Design and testing of a new large area Micromegas detector for AMBER experiment at CERN

Apparatus for Meson and Baryon Experimental Research

M. Alexeev on behalf of the design working group Università di Torino & INFN Torino

Apparatus for Meson and Baryon Experimental Research (AMBER, NA66)

Presently 32 institutes from 14 countries, but there is no upper limit on the values.

AMBER program

	Beam	Target	Additional hadware	
Antiproton production	50 GeV – 280 GeV	LH ₂ , LHe	Liquid He target	
	protons	Done (2023 – 2024)		
Proton radius	100 GeV muons	High pressure	Active target TPC,	
measurement	2025 - 2020	нуогоден	(SciFi,Silicon)	
Drell-Yan measurement	190 GeV charged pions	Carbon, Tungsten	Vertex detector	
with pions				
Drell-Yan measurement	~100 GeV charged	Carbon, Tungsten	Vertex detectors, "active absorber"	
	Kauns			
Prompt photon measurement	> 100 GeV charged Kaon/pion beams	LH ₂ , Nickel	hodoscopes	
K-induced spectroscopy	50 GeV – 100 GeV charged Kaons	LH ₂	Recoil ToF forward PID	
Meson radii	50 GeV to 280 GeV charged pions and Kaons			

Phase 1 (approved) 2023 -> 2032

Phase 2 (in preparation) Beyond LS4

AMBER APXs (2023-2024)

Antiprotons arise from spallation processes and <u>possible</u> DM decays. Their flux interpretation needs good parametrization of the standard production in the typical occurring reactions.

Minimum bias trigger: beam trigger with veto on nonscattered beam particle

The major uncertainties in the current antiproton flux interpretation stem from the poor knowledge of the antiproton production from prompt reactions (mainly p+p and p+He) and from antineutron decays. <u>AMBER collected data at different collision energies ($\sqrt{s_{NN}} = 10.7 - 21.7$ GeV) to precisely measure p+He, p+H and p+D.</u>

AMBER PRM (2025/2026)

Proton-radius puzzle

Bernauer et al., A1 coll. [PRL 105 242001 (2010)] Pohl et al., CREMA coll. [Nature 466 213 (2010)] Zhan et al. [PLB 705 59 (2011)] Mohr et al. [Rev. Mod. Phys. 84 1527 (2012)] Target TPC Antognini et al., CREMA coll. [Science 339 417 (2013)] • Mohr et al. [Rev. Mod. Phys. 88 035009 (2016)] Beyer et al. [Science 358 6359 (2017)] Fleurbaey et al. [PRL.120 183001 (2018)] Tiesinga et al. [Rev. Mod. Phys. 93 025010 (2021)] Mihovilovič et al. [arXiv:1905.11182 (2019)] Bezginov et al. [Science 365 1007 (2019)] Xiong et al. [Nature 575, 147-150 (2019)] Proposal AMBER [SPSC-P-360 (2019)]

Missing: muon-proton with E_{μ} of 10 - 100 GeV

- Test of lepton universality
- Different systematics compared to others

Proton Radius Measurement @ AMBER

- Aimed precision of charge-radius below 1%
- Aimed Q²-range: 0.001 GeV²/c² to 0.040 GeV²/c²

AMBER DY (post LS3)

Sea quark content of pion can be accurately measured at AMBER for the first time

Pion structure in pion induced DY Expected accuracy as compared to NA3

- $\Sigma_V = \sigma^{\pi^- C} \sigma^{\pi^+ C}$: only valence-valence
- $\Sigma_S = 4\sigma^{\pi^+ C} \sigma^{\pi^- C}$: no valence-valence
- Collect at least a factor 10 more statistics than presently available
- Minimize nuclear effects on target side
 - Projection for 2 \times 140 days of Drell-Yan data taking
 - π^+ to π^- 3:1 time sharing
 - 190 GeV beams on Carbon target $(1.9\lambda_{int}^{\pi})$
 - Improvement of shielding to double the intensity is under investigation

Experiment	Target type	Beam energy (GeV)	Beam type	Beam intensity (part/sec)	DY mass (GeV/ c^2)	DY events
E615	20 cm W	252	π^+ π^-	$\begin{array}{c} 17.6\times10^7\\ 18.6\times10^7\end{array}$	4.05 - 8.55	5000 30000
NA3	$30\mathrm{cm}~\mathrm{H_2}$	200	π^+ π^-	2.0×10^7 3.0×10^7	4.1 - 8.5	40 121
	6 cm Pt	200	π^+ π^-	2.0×10^7 3.0×10^7	4.2 - 8.5	1767 4961
	120 cm D ₂	286 140	π^{-}	65×10^7	4.2 - 8.5 4.35 - 8.5	7800 3200
NA10	12 cm W	286 194 140	π^{-}	65×10^7	4.2 - 8.5 4.07 - 8.5 4.35 - 8.5	49600 155000 29300
COMPASS 2015 COMPASS 2018	$110\mathrm{cm}~\mathrm{NH}_3$	190	π^{-}	7.0×10^7	4.3 - 8.5	35000 52000
	75 cm C	190	π ⁺	1.7×10^{7}	4.3 - 8.5 4.0 - 8.5	21700 31000
		190	π^{-}	$6.8 imes 10^7$	4.3 - 8.5 4.0 - 8.5	67000 91100
	12 cm W	190	π^+	0.4×10^7	4.3 - 8.5 4.0 - 8.5	8300 11700
		190	π^{-}	1.6×10^7	4.3 - 8.5 4.0 - 8.5	24100 32100

Isoscalar target + Both positive and negative beams + High statistics

Probing valence and sea quark contents of pion at AMBER Expected statistics 8 to 20 times higher than available

AMBER for the first time

DY (post LS3)

structure in pion induced DY steel accuracy as compared to NA3

- $\Sigma_V = \sigma^{\pi^- C} \sigma^{\pi^+ C}$: only valence-valence
- $\Sigma_S = 4\sigma^{\pi^+ C} \sigma^{\pi^- C}$: no valence-valence
- Collect at least a factor 10 more statistics than presently available
- Minimize nuclear effects on target side
 - Projection for 2×140 days of Drell-Yan data taking
 - π^+ to π^- 3:1 time sharing
 - 190 GeV beams on Carbon target $(1.9\lambda_{int}^{\pi})$
 - Improvement of shielding to double the intensity is under investigation

Experiment	Target type	Beam energy (GeV)	Beam type	Beam intensity (part/sec)	DY mass (GeV/c ²)	DY events
E615	20 cm W	252	π^+ π^-	$\begin{array}{c} 17.6\times10^7\\ 18.6\times10^7\end{array}$	4.05 - 8.55	5000 30000
NA3	$30\mathrm{cm}\mathrm{H}_2$	200	π^+ π^-	2.0×10^{7} 3.0×10^{7}	4.1 - 8.5	40 121
	6 cm Pt	200	π^+ π^-	$\begin{array}{c} 2.0\times10^7\\ 3.0\times10^7\end{array}$	4.2 - 8.5	1767 4961
	120 cm D ₂	286 140	π^{-}	$65 imes 10^7$	4.2 - 8.5 4.35 - 8.5	7800 3200
NA10	12 cm W	286 194 140	π^{-}	$65 imes 10^7$	4.2 - 8.5 4.07 - 8.5 4.35 - 8.5	49600 155000 29300
COMPASS 2015 COMPASS 2018	$110 \mathrm{cm} \mathrm{NH}_3$	190	π^{-}	7.0×10^7	4.3 - 8.5	35000 52000
	75 cm C	190	π^+	1.7×10^7	4.3 - 8.5 4.0 - 8.5	21700 31000
AMRER	\square	190	π^{-}	6.8×10^7	4.3 - 8.5 4.0 - 8.5	67000 91100
12 cm W	12 cm W	190	π^+	$0.4 imes 10^7$	4.3 - 8.5 4.0 - 8.5	8300 11700
		190	π^{-}	1.6×10^7	4.3 - 8.5 4.0 - 8.5	24100 32100

Isoscalar target + Both positive and negative beams + High statistics

Why we work on the MM project

In the present AMBER setup one of the main tracker are the MWPC stations

Present situation

✓ Triggered DAQ

✓ Degraded detectors

✓ Limited Team

Reasonable situation

Trigger less DAQ

□ Maintenance available for a long period of time

Collaboration between, experts, ASIC teams and CERN MPT & GDD workshops

Decided path to the future

Base requirements

Characteristics of the COMPASS MWPC detectors

	A-type	A*-type	B-type
# of chambers	7	1	6
Active area (cm ²)	(178×120)	(178×120)	178×90
# of layers/chamber	3	4	2
Planes	X, U, V	X, U, V, Y	X, U/V
Dead zone \oslash (c m)	16–20	16	22
Wire pitch (mm)	2	2	2
Anode/cathode gap (mm)	8	8	8
# of wires/plane	752	752 (X, U, V), 512 (Y)	752

> To reasonably match the existing MWPCs

 \succ To see if we can be better <u>at low cost</u>

MPGD to substitute it?

Micro Pattern Gaseous Detectors

- MSGC
- Micromegas
- GEM
- Thick-GEM, Hole-Type Detectors and RETGEM
- MPDG with CMOS pixel ASICs
- Ingrid Technology

Micro Mesh Gaseous Structure aka Micromegas aka MM

CMOS high density readout electronics

29/01/2025

Bormio 2025 | New LaMM and ToRA ASIC @ AMBER

Concept design 1

Spark reduction? Reduce the material budged? Technology limitation? Staggered detector configuration Common cathode configuration Resistive configuration 1,5 m 150 um 5 mm 1 m Bulk ~60 cm DLC, 10 M Ω / \Box No thick frame allowed in the acceptance?

FEB for short

V-Strips

512 mm

^{29/01/2025}

Lateral module prototype design

Lateral module prototype production

Readout PCB design and production

X-coordinate R/O plane

UV-coordinate R/O plane

- 512 strips
- 1mm pitch
- 750 um width
- 4 FEBs: 512 fe channels

- 1280 strips
- 1mm pitch
- 250 um U strips width
- 150 um V strips width
- 10 FEBs: 1280 fe channels

Lateral module prototype testing

We express our gratitude to MPT and GDD labs colleagues and all the community that supports us in the task

Lateral module prototype testing

<u>2024</u>

- High Voltage stability
- Noise performance & shielding optimisation
- First data (beam/cosmics)
- > Compare $ArCO_2$ (93/7) and $ArCO_2$ lso(93/5/2)

<u>2025</u>

- We will have our parasitic setup in the AMBER spectrometer for the whole beam period
- We need to achieve a stable operation/understand the problems before starting the layout of the Central module
- First test with the ToRA ASIC

Gain operation observed

Torino Readout for AMBER (ToRA) ASIC

- MPGD and Wire detectors compatible
- Target specific application
- Limited complexity
- Reuse existing solutions
- 65nm
- 2 step design

Detector	MM	Straw	
Channels/ASIC	64	64	
Power/channel	\leq 5	\leq 10	mW
Input capacitance	\leq 550	20-100	pF
Input charge	1-100	1-1000	fC
Input impedance	\leq 50 Ω	tbd	Ω
Max rate	≤2	\leq 0.18	MHz
Peaking time	150	75-150	ns
Time resolution	1-2	≤ 1	ns
Charge resolution	8	10	bits
Gain	12	2	mV/fC
ENC @10 pF	500-1000		e [—]
ENC @150 pF	1000-2000		e [—]
ENC @60 pF		3000	e [—]
Threshold range	tbd	0-15	fC
Clock frequency	200	200	MHz

Conclusions

First successful powering achieved

Detector prototype is under test

- ToRA v1 ASIC design is optimised on the base of first detector tests and being prepared for submission
- Signal propagation and detector to FE coupling study ongoing

Spares

ASIC structure

- Common time stamp distributed to all channels
- 3 data register for time acquisition
- 2 configuration registers
- Threshold and discharge current fine tuning

ToRA is preparing to go silicon

Analog part (single channel)

- Charge Sensitive Amplifier
 - Fours gains : 2,6,8 and 12 mV/fC
 - Possibility to accept inputs from both polarities

> Shaper

- 3rd order, one real and two cc poles
- Programmable peaking time : 25, 50, 150 and 250 ns
- Double threshold signal detection
 - Lower threshold for time measurement, higher threshold for validation
 - Peak detector signal
 - Peak holder for charge measurement (via ToT)
 - Linear ToT measurement under evaluation

Mon Oct 14 17:48:13 2024 1

Main ideas

As simple as needed	Design in 2 steps based on feature set		
	V1 (2024)	V2 (2025)	
Based on existing design	Limited flexibility	Implement MPGD+Wire	
	Power may not be optimised	Power tuning (moderate)	
Tuned to limited use cases	Mostly full backend	Inter channel commutation	
	Complete single channel structure	Time resolution???	

• Trigger less

.

Concept design

- Micromegas based detectors
- Not exceeding the base PCB technology sizes
- Reduced material in the acceptance
- Reproduce the aged MWPCs performance
- Eventually add a pixel centre to cover the whole surface

Reduce the R&D

time and risks

Full size lateral module prototype in autumn 2024 \succ

Full size central module prototype in autumn 2025/2026 \succ

Very tight schedule

Some moments later

Motivation

Bormio 2025 | New LaMM and ToRA ASIC @ AMBER

ToRA (Torino Readout for AMBER) ASIC development remark

- > Main idea to have a fully digital relatively simple ASIC adapted to the MPGD and Wire detectors
- The design approach seems to be agreed

V1(sub. 2024) – <u>base features set</u> targeting the MM
V2(sub. 2025) – <u>extended features set</u> for MM + Wire (time+charge)

- We have some ~2 mouth delay due to the decision taken in June to change from 110 nm node to the 65 nm
- Presently the submission is expected for 11.2024
- Delivery expected in 01.2025
- Characterization DAQ manpower has been allocated

Any contribution interest to test is welcome, pls. contact us

V1 specific				
Node		65nm, TSMC		
Size, mm2		~4x3		
Power, mW	1	~10/ch		
Ref_CLK, N	ЛНz	40-200		
Sustained r	ate on 64ch, kHz			
Doble hit re	solutin on ch, ns	10		
CH config				
•				
	Impedance	<= 50 Ω (const) to 1 GHz		
	Coupling	DC		
	Polarity	Pos/Neg		
	Noise, ENC	1000 @ 150pF		
	0 ·	07.0		
	Gain, mV/fC	2,7,12		
Shpaer				
	Peakig time, ns	25/150/250		
TDC				
	type	Thr. Crossing (rising edge)		
	Resol (bin), ns	5 ns		
ADC				
	type	Falling edge - Peak time stan		
	Discharge DAC	8 bit resol		

AMBER Phase-1 running plan

Milestones:

- 1. May 1st 2023, 2024 Antimatter production Run (Std. DAQ)
- 2. Sep. 1st 2024 PRM Test (FriDAQ, very limited setup)
- 3. June. 1st 2025 PRM Pilot (FriDAQ, limited setup)
- 4. May. 1st 2026 PRM Physics (FriDAQ, PRM setup)
- 5. Sep. 1st 2025, 2026 DY Test (FriDAQ, all trackers + mu id)
- 6. May 1st 2029/30 DY Run (FriDAQ, full Drell-Yan setup)

LHC and Injectors (PS, SPS) long term schedule

Revised timeline being considered

- Provisional schedule
 - Feasibility and acceptability being evaluated
- □ Start in October 2026, ions run in September 2026
- Beam back in the LHC in July 2030
 - LHC experiments caverns closure : 16.06.2030
 - LHC beam vacuum valves opening: 28.06.2030
- □ LS4 delayed by one year

53