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M. Schäfer, M. Bagnarol, N. Barnea

61st International Winter Meeting on Nuclear Physics 2025, Bormio
January 27-31, 2025



Motivation

Nuclear Efective Field Theories

Systematic framework for studying nuclear interaction

Degrees of freedom −→ Lagrangian −→ Interaction

Very low energies −→ Pionless effective field theory (/πEFT)

Few-body problem can be solved highly accurately −→ Testing ground for nuclear interaction

Furthermore −→ Low-energy regime in few-body nuclear reactions is important in astrophysics
(B. D. Fields, Big Bang Nucleosynthesis, In: Handbook of Nuclear Physics, Springer (2023).)

d + d → 3H+ p

d + d → 3He + n

3H+ d → 4He + n

3He + d → 4He + p

Q < 1.5 MeV −→ domain of /πEFT
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Pionless Effective Field Theory

Low energies (Q ≪ mπ) → pion fields integrated out → /πEFT

Only degress of freedom are nucleonic fields → expansion in contact terms and their
derivatives

Increasingly singular interactions −→ Local Gaussian regulators

C(N†N)2 −→ Cδ(3)(rij ) −→ C exp
(
−Λ2r2ij /4

)

LECs depend on the UV regulator Λ −→ C ≡ C(Λ)

Renormalization = matching to exp. data; binding energies, scattering lengths, effective
ranges...

Renormalization Group (RG) invariance for Λ≫ mπ

M (Λ) = M (∞) +O(Λ−1)
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Power Counting in /πEFT (without Coulomb)

LO δ(r12), δ(r12)δ(r23)

NLO
←−
∇2

r12
δ(r12) + δ(r12)

−→
∇2

r12
, δ(r12)δ(r23)δ(r34)

N2LO S − D tensor (T = 0), momentum dep. 3-body

N3LO . . . (∇r1 · ∇r2 )δ(r12), LS , tensor (T = 1), more 4-body ?

(H.-W. Hammer, Sebastian König, and U. van Kolck, Rev. Mod. Phys. 92 (2020) 025004)



The NLO /πEFT Potential (without Coulomb)

Leading order (LO) terms iterated to reproduce the large NN scattering length (bound state)

NLO terms are treated as perturbations - necessary for renormalization

V2B =
∑
i<j

(C
(0)
0 P̂

(0,1)
ij + C

(0)
1 P̂

(1,0)
ij )e−Λ2r2ij /4+ −→ LO - Iterated in Schrödinger eq.

∑
i<j

(C
(1)
0 P̂

(0,1)
ij + C

(1)
1 P̂

(1,0)
ij )e−Λ2r2ij /4+ −→ NLO Counterterm

∑
i<j

(C
(1)
2 P̂

(0,1)
ij + C

(1)
3 P̂

(1,0)
ij )× (e−Λ2r2ij /4∇⃗2 + ⃗∇2

e−Λ2r2ij /4) −→ New NLO term

Similarly 3N and 4N

V3B = D
(0)
0

∑
i<j<k

∑
cyc

P̂(1/2,1/2)
ijk e−Λ2(r2ij+r2ik )/4 + D

(1)
0

∑
i<j<k

∑
cyc

P̂(1/2,1/2)
ijk e−Λ2(r2ij+r2ik )/4

V4B = E
(1)
0

∑
i<j<k<l

P̂(0,0)e−Λ2(r2ij+r2ik+r2il+r2jk+r2jl+r2kl )/4

3 LO LECs and 6 NLO LECs
(Schafer M., Bazak B., Phys. Rev. C 107, 064001, 2023)
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/πEFT with Non-Perturbative Coulomb Interaction

Coulomb interaction - new scale at low energies

Vc (Q) ∼
1

Q2
−→ Dominates over VNN for Q → 0

Effects of Vc and VNN cannot be seperated (Kong, X., Ravndal F., Nuc. Phys. A 665.1-2 (2000): 137-163.)

−→ New 2-body pp terms in the potential

New 3-body ppn term needed −→ 12 LECs total (at NLO)
(Vanasse, J., et al. PRC 89.6 (2014): 064003)
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Experiment: J. Purcell et al., Nucl. Phys. A 848, 1 (2010).
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Nuclear Reactions in an Oscillator Trap

Description of few-body continuum is a challenging problem −→ AGS equations,
Faddeev-Yakubovsky, Hyperspherical harmonics w/ KVP, NCSM/RGM...

We trap the system in a Harmonic Oscillator (HO) potential

Phase shifts are extracted from the quantization condition:
(Guo, P. PRC 103.6 (2021): 064611)

−2µC2
0 (η)kcotgδ = lim

r,r′→0

{
Re

[
GC ,∞
0 (r , r ′;E)

]
− GC ,ω

0 (r , r ′;E)

}

Green’s functions solved for numerically
(Bagnarol, M., Barnea, N., Rojik, M., Schäfer, M. PLB (2024), 139230)

Spectrum {E} → stochastic variational method (SVM) in a correlated Gaussian basis

Ψ =
∑
i

ci Â exp

(
−
1

2
xTAix

)
χi
SMS

ξiTMT

Ai ←− Matrix with randomly chosen basis-state parameters
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Proton-Deuteron Scattering

Prediction for the pd scattering length in the S = 3/2 channel: a
3/2
pd = 12.76(73) fm
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Proton-Deuteron Scattering

Comparison of /πEFT pd S = 3/2 and S = 1/2 phase shifts with experiment

The 3-body ppn force D
(1)
1 must be included for renormalization

PSA: M. H. Wood et al., PRC, 65, 034002



Proton-3He Scattering

Predictions of /πEFT for p3He scattering lengths and effective ranges for S = 0 and S = 1
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Proton-3He Scattering

Comparison of S=1 (left) and S=0 (right) p3He phase shifts with experiment and different
potential models
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Summary and Conclusions

We have presented a detailed analysis of various bound and continuum A ≤ 4 s-wave nuclear
systems in /πEFT up to NLO

Nuclear interactions from /πEFT are power-counting renormalizable

As a consequence, Coulomb interaction and 3N, 4N forces are included systematically

Low-energy observables are in excellent agreement with experiment

Only 9 experimental input data

Exciting future prospects:

Higher orders

Predictions for astrophysical reactions with theoretical errors

Predictions for A > 4 systems
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