a

1 T
b

2 T
c

j
, X2 =

1

Nc

X

j>2

Jj O
(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,

2

MmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMm M†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
m

pc

p̄c̄

Q0

qc

k
ls

FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
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= 1+
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where

X1 = ifabc
X

j>2
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, X2 =

1

Nc

X

j>2

Jj O
(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,

2

MmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMm M†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
m

pc

p̄c̄

Q0

qc

k
ls

FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,
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where
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with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
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V

G �, we have analyzed the prod-
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BREAKING OF COLOR COHERENCE

Do LHC cross sections factorize?

▸ Color coherence is broken if not all particles are outgoing (space-like 
splitting), since both sides receive different phase factors at higher orders: 

▸ Collinear factorization is violated:
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
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arise at four-loop order and involve C01 and C11. In (4),
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The fact that the cross section �(Q0) must be indepen-
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]
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with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2
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term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
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V

G �, we have analyzed the prod-

uct J
µ,a(1)
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µ as well the product of J
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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Do LHC cross sections factorize?

SCET factorization theorem for M-jet production at the LHC

low scales Q0 and ΛQCD

[Becher, MN, Shao (2021); 
Becher, MN, Shao, Stillger (2023)]

high scale

Figure 1. Pictorial representation of the factorization formula (2.1). In black, a hard function Hm

in (2.3) is shown, which is multiplied by soft Wilson lines for each hard parton (red double lines).
The color indices of the Wilson lines along the directions of the final-state particles in the amplitude
are connected (dotted lines) to the ones sourced by the particles in the conjugate amplitude. The
Wilson lines of the initial-state partons connect to the collinear fields (blue), see (2.7). We also
included a real and a virtual soft gluon, which are part of the matrix element Wm.

gluon, while �̄i is equal to the corresponding conjugate fields. Note that the argument

of the collinear fields indicates the spacetime point at which they are localized, whereas

the argument of the soft Wilson lines indicates their direction. All soft Wilson lines are

located at the point x = 0. Since we only consider unpolarized hadron beams, the Dirac

and Lorentz indices in (2.7) are contracted with the relevant spin sums, i.e.
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(2.8)

Therefore, Wm acts as a unity matrix in helicity space. The additional derivative arising in

the gluon case ensures that the collinear matrix element corresponds to the usual definition

of the gluon PDF. The factorization theorem is depicted in Figure 1, which also shows how

the color indices of the Wilson lines in Wm are connected to the hard functions and the

collinear fields (dotted lines).

In the factorization formula (2.1) the soft Wilson lines Si(ni) in (2.7) multiply the

amplitudes |Mm({p})i in the hard functions (2.3), while the conjugate Wilson lines S†
i
(ni)

multiply the conjugate amplitude hMm({p})|. In (2.7), the jet-veto scale Q0 is defined

to be the upper limit on the total transverse momentum E
?
out =

P
i
|p

?
i
| of the particles

outside of the jets, but many other kinematic restrictions could be considered. For example,

in order to be less sensitive to the underlying event and pile-up, one can instead define Q0

as the upper limit on the transverse momentum of jets inside the veto region, as was done

by the ATLAS collaboration in [42, 43]. In the leading-logarithmic approximation, one is

not sensitive to the precise definition of the observable, but only to the associated energy

scale Q0.

We note that the n1- and n2-collinear fields in (2.7) are fields obtained after the soft-

collinear decoupling transformation [32]

�i(tn̄i) ! Si(ni)�i(tn̄i) (2.9)
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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over the
energies o

f the final-stat
e particles,

Hm
({n}, Q, ⇠1, ⇠2, µ

) =

Z
dEm |Mm

({p})ihMm
({p})| ,

(2)

while keeping the parton direction
s {n} = {n1, . . . , nm

}

fixed. Th
e explicit fo

rm of the energy integratio
n can be

found in (2.3) of [1
3]. The in

tegration
over the fi

nal-state

parton direction
s is indicated

by the symbol ⌦ in (1).

The color ind
ices of th

e hard partons a
re kept open

and

h. . . i denotes the color trace, wh
ich is taken after com-

bining the hard
functions

with the low-e
nergy matrix ele-

ments Wm
, which contain the dyna

mics associ
ated with

the perturbat
ive scale Q0, as depicted

in Fig. 1, as
well

as non-pe
rturbativ

e QCD e↵ects. T
he main result of

our

Letter is
that, at l

east up to three-loo
p order, the

pertur-

bative pa
rt of Wm

is consist
ent with

PDF factorizat
ion.

The SLL analysis
in [12, 13] was based on the

renormalization-
group evolution

of the hard functions

from the high scale µh
= Q to a low scale µs

⇠ Q0.

The leading logarithm
s were obtained

by iterating
the

one-loop
anomalous dim

ension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like
cusp anoma-

lous dimension. The soft piece consists of �
c and V

G ,

which account for soft+collinear
emissions from one of

the two initial-sta
te partons a

nd complex phases ar
ising

from virtual gl
uon exchange

between
them, respecti

vely.

� correspon
ds to gluon emission into the gap, and

�C

denotes purely collinear
contribut

ions. The anomalous

dimension is an operator
in color space and a matrix

in the space of parton
multipliciti

es m. An applicatio
n

of �
H can either increase

the number of parton
s, corre-

sponding
to a real emission, or

leave the
m unchange

d for

virtual te
rms. The SL

Ls origina
te from �c . Using simple

identities
among the various terms in (3) [12],

one finds

that the
relevant c

olor trace
s are of the form

Crn
=
⌦
H

(0)
m0

(�
c)

r
V

G (�
c)

n�r
V

G �⌦ 1
↵
. (4)

Performing the associate
d scale integrals

for evolution

from Q down to the scale µs
⇠ Q0 produces

single loga-

rithms for V
G and �, but do

uble loga
rithms for �

c . The

color traces Crn
thus contribut

e at order ↵n+3
s

L2n+3
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in

perturbat
ion theory, w

here Ls
= ln(Q/µs). SLLs first

arise at four-lo
op order and

involve C01 and C11. In
(4),

H
(0)
m0

are the Born-leve
l hard functions

and we use that

W
(0)
m

= 1 at lowest
order.

The fact
that the c
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on �(Q0) must be ind
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he renormalization

scale µs
imposes non-trivia
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condition
s on the low-e
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(µs) =

ZW
bare
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. The renormalization
factor Z is related to

the anomalous dimension (3) [31], and
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n one finds that the leading UV poles in
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W
bare
m

= 1+
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�

2"
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⇣ ↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆
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⌘3
✓
V

GV
G �

3"3
�

�cV
G �

3"3
ln
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+ . . .
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(5)

We only show terms which, a
fter combining wi

th the hard

functions
in (1) and taking the color trac
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order and

beyond.
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Jj T
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j
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X
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(j)
1

defined in (6.36) of
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all final-s
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FIG. 3. Example of a collinear space-like splitting with a
genuine Glauber mode (red) contributing to the low-energy
matrix elements. The soft gluon is emitted into the gap with
constraint Q0 and attaches to leg j on the right-hand side.
Soft Wilson lines are drawn in orange, where relevant.

now turn our attention back to the challenge at hand:
explicitly verifying that also the final term in (5) is re-
produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
Due to the appearance of the collinear anomaly, the inte-
gration over qc is not well-defined on its own, and follow-
ing [43] we introduce a phase-space regulator (⌫/q�

c
)2⌘.

We find that the soft-collinear region (and the soft one
in the case of the box) always leads to scaleless collinear
phase-space integrals and therefore does not contribute
to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
smaller than Q2

0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
tion. In addition to Fig. 1, we also consider the mirrored
diagrams in which the two incoming particles are inter-
changed or the Glauber exchange happens in the con-
jugate amplitude. The leading UV poles of these four
graphs yield a contribution to the (bare) low-energy ma-
trix element given by

W
bare
m

3
i↵3

s

12⇡2"3
fabcfade

X

j>2

Jj
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
T

d

1LT
e

1RT
b

2LT
c

jR

✓
�

1

2⌘
� ln

⌫

p�c

◆

+ T
d

2LT
e

2RT
b

1LT
c

jR

✓
1

2⌘
+ ln

⌫ p̄+c̄
Q2

0

◆�

� (L $ R) , (17)

where the terms with j = 1, 2 have canceled out in the
combination. Under the color trace with the hard func-
tion in (1), we can move the color generators TiL to the

right and replace (for j 6= 1, 2)

fade
T

d

1LT
b

2LT
e

1RT
c

jR
! �

iNc

2
T

a

1 T
b

2 T
c

j
, (18)

which leads to

W
bare
m

3 �
iNc↵3

s

12⇡2"3
X1 ln

p�
c
p̄+c̄

Q2
0

. (19)

The divergences in ⌘ have canceled but the associated
hard logarithm remains. It has indeed the structure
required by (5) to remove the double-logarithmic part
of the evolution below the scale Q0. We have checked
that (17) also holds for incoming gluons.
The same result can be obtained directly in SCET us-

ing the Glauber Lagrangian of [44]. The regions anal-
ysis immediately translates into SCET diagrams such
as the one shown in Fig. 3, where the di↵erent colors
now correspond to di↵erent SCET fields and the dashed
red line indicates the Glauber exchange. In the frame-
work of [44], one additionally encounters diagrams with
Glauber scaling on both internal lines connecting to the
soft-emission vertex. After regularizing their contribu-
tion with a Glauber regulator |kz

g
|
⌘
0
[45], distinct from

the rapidity regulator, and performing the required 0-bin
subtractions, we find that SCET reproduces (17). For
our observable, the 0-bin subtractions and the additional
graph with two Glauber gluons cancel each other. We
believe that it should be possible to choose a regulariza-
tion scheme in which such “non-genuine” (or “Cheshire”
[44]) Glauber contributions vanish from the beginning.
In this Letter, we have uncovered a new mechanism

that reconciles the breaking of collinear factorization
with PDF factorization. Remarkably, it is the contribu-
tion of perturbative Glauber gluons which, in an inter-
play of space-like collinear splittings and soft emissions,
restores the factorization of the cross section by convert-
ing double-logarithmic into single-logarithmic running at
low values of the factorization scale. In the future, it
will be important to understand the all-order structure
of these e↵ects, a key ingredient for the resummation of
jet processes at hadron colliders to higher logarithmic ac-
curacy [46–48] and the development of finite-Nc parton
showers [49–52]. This would clarify the physics of space-
like collinear limits of amplitudes and pave the way to
a proof of PDF factorization for a much wider class of
observables.
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Figure 17. Numerical results for super-leading contributions to partonic gg → gg (top row) and
qg → qg (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic
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curves is the same as in Figure 11.
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GAP-BETWEEN-JETS OBSERVABLES

Do LHC cross sections factorize?

[Becher, Hager, Martinelli, MN,  
Schwienbacher, Stillger (2024)]

Figure 2: SLL contribution to the pp ! 2 jets cross section at the LHC as a function
of the veto scale Q0, for a center-of-mass energy

p
s = 13TeV and jet radius R = 0.6.

The black curve shows the central result obtained in RG-improved perturbation theory.
The perturbative uncertainties indicated by the yellow bands are obtained from the
variation of the soft scale µs by a factor 2 about its default value Q0.

where Ni = 2Nc for parton i being a quark or anti-quark, and Ni = (d� 2)(N2
c
� 1) for it

being a gluon. One particular choice of color bases and the associated matrix representations
for the spin-summed “unintegrated” hard functions have been given in [30] for all relevant
2 ! 2 processes up to NNLO. We have calculated the Xi matrices using ColorMath [31]
and listed them in a supplemented Mathematica notebook.

Upon evaluating the color traces h. . .i in (2.11), we observe that for qq̄ ! qq̄ scattering
the SLL contribution to the pp ! 2 jets cross section contains expansion coe�cients cn
of O(Nc) in (1.1), whereas for all other partonic channels these coe�cients are of O(N0

c
).

This leads to SLL contributions that are only suppressed by one power of 1/Nc, an e↵ect
that to our knowledge has so far not been noticed in the literature. This enhancement can
be traced back to the interference of two di↵erent color configurations in the amplitude.
However, we find below that the qq̄ ! qq̄ channel only contributes a small amount to the
pp ! 2 jets cross section.

3 Results

We are now in a position to determine the impact of the super-leading logarithms for
the physical pp ! 2 jets cross section. This involves integrals over the rapidities y3, y4,
and transverse momentum pT , which we evaluate numerically. We set the high scale to
µh = 2pT , employ a jet radius R = 0.6 and use the parton distribution functions from
the NNPDF4.0 NLO set with ↵s(MZ) = 0.118 [32] via ManeParse [33]. As described
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PDF FACTORIZATION ?

Do LHC cross sections factorize?

It was believed by many experts 
that the breakdown of collinear 
factorization would imply a 
breakdown of PDF factorization

J
H
E
P
0
5
(
2
0
2
0
)
1
3
5

Published for SISSA by Springer

Received: January 4, 2020

Accepted: May 3, 2020

Published: May 27, 2020

Soft gluon emission at two loops in full color

Lance J. Dixon,a Enrico Herrmann,a Kai Yanb and Hua Xing Zhuc

aSLAC National Accelerator Laboratory, Stanford University,
Stanford, CA 94039, U.S.A.

bMax-Planck-Institut für Physik, Werner-Heisenberg-Institut,
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eq. (4.30) the ‘+h.c.’ terms result in a projection onto the kinematic terms containing an

explicit ‘i’.

The color structure in the second line in eq. (4.30) can be rewritten as a commu-

tator, [(T q · T i), (T q · T k)]. When eq. (4.30) is sandwiched between tree amplitudes,

⟨M(0)
n | · · · |M(0)

n ⟩, and a color sum is performed, the Hermiticity of the operators T q · T i

allows one to conclude that the color sum vanishes [34]. (A similar cancellation occurs for

the 1/ϵ pole with the same color structure, which appears in two-loop four-point ampli-

tudes [73] but cancels in the color-summed cross section [74].)

We conclude that for pure QCD splitting processes at order g × g5, or O(α3
s), poten-

tial factorization violation comes from the finite term in the first line in eq. (4.30), which

has not been discussed before. We speculate that at next-to-next-to-next-to-leading order

(NNNLO) in QCD, integrating over the phase space of the collinear splitting can give rise to

soft-collinear poles which depend on the color charge of non-collinear partons entering the

process. Such poles cannot be canceled by the conventional counterterms associated with

renormalization of the parton distribution functions (PDFs), which by definition are pro-

cess independent. (The failure of strict factorization at NNNLO for non-inclusive hadron

collider processes has been argued previously, based partly on the structure of 1/ϵ pole

terms associated with Coulomb gluon exchanges [34–36].) An interesting example that can

contain such factorization-violating contributions is the NNNLO QCD corrections to dijet

production at hadron colliders. While the full NNNLO QCD corrections might still be

far away, a shortcut to revealing the factorization-breaking terms is through the study of

precision hadron collider event shapes [75], where NNNLO corrections including logarithms

in the event-shape variable are within reach. We leave the investigation of these important

issues to future work.

5 Conclusions

In this paper we computed the exact kinematic and color dependence of soft-gluon emission

in massless gauge theory at the two loop level. While the dipole terms have a simple kine-

matic dependence and had been computed previously [25, 26], the subleading-color tripole

terms are new, and they depend in an intricate way on a rescaling-invariant cross ratio.

Using the soft-collinear limit of our results, we could study the soft limits of two-loop

collinear splitting amplitudes for both timelike and spacelike kinematics. The timelike

behavior was understood previously [26, 47, 71, 72]. In the spacelike case, the infrared

singular parts of the two-loop splitting amplitudes were obtained before in ref. [33], with

which we find full agreement. Our new results for this case are the finite contributions,

provided in eq. (4.27). Note that eq. (4.27) is non-zero only when the non-collinear tripole

partons i and k are spacelike separated. Thus, including the collinear parton 1, there

must be two partons in the initial state to get a contribution (i.e. deep inelastic scattering

does not qualify, while hadronic collisions do). Both eqs. (4.18) and (4.27) violate strict

collinear factorization [33, 34], in the sense that the splitting amplitudes depend on the

color and/or kinematics of some non-collinear hard partons in the process. For dipole

emission, eq. (4.18), factorization violation only exists in the imaginary part. The real part

– 27 –
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STRUCTURE OF THE FACTORIZATION THEOREM ?

Do LHC cross sections factorize?

hard scale Q ∼ ̂s

jet-veto scale Q0

hadronic scale ΛQCD

double-logarithmic evolution 
(super-leading logs) & non-
DGLAP *) collinear evolution

single-logarithmic PDF evolution 

OR: double-logarithmic evolution and 
breaking of PDF factorization?

OR: something more complicated, e.g. 
a combined two-proton distribution?
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2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.

p

p

Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of
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STRUCTURE OF THE FACTORIZATION THEOREM ?

Do LHC cross sections factorize?

hard scale Q ∼ ̂s

jet-veto scale Q0

hadronic scale ΛQCD

double-logarithmic evolution 
(super-leading logs) & non-
DGLAP *) collinear evolution

single-logarithmic PDF evolution 

OR: double-logarithmic evolution below 
Q0 and breaking of PDF factorization?

OR: something more complicated, e.g. 
a combined two-proton distribution?
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2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.

p

p

Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of
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STRUCTURE OF THE FACTORIZATION THEOREM ?

Do LHC cross sections factorize?

To settle the question, we calculate the perturbative  dependence of            , 
associated with the veto scale Q0 , and check whether the remaining scale 
dependence is that of the PDFs 

▸ Scale dependence of a quantity   poles in dimensional regularization 

▸ Assuming PDF factorization, we predict:

μ

↔ 1/εn
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
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9
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ln
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s

Q
2
0

)
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V GV G !

3ϱ3
+ . . .

]
+O(ε4

s
) . (4)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]
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denotes purely collinear contributions. The anomalous
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in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
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virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
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This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare
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der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε
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term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]
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where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
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arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that
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↗ 1 at lowest order.
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.
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This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents
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µ . The ε
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term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]
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4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
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(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
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(0)
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are the Born-level hard functions and we use that
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↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW
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. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

2

MmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMm M†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
m

pc

p̄c̄

Q0

qc

k
ls

FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln
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+ V G

)
+

εs

4ϑ
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, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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= 1+
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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STRUCTURE OF THE FACTORIZATION THEOREM ?

Do LHC cross sections factorize?

▸ Assuming PDF factorization, we predict: 

where:
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]
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+
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where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
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(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
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are the Born-level hard functions and we use that

W
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↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW
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. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
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∑

j>2
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. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare
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der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
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term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]
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!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form
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Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε
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arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

2

MmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMm M†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
m

pc

p̄c̄

Q0

qc

k
ls

FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]
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where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
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(0)
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(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln
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2
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)
+
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where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
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(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
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. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
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1 T b
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. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
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m

= 1+
εs
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!
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+
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4ϑ
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(
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+ . . .
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+
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(
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s
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+
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2
ln

µ
2
s

Q
2
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)

+
V GV G !

3ϱ3
+ . . .

]
+O(ε4

s
) . (4)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: soft emission operator
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
bare
m

= 1+
εs

4ϑ

!

2ϱ
+

(
εs

4ϑ

)2
(
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+
V GV G !
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+O(ε4

s
) . (4)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: Glauber operator
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
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m

= 1+
εs

4ϑ
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(
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(
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+O(ε4
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) . (4)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: soft-collinear emission operator
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

partons, µ is the factorization scale, and the sum includes
all partonic subprocesses. The hard functions Hm are
the squared amplitudes for producing the energetic par-
tons inside the jets, integrated over the energies of the
final-state particles, while keeping the parton directions
{n} = {n1, . . . , nm} fixed. Their explicit form can be
found in (15). The integration over the final-state par-
ton directions is indicated by the symbol → in (1). The
color indices of the hard partons are kept open and ↑. . . ↓

denotes the color trace, which is taken after combining
the hard functions with the low-energy matrix elements
Wm, which contain the dynamics associated with the
perturbative scale Q0, as depicted in Fig. 1, as well as
non-perturbative QCD e!ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [13, 14] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ↔ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [33]

!H = ωcusp(εs)
(
!c ln

µ
2

Q2
+ V G

)
+

εs

4ϑ
!+ !C

, (2)

where ωcusp = εs/ϑ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of !c and V G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
! corresponds to gluon emission into the gap, and !C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of !H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from !c. Using simple
identities among the various terms in (2) [13], one finds

that the relevant color traces are of the form

Crn =
〈
H

(0)
m0

(!c)r V G (!c)n→r V G !→ 1
〉
. (3)

Performing the associated scale integrals for evolution
from Q down to the scale µs ↔ Q0 produces single loga-
rithms for V G and !, but double logarithms for !c. The
color traces Crn thus contribute at order ε

n+3
s

L
2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (3),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

↗ 1 at lowest order.
The fact that the cross section ϖ(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z can be recon-
structed from the anomalous dimension (2) by solving
its renormalization group equation. Using (27) we find
for the leading UV poles in d = 4↘ 2ϱ dimensions

W
bare
m

= 1+
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, the above expressions can
be simplified [14], e.g.

!cV G ! ≃ 16iϑNc if
abc

∑

j>2

Jj T
a

1 T b

2 T
c

j
. (5)

This sum extends over all final-state partons j > 2 in the
Born process, and the angular integral Jj is given in (20).
We now compute the perturbative part of Wbare

m
or-

der by order in εs and check whether it matches the
structure (4). The one-loop term ↗ ! is the divergence
associated with a soft emission between hard legs and can
be obtained from the product of tree-level soft currents

Ja(0)
µ . The ε

2
s
term ↗ V G ! arises from real-virtual cor-

rections to the soft emission. The complex phase in V G is
directly related to the imaginary part of the one-loop soft

current Ja(1)
µ [34]. To isolate the structure V GV G !, we

have analyzed the product Jµ,a(1)Ja(1)†
µ as well the prod-

uct of Ja(2)
µ (including the tripole terms) [35, 36] with

a tree-level current, comparing the results for space-like
and time-like kinematics. From these computations, we
conclude that all terms in (4) other than the structure
!cV G ! are correctly reproduced through soft physics
alone. This final term involves a logarithm of the hard
scale Q, but the purely soft matrix elements are indepen-
dent of Q.

: collinear emission operator

double-logarithmic evolution above Q0 non-DGLAP collinear evolution above Q0 
(work in progress)

[Becher, Hager, Jaskiewicz, MN, Schwienbacher (2024)]
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STRUCTURE OF THE FACTORIZATION THEOREM

Do LHC cross sections factorize?

hard scale Q ∼ ̂s

jet-veto scale Q0

hadronic scale ΛQCD

double-logarithmic evolution 
(super-leading logs) & non-
DGLAP collinear evolution

single-logarithmic PDF evolution 

OR: double-logarithmic evolution and 
breaking of PDF factorization?

OR: something more complicated, e.g. 
a combined two-proton distribution?
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▸ despite all odds, PDF factorization 
is restored! 

▸ we have proved this to 3-loop order 
▸ conjecture that it holds to all orders
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SUMMARY

Do LHC cross sections factorize?

▸ We have uncovered a new mechanism that reconciles the breaking of 
collinear factorization with unbroken PDF factorization 

▸ In an interplay of space-like collinear splittings and soft emissions, 
perturbative Glauber gluons restore the factorization of the cross section 
by converting double-logarithmic into single-logarithmic evolution below 
the veto scale , and turning non-DGLAP into DGLAP evolution 

▸ It will be important to understand the all-order structure of these effects, 
paving the way for a proof of PDF factorization for a much wider class of 
observables!

Q0




