

FSP

Die ectrons with ALICE in Run 2 & 3

Emma Ege for the ALICE Collaboration

ALICE International Winter Meeting on Nuclear Physics 2025

- Motivation: dielectrons in heavy-ion collisions
- Dielectron analysis of central Pb–Pb collisions in Run 2 (2015 2018)
- Upgrades of the ALICE detector for LHC Run 3
- First look at dielectrons in pp & Pb–Pb collisions in Run 3 (2022 ongoing)

heavy-ion collision

pre-equilibrium

Dielectrons (correlated e⁺e⁻ pairs):

- Created in all stages of the collision
- Do not interact strongly (no final-state interactions)
- Carry information about their production mechanism into the detector
- \rightarrow ideal probes to study the properties of strongly-interacting matter, produced in heavy-ion collisions

quark-gluon-plasma

hot hadronic phase

hadronic decays

<u>Heavy-ion (Pb–Pb) collisions:</u>

- Chiral-symmetry restoration (modification of spectral function for vector mesons)
- Thermal radiation throughout the medium evolution
- De-correlation of heavy-flavor pairs in the medium
- Constrain the space-time evolution of the collision

proton-proton (pp) collisions:

- Vacuum baseline for Pb–Pb studies (heavy-flavor, direct photons, Drell-Yan)
- Establish analysis techniques & search for new physics (onset of thermal radiation)

quark-gluon-plasma

hot hadronic phase

hadronic decays

<u>Composition of the dielectron spectrum:</u>

Composition of the dielectron spectrum:

 Initial stage of the collision: **Drell-Yan and hard scatterings** pre-equilibrium contributions

<u>Composition of the dielectron spectrum:</u>

- Initial stage of the collision: **Drell-Yan and hard scatterings** pre-equilibrium contributions
- Thermal radiation from medium: quark-gluon plasma (QGP)

<u>Composition of the dielectron spectrum:</u>

- Initial stage of the collision: **Drell-Yan and hard scatterings** pre-equilibrium contributions
- Thermal radiation from medium: quark-gluon plasma (QGP) hot hadronic phase

<u>Composition of the dielectron spectrum:</u>

- Initial stage of the collision: **Drell-Yan and hard scatterings** pre-equilibrium contributions
- Thermal radiation from medium: quark-gluon plasma (QGP) hot hadronic phase
- \rightarrow separation of collision stages via **invariant mass** (m_{ee})

Composition of the dielectron spectrum:

- Initial stage of the collision: **Drell-Yan and hard scatterings** pre-equilibrium contributions
- Thermal radiation from medium: quark-gluon plasma (QGP) hot hadronic phase
- \rightarrow separation of collision stages via **invariant mass** (m_{ee})
- Large combinatorial & physical backgrounds: hadronic decays • Light-flavor (LF) mesons and quarkonia (π^0 , η , ρ , ω , ϕ , J/ ψ) • Semi-leptonic decays of correlated heavy-flavor (HF) hadrons

- Time Projection Chamber (TPC)
 - Tracking
 - Electron identification
- Inner Tracking System (ITS)
 - Tracking
 - DCA measurement
 - Photon conversion rejection
- Time of Flight (TOF)
 - Hadron rejection

Emma Ege — Dielectrons with ALICE — Bormio 2025

ALICE **Relevant Detectors for Dielectron Analysis**

Run 2 central Pb-Pb **Invariant Mass Spectrum**

Expectations from known hadronic sources (cocktail):

- **Cocktail 1:** N_{coll} -scaled HF measured in pp at $\sqrt{s} = 5.02$ TeV 0
 - \rightarrow vacuum baseline
 - Good description of π^0 -Dalitz and J/ ψ decays
 - Indication of HF suppression compared to pp \rightarrow expected due to cold- and hot-nuclear matter effects
- **Cocktail 2:** include measured R_{AA} of c/b \rightarrow e[±]
 - \rightarrow modified-HF contribution
 - Overall improved description of the data including **HF** suppression

12

Run 2 central Pb-Pb **Excess Spectrum**

Subtraction of known hadronic sources without p

- Comparison to theoretical models (R. Rapp):
 - in-medium p from hot hadronic matter
 - thermal radiation from QGP

LMR:

- Excess compatible with model prediction
- Some tension in 0.5 < m_{ee} < 0.7 GeV/ c^2 \rightarrow more data needed to confirm

IMR:

• Large uncertainties after cocktail subtraction \rightarrow cocktail-independent approach needed to access QGP

Topological Separation Definition

Separation of prompt and non-prompt sources based on their decay topology:

- \rightarrow distance-of-closest approach (DCA) to the primary vertex:
 - Tracks of prompt decays (LF) → small DCA
 - Tracks of late decay time (HF) \rightarrow large DCA
- DCA of the pair: DCA_{ee} = $\sqrt{\frac{(DCA_1/\sigma_1)^2 + (DCA_2/\sigma_2)^2}{2}}$
- Method only relies on the well-known decay kinematic \rightarrow independent of cocktail and theory input
- Requires high-resolution vertex detector

ALICE **Upgrades for LHC Run 3**

• New ITS CMOS MAPS technology

\rightarrow improved pointing resolution and faster readout

• New TPC GEM-based readout chambers

 \rightarrow higher data acquisition rate due to continuous readout (up to 50 kHz in Pb–Pb & 1 MHz in pp)

2023&2024: factor ~20 more Pb–Pb and ~1000 more pp events than in Run 1&2

Emma Ege — Dielectrons with ALICE — Bormio 2025

15

Run 3 pp **Dielectron Spectra**

First dielectron analysis with pp data from 2022:

- High statistical precision due to upgraded ALICE detector
- Much further in mass compared to published Run 2 results Phys. Lett. B 788 (2019) 505 & arXiv:2411.14366
- \rightarrow enables search for prompt sources in pp (Drell-Yan & onset of thermal radiation)
 - \rightarrow topological separation (DCA_{ee}) of prompt & non-prompt sources crucial

ALICE 2022 data

Topological Separation with MC Templates

Extract DCA_{ee} templates from full MC simulation \rightarrow separate prompt and non-prompt dielectrons

- Prompt: LF & J/ψ decays
- Charm: D^0 , D^\pm , $D_s \& \Lambda_c$ decays
- Beauty: different decay channels of b-hadrons
- Non-prompt J/ψ : constrained from Run 2 measurement

Topological Separation with MC Templates

Template fits are performed directly to raw spectra in different mass intervals:

- J/ψ region as control region with dominant prompt signal
 - \rightarrow data well described by sum of all templates
 - \rightarrow validating DCA resolution in MC simulations

Topological Separation with MC Templates

Template fits are performed directly to raw spectra in different mass intervals:

• J/ ψ region as control region with dominant prompt signal

 \rightarrow data well described by sum of all templates

- \rightarrow validating DCA resolution in MC simulations
- IMR as region of interest \rightarrow search for additional prompt signal
 - \rightarrow data at high DCA_{ee} fully described by HF templates \rightarrow additional prompt contribution at small DCA_{ee} preferred by data

Topological Separation with MC Templates

Goal: unfold mass spectrum via DCA fits \rightarrow separate sources independently from hadronic cocktail

DCA_{ee} template fits performed in slices of m_{ee} :

- LF peaks described by prompt contribution
- Non-prompt HF contribution describes continuum

 \rightarrow Indication for prompt contribution in IMR

Next steps:

- Final correction
- Comparison to hadronic cocktail sources

Run 3 Pb-Pb Signal-over-Background

• Analysis much more challenging than in pp collisions

• S/B decreases by factor of 100 \rightarrow much higher precision of background required

Run 3 Pb-Pb **Raw Dielectron Spectra**

First look at dielectron signal in Pb–Pb collisions in Run 3:

- Effective interaction rates between 6 and 43 kHz, <u>continuous readout (Run 2 trigger rate < 1 kHz)</u>
- 900 million events in 10-90% centrality (only subset of 2023 Pb–Pb data of 1.5 nb⁻¹)
- About same amount of data recorded in 2024
- \rightarrow characteristic features (π^0 and J/ ψ peaks) clearly visible

Next steps:

- Analysis of full statistics
- DCA analysis

Emma Ege — Dielectrons with ALICE — Bormio 2025

extracted raw dielectron signal

Run 2 Pb-Pb: Excess in LMR visible & compatible with theory However, statistical limitation to extract thermal signal in the IMR

High statistical precision due to upgraded ALICE detector Run 3 pp: \rightarrow unfolding mass spectrum with topological separation possible

<u>Run 3 Pb-Pb:</u>

Initial performance studies completed \rightarrow further studies to improve signal extraction ongoing \rightarrow perform DCA template analysis of raw signal

 \rightarrow more data to be recorded in Run 3 & 4

Emma Ege — Dielectrons with ALICE — Bormio 2025

Dielectrons are the ideal probes to study properties of strongly-interacting matter in heavy-ion collisions

23

Emma Ege — Dielectrons with ALICE — Bormio 2025

Backup

Run 2 central Pb-Pb **Invariant Mass Spectrum**

Expectations from known hadronic sources (Cocktail):

Cocktail 1: N_{coll} -scaled HF measured in pp at $\sqrt{s} = 5.02$ TeV 0

 \rightarrow vacuum baseline

Cocktail 2: include measured R_{AA} of c/b \rightarrow e[±] 0

 \rightarrow modified-HF cocktail

Comparison to theoretical models: R. Rapp & PHSD R. Rapp, Adv. HEP. 2013 (2013) 148253 & PHSD, PRC 97 (2018) 064907

 \rightarrow excess in LMR expected from ρ mesons produced thermally in the medium

Run 2 central Pb-Pb **Topological Separation**

First DCA analysis in Pb–Pb at $\sqrt{s} = 5.02$ TeV

- Extraction of signals via template fits in the IMR:
 - beauty 0.74 \pm 0.24 (stat.) \pm 0.12 (syst.) \times N_{coll} scaling contribution fixed via separate fit at high $p_{T,ee}$
 - charm 0.43 \pm 0.40 (stat.) \pm 0.22 (syst.) \times N_{coll} scaling
 - prompt 2.64 ± 3.18 (stat.) ± 0.29 (syst.) × Rapp
- \rightarrow hint for (prompt) thermal dielectrons
- \rightarrow small systematic uncertainties
- However: statistical uncertainties too large to draw conclusions

ALICE, arXiv:2308.16704

Run 3 pp **Topological Separation of Dielectron Sources**

Raw mass spectra with DCA_{ee} selections to separate prompt and non-prompt dielectron sources:

- LF peaks (prompt dielectrons) in low DCA_{ee} distribution included
- Shape of high DCA_{ee} distribution determined by HF decays (non-prompt dielectrons)
- Better pointing resolution of ITS improves separation power

• Identify electron and positron candidates with TPC dE/dx

- Identify electron and positron candidates with TPC dE/dx
- Reject other charged particles (hadrons) with TPC dE/dx

- Identify electron and positron candidates with TPC dE/dx
- Reject other charged particles (hadrons) with TPC dE/dx
- However: crossing regions

- Identify electron and positron candidates with TPC dE/dx
- Reject other charged particles (hadrons) with TPC dE/dx
- However: crossing regions \rightarrow recover well separated electrons and positrons with TOF β

- Identify electron and positron candidates with TPC dE/dx
- Reject other charged particles (hadrons) with TPC dE/dx
- However: crossing regions \rightarrow recover well separated electrons and positrons with TOF β

Pairing of e⁺ and e⁻ candidates to estimate combinatorial background and extract raw dielectron signal:

Pairing of e⁺ and e⁻ candidates to estimate combinatorial background and extract raw dielectron signal:

Signal (S)

• ULS: unlike-sign pairs from same event $N_{+-}^{\text{same}} \rightarrow \text{ULS} = S + B$

Emma Ege — Dielectrons with ALICE — Bormio 2025

Background (B)

Pairing of e⁺ and e⁻ candidates to estimate combinatorial background and extract raw dielectron signal:

- ULS: unlike-sign pairs from same event $N_{+-}^{\text{same}} \rightarrow \text{ULS} = S + B$
- LS: like-sign pairs from same event $N_{++,--} = 2 \cdot \sqrt{(N_{++}^{same} \cdot N_{--}^{same})}$

Emma Ege — Dielectrons with ALICE — Bormio 2025

Background (B)

Background estimation

Pairing of e⁺ and e⁻ candidates to estimate combinatorial background and extract raw dielectron signal:

- ULS: unlike-sign pairs from same event $N_{+-}^{\text{same}} \rightarrow \text{ULS} = S + B$
- LS: like-sign pairs from same event $N_{++,--} = 2 \cdot \sqrt{(N_{++}^{same} \cdot N_{--}^{same})}$
- **R** factor: $R = N_{+-} \min / 2 \cdot \sqrt{(N_{++} \min \cdot N_{--} \min)}$

Background estimation

Correction for different acceptance of ULS and LS pairs using mixed event ($R = 1 \pm 10^{-3}$) $\rightarrow B = LS \times R$

Pairing of e⁺ and e⁻ candidates to estimate combinatorial background and extract raw dielectron signal:

- ULS: unlike-sign pairs from same event $N_{+-}^{\text{same}} \rightarrow \text{ULS} = S + B$
- LS: like-sign pairs from same event $N_{++,--} = 2 \cdot \sqrt{(N_{++}^{same} \cdot N_{--}^{same})}$
- **R** factor: $R = N_{+-} \min / 2 \cdot \sqrt{(N_{++} \min \cdot N_{--} \min)}$

\rightarrow S = ULS – B

Emma Ege — Dielectrons with ALICE — Bormio 2025

Background estimation

Correction for different acceptance of ULS and LS pairs using mixed event ($R = 1 \pm 10^{-3}$) $\rightarrow B = LS \times R$

ALICE **Upgrades for LHC Run 3**

• New TPC GEM-based readout chambers

 \rightarrow higher data acquisition rate due to continuous readout (up to 50 kHz in Pb–Pb & 1 MHz in pp)

• New ITS CMOS MAPS technology

 \rightarrow improved pointing resolution and faster readout

2023&2024: factor ~20 more Pb–Pb and ~1000 more pp events than in Run 1&2

Emma Ege — Dielectrons with ALICE — Bormio 2025

38