

UNIVERSITÀ DEGLI STUDI DI BRESCIA

Leakage detection in water distribution networks using cosmic ray neutrons in the thermal region

<u>D. Pagano</u>, I. Bodini, G. Bonomi, A. Donzella, D. Paderno, L. Sostero, V. Villa

UNIVERSITÀ DEGLI STUDI DI BRESCIA & INFN PAVIA

61st International Winter Meeting on Nuclear Physics

Istituto Nazionale di Fisica Nucleare

Introduction

In 2023, I presented here (for the first time) an idea

to use cosmic ray neutrons (in the thermal region) to identify leakages in water distribution networks

- studies to support the original idea
- And we published this work...
- Today, for the first time, we also present preliminary experimental data (to be published later this year)

At the time the research was still in the early stages, I only presented a series of MC

Later, we refined the technique: we investigated the effect of different soil compositions, the placement of the crack in the pipeline, the moisture gradient in the subsurface, etc.

Nuclear Instruments and Methods in Physics Research A 1059 (2024) 168951

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

Full Length Article

Investigating the possibility of leakage detection in water distribution networks using cosmic ray neutrons in the thermal region

^a Department of Mechanical and Industrial Engineering, University of Brescia, Italy ^b Istituto Nazionale di Fisica Nucleare (INFN), Pavia, Italy

Leakages in water distribution networks

- Leakage rate in water distribution networks (data from Global Water Intelligence, 2008)
- Did things get better for Italy 15 years later?

- ISTAT (Italian national institute of statistics):
 36.2% of the water in the distribution networks is loss every year
- What are the mostly used techniques to identify leakages in distribution networks?

Giornata mondiale dell'acqua 2022 Le statistiche Istat sull'acqua Anni 2019-2021 Istituto Nazionale di Statistica

0,9 miliardi di metri cubi/anno dispersi 36,2% dell'acqua immessa in rete

Common techniques for leakages detection

Cosmic-ray neutrons and water content of soil

- Fast neutrons penetrate a few tens of g/cm^2 of matter, that is some hundreds (tens) of meters (cm) of air (soil) before being thermalized
 - - the production rate of fast neutrons
- From the intensity of epithermal neutrons, the hydrogen content is inferred
- corrections, filters and calibration functions

The Cosmic Ray Neutron Sensing (CRNS) technique was originally proposed for hydrological and environmental applications and demonstrated by few research groups

doi:10.1029/2008GL035655 doi:10.1029/2009WR008726 doi:10.1002/2015GL063963 doi:10.2136/vzj2017.04.0086 doi:10.3390/agriculture9090202

An equilibrium concentration of neutrons is established in both air and soil, depending on:

the efficiency of moderating of fast neutrons, that is the content of hydrogen

Because of the dependence on air pressure, air humidity, vegetation, soil composition, etc., a reliable assessment of the soil water content requires the applications of complex

Cosmic-ray neutrons for leakage detection

- We investigated the possibility of using CR neutrons for subsoil leakages detection, with two important differences w.r.t. what currently used in this field:
- sunos Relative we are only interested in localizing underground regions with an anomalous large water content with respect to **GEANT4** the surrounding soil **Thermal region** the detection of neutrons in the thermal region Volumetric soil moisture content Counts 2000 **GEANT4** Expected main advantages/drawbacks of this approach: — dry soil less sensitivity to calibration functions, thanks to a — 10% water 4000 relative measurement between the two detectors 3000 possible higher sensitivity to small signals 2000 1000 worse capability of an absolute measurement of the
- the use of two sensitive layers for neutrons

- 10⁻² water content in soil 10^{-3} 10⁻¹ Energy [eV

6

Some simulation results

- Several (realistic) scenarios of subsoil leakages from pipes were simulated
- One of the detectors (reference) is placed far from the pipe, whereas the other one moves along the pipe
- Performance of the technique mainly impacted by:
 - soil composition
 - environmental water content
- How much can we trust simulation results to claim the feasibility of the technique?

Detector

Detection of thermal neutrons

- Detection of slow neutrons generally based on the following processes
- If $^{10}B(n, \alpha)$ reaction: $^{10}B + ^{1}n \rightarrow ^{7}Li^* + ^{4}\alpha + 2.31$ MeV
- ³He (n, p) reaction: ³He + ¹n \rightarrow ³H + ¹p + 0.764 MeV

• ⁶Li (n, α) reaction: ⁶Li + ¹n \rightarrow ³H + ⁴ α + 4.78 MeV

- We chose the EJ-426HD-PE2 from Elijen Technology coupled to a WLS
- ³He and ${}^4\alpha$ detected by ZnS:Ag phosphor matrix with a broad blue fluorescent spectrum read by SiPMs

Front-end electronics: neutron modules

Supply and control connector

SiPM (opposite side)

Discrimination

16-bit trim

Modular design

- Li-based scintillator + WLS + front-end electronics are housed in a light-proof case (3D printed)
- Two cables: one usb cable (for data) and one flat cable (for power supply)

A (much) cheaper solution...

We also investigated the use of an open-source project to read the SiPM

- Both hardware (gerber) and software is made available
- Our implementation based on a modified layout of the hardware
- Cost: ~40 euro for both board and carrier PCB + components from JLCPCB and Mouser Assembly made @ Unibs and INFN PV

	OpenGammaProject / Open-Gamma-Detector							
<> Code	⊙ Issues 1 👔	່ງ Pull requests		➢ Actions	Security	🗠 Insights		
		ᢞ main → ᢞ 5 Branches ⓒ 0 Tags				Q Go to file	t Add file	
		🔉 NuclearPh	oenixx update fi	rmware to 4.3.2			7fb8b1c · 2 months ag	
		.github/workflows			update pa	update path		
	docs			[ImgBot]	[ImgBot] Optimize images			
		enclosure			add rev 4	add rev 4 to compat list		
		hardware			update RI	update README for Pico 2		
	software				update fir	update firmware to 4.3.2		

https://github.com/OpenGammaProject/Open-Gamma-Detector

A (much) cheaper solution...

A (much) cheaper solution...

The detector

Experimental Setup

How to test experimentally?

- The goal is to test the technique in a controlled environment
 - Known soil composition
 - Known soil moisture with depth
 - Controlled environmental parameters
- A vessel containing homogeneous soil
- Within it, layers of small containers with same soil with known moisture
- Additional requirement: relatively cheap

Experimental setup

Experimental setup

Sand of know water content (moisture) is put in airtight bags

Problem

- how to assess the water content of sand?
- how to prepare bags of sand with the desired moisture?

Estimation of the moisture in sand

- When water is added to sand, it fills the spaces between grains with a negligible change in volume
 - The same happens when sand dries

Thanks to this, the water content of sand can be derived from a relative measurement between dried and wet sand

10.1007/s11440-018-0628-7

- We dried several identical volumes of sand with different initial values of moisture
 - Industrial oven @ 120 °C up to 24 h
 - Reference volume: industrial baking pans
 - The weights of all pans were (statistically) identical at end: full dried sand (FDS)

Estimation of the moisture in sand

Knowing the FDS mass (for the volume V_{PAN}), m_{FDS} , the volumetric moisture **content** θ of the sand can be determined by its mass m'

$$\bullet \theta = \frac{1}{V_{PAN}} \frac{m' - m_{FDS}}{\rho_W}$$

- Having a procedure to assess θ we prepared several airtight bags with different θ values
- We added the necessary quantity of water to achieve the desired θ in the bag
- In this way we can arrange them to recreate several humidity gradients

First experimental data

- The detector is initially placed on a $1 m^3$ bag of naturally dried (2-3%) sand
 - At this stage we are using a single detector
- Next, the detector is placed on the barrel
 - Several configurations for the moisture gradient were considered
 - 40% 20% 10% FD
 - 40% 20% 10% 5%
 - 40% 20% 10% air
 - 40% 20% 10%

First experimental data

Errors are statistical only

Percent counts variation, $(N_{barrel} - N_{bag})/N_{bag}$, for the different cases are shown below

Conclusions

- subsoil leakages
- the development of a suitable detector and experimental apparatus
- A detector has been designed and realised with some innovative solutions
- specifically designed experimental apparatus
- - important achievement in view of future field tests

We investigated the possibility of using cosmic-ray neutrons for the identification of

Simulations studies were encouraging, and convinced us to invest time and resources in

The proposed technique has been tested in a controlled conditions, by means of a

First results show a dependence of the counts variations on the water content in the sand

Although these results were produced under special conditions, they represent an

