Hadron production in p-Pb collisions at the LHC

Georg Wolschin

Heidelberg University Institut für Theoretische Physik Philosophenweg 16 D-69120 Heidelberg

Bormio_2025

Topics

1. Introduction

2. Thermalization and stopping in heavy-ion collisions

- 2.1 Local thermalization of quarks and gluons in the initial stages:
 - An analytical nonlinear diffusion model
- 2.2 Nonequilibrium-statistical stopping model

3. Charged-hadron production

- 3.1 Three-sources relativistic diffusion model
- 3.2 Results for p-Pb and Pb-Pb @ 5.02 TeV; p-Pb @ 8.16 TeV
- 4. Summary and Conclusion

1. Introduction: Stages of relativistic heavy-ion collisions

Local thermalization is a sufficient precondition for the subsequent hydrodynamic treatment of expansion and cooling

Start of the hydrodynamic expansion $\tau_i \approx 0.1 - 0.2 \text{ fm/}c$

Interaction (freezeout) time:

 $\tau_{int} \approx 5 - 8 \text{ fm/}c \text{ in central Pb-Pb} @ LHC energies$

Most of the light hadrons (π^{\pm} , K[±],...) are produced at the phase boundary, but heavy quarks and quarkonia emerge in the initial stages

2. Thermalization and stopping in heavy-ion collisions

2.1 An analytical nonlinear diffusion model for local thermalization

Local thermalization of the single-particle distribution functions for gluons (+) and quarks (-)

$$n^{\pm} \equiv n^{\pm}(\epsilon, t) \equiv n$$

is accounted for by the nonlinear diffusion equation as derived * from the quantum Boltzmann equation

$$\frac{\partial n^{\pm}}{\partial t} = -\frac{\partial}{\partial \epsilon} \left[v \, n \, (1 \pm n) + n \frac{\partial D}{\partial \epsilon} \right] + \frac{\partial^2}{\partial \epsilon^2} \left[D \, n \right].$$

Dissipative effects are expressed through the drift term $v(\epsilon, t)$, diffusive effects through the diffusion term $D(\epsilon, t)$. The stationary solutions are given by the Fermi-Dirac / Bose-Einstein distributions

$$n_{\rm eq}^{\pm}(\epsilon) = \frac{1}{e^{(\epsilon - \mu^{\pm})/T} \mp 1} \qquad \text{with the temperature T} \\ \text{obtained from } \lim_{t \to \infty} [-v(\epsilon, t)/D(\epsilon, t)] \equiv 1/T$$

In the limit of constant transport coefficients, the nonlinear diffusion equation for the occupation-number distribution of bosons/ fermions with the temperature T = -D/vcan be solved analytically through a nonlinear transformation.

* GW, Physica A 499, 1 (2018); A 597, 127299 (2022)

Local thermalization: Analytical solutions of the nonlinear diffusion equation

Thermalization of quarks

Thermalization of gluons (ε =p, massless)

The total particle number (particles + antiparticles) is conserved

T. Bartsch and GW, Ann. Phys. 400, 21 (2019) Based on GW, PRL 48, 1004 (1982) G. Wolschin, EPL 140, 40002 (2022); Physica A 597, 127299 (2022)

Local thermalization of partons does not imply global thermalization of macroscopic variables: Net-baryon rapidity distributions are not thermalized

Energy and time dependence of baryon transport

Stationary CGCresults (baryons-antibaryons)

Stopping due to the interaction of valence quarks with low-x gluons in the other nucleus

Y. Mehtar-Tani, GW, PRL 102, 182301 (2009)

Time-dependent results (protons-antiprotons)

Stationary distributions agree with the CGC-results, see left

The initial distribution is evolved in time according to a linear Fokker-Planck equation, as derived from a relativistic stochastic theory*

6

 $\partial_t \psi(t;y) = -\partial_y [\mu(y)\psi(t;y)] + D\partial_y^2 \psi(t;y)$

J. Hoelck, G. Wolschin, Phys.Rev. Research 2, 033409 (2020); *Ann. Physik 536, 2300307 (2024) "Stopping" in Pb-Pb and p-Pb at LHC energies

No y-dependent stopping data yet at LHC. Theoretical results:

central 5.52 TeV Pb-Pb:

Y. Mehtar-Tani, G. Wolschin, PRL 102, 182301 (2009)

$$\begin{split} N &\equiv N_B - N_{\bar{B}} \\ Q_0{}^2 &= 0.08 \; \text{GeV}^2, \; \lambda = 0 \; -- \\ 0.07 \; \text{GeV}^2 & 1.5 \; -- \\ 0.06 \; \text{GeV}^2 & 3.0 \; \cdots \end{split} \qquad \begin{array}{c} Q_s^2 &= Q_0^2 A^{1/3} x^{-\lambda} \\ \text{Gluon saturation momentum} \\ \end{array}$$

central 5.02/8.8 TeV p-Pb:

3. Charged-hadron production: Pseudorapidity distributions for p-Pb and Pb-Pb @ 5.02 TeV

- Three-sources Relativistic diffusion model with color-glass (CGC) initial conditions
 - Gluon-gluon source $(k_{T}\text{-factorization})$ $\frac{d^{3}N_{gg}^{h}}{dydp_{T}^{2}} = \frac{2}{C_{F}} \frac{\alpha_{s}(m_{T}^{2})}{m_{T}^{2}}$ $\times \int_{0}^{p_{T}} dk_{T}^{2} [N_{1}\varphi_{1}(x_{1},k_{T}^{2})\varphi_{2}(x_{2},|\mathbf{p}_{T}-\mathbf{k}_{T}|^{2})$

$$+ N_2 \varphi_2 \left(x_2, k_T^2 \right) \varphi_1 \left(x_1, \left| \mathbf{p}_T - \mathbf{k}_T \right|^2 \right) \right]$$

Quark-gluon ("fragmentation") sources

 \geq

$$\frac{d^3 N_{qg}^h}{dy d^2 p_T} = \frac{K}{(2\pi)^2} \frac{1}{m_T^2} \int_{x_F}^1 \frac{dz}{z^2} D_{h/q}(z, \mu_f^2) \times x_1 f_{q/p}(x_1, Q_f^2) \varphi(x_2, q_T^2),$$

Time evolution of the fragmentation sources towards partial equilibrium is modelled by a linear Fokker-Planck equation (with p_T integrated out)

$$\frac{\partial}{\partial t}R(y,t) = -\frac{\partial}{\partial y}[J(y)R(y,t)] + D_y \frac{\partial^2}{\partial y^2}R(y,t)$$
$$J(y) = -\frac{m_T D}{T}\sinh(y)$$

> Use an effective Jacobian transformation y-> η with an average mass <m>, < p_T >

P. Schulz, G. Wolschin, Phys. Rev. C110, 044910 (2024)

Overlap of the thickness functions in the transverse plane for p-Pb

Thickness functions

$$\theta_{\rm Pb}(b;x^1,x^2) = \int dx^3 \rho_{\rm Pb}(|b\vec{e}_1 - \vec{x}|) ,$$

$$\theta_{\rm Pb}(b;x^1,x^2) = \int dx^3 \rho_{\rm Pb}(|\vec{x}|) ,$$

Overlap function

$$\theta_{\rm pPb}(b;x^1,x^2) = \theta_{\rm p}(b;x^1,x^2) \times \theta_{\rm Pb}(b;x^1,x^2)$$

Most of the system remains 'cold': T<<T_H, but the temperature in the overlap zone in central 8.16 TeV p-Pb is T \approx 460 MeV, from Y suppression analysis in p-Pb @ 8.16 GeV, see

Heidelberg model:

J. Hoelck, F. Nendzig, GW, Phys.Rev.C 95, 024905 (2017) V.H. Dinh, J. Hoelck, GW, Phys. Rev. C 100, 024906 (2019) G. Wolschin, Int. J. Mod. Phys. A35, 2030016 (2020); Universe 6, 61 (2020)

Centrality dependence of RDM results in p-Pb at 5.02 TeV

Centrality dependence of RDM results in p-Pb at 8.16 TeV

Calculated produced charged hadrons N_{ch}

$\operatorname{cent.}(\%)$	$N_{ m ch}$	$N^{gg}_{\rm ch}$	N^{gg}_{π}	N_K^{gg}	N_p^{gg}	$N^{qg}_{\pi,Pb}$	$N^{qg}_{\pi,p}$	R_p^{Pb}	R_{qg}^{gg}
0-5	723	342	123	115.3	104.0	268.2	120.3	2.2	0.9
5 - 10	576	259	93.6	87.3	78.0	212.5	110.7	1.9	0.8
10-20	469	201	73.2	67.8	60.0	171.7	101.7	1.7	0.7
20 - 40	350	140	51.3	47.1	41.3	122.8	92.2	1.3	0.6
m.b.	267	102	37.3	34.3	30.0	84.8	86.2	1.0	0.6
40-60	232	83.7	31.0	28.2	24.5	71.5	80.7	0.9	0.5
60-80	131	40.7	15.3	13.7	11.7	31.8	60.5	0.5	0.4
80-100	45	10.0	4.0	3.3	2.6	7.6	28.8	0.3	0.3

Relativistic diffusion model parameters

$\operatorname{cent.}(\%)$	$\left< N_{\rm part}^{Pb} \right>$	$Q_0^2 \left({ m GeV}^2 ight)$	$D^p \tau_y$	$\chi^2/N_{ m dof}$
0-5	16.00	0.058	7.0	0.896
5 - 10	14.00	0.049	7.0	0.373
10 - 20	12.40	0.042	11.0	0.532
20 - 40	9.90	0.035	13.0	0.268
m.b.	7.09	0.033	20.0	0.554
40-60	6.47	0.029	20.0	0.143
60-80	3.53	0.021	36.0	0.452
80-100	1.76	0.007	48.0	0.080

High- η data not yet available at 8.16 TeV

P. Schulz, G. Wolschin, Phys. Rev. C110, 044910 (2024)

11

4. Summary and Conclusion

- ► Local thermalization of quarks (τ_{eq}^{q} <1 fm/c) and gluons (τ_{eq}^{g} <0.1 fm/c) is accounted for analytically in a nonlinear diffusion model
- A nonequilibrium-statistical model for net-baryon transport ("stopping") through the interaction of valence quarks with gluons agrees with SPS and RHIC data
- Charged-hadron production is accounted for in a three-sources relativistic diffusion model. Comparisons with d-Au, Au-Au, p-Pb and Pb-Pb data from RHIC and LHC are presented
- For very peripheral asymmetric collisions (p-Pb @ 5.02 TeV), the yield in the p-going direction becomes larger than the one in the Pb-going direction due to the strong gluon field in the heavy nucleus

Thank you for your attention,

and for the delightful and constructive Bormio winter meeting 2025!

