The PRad-II and X17 Search Experiments at Jefferson Lab

- X17 Search Experiment
- PRad-II Experiment
- PRad-II/X17 Hall B Run Group Status

Patrick Achenbach Jefferson Lab January 2025

X17 Search at Jefferson Lab

Physics Goals of X17 Search Experiment

Most cosmological observations suggest

 \approx 85% of the mass of the Universe consists of Dark Matter (DM):

- Assuming thermal origin, DM interacts with SM objects particles/fields
 - Either SM weakly (WIMPs) or feebly (new weak interaction)

$$\langle \sigma_{\mathrm{annih}} v \rangle \sim \frac{g^4}{2\pi m^2} \simeq 6 \times 10^{-37} \mathrm{cm}^2 \left(\frac{g}{0.1}\right)^4 \left(\frac{m}{100 \,\mathrm{GeV}}\right)^{-2}$$

- A simple theoretical SM extension model suggests a dark sector:
 - U(1) gauge boson (dark photon or X-particle)
 - Dark photon as portal between DM and SM through kinetic mixing

Dark Photon Visible Decay Searches

A' electro-production

- A' is emitted in forward cone → Detection symmetrically in forward detection
- A' carries away most of electron's energy
 → Energy sum near beam energy
- In any A' search unavoidable subtraction of continuous QED background

Concept of e+e- visible decay search experiments

- Coincidences reduce SM background
- High-precision determination of 4-vectors of e^+e^- pair
- Reconstruction of invariant mass spectrum

Backgrounds:

Dark Photon Exclusion Limits

Physics Goals of X17 Search Experiment

Observed anomaly: excess of e+e- pairs in ⁸Be*, ⁴He* and ¹²C* decays

- Suggested explanation: hypothetical X17 particle
- Requires independent experimental verification

PRC 106, L061601 (2022)

Search with electron beams for hidden sector mediators in this mass range

Experimental Method and Detectors

Electroproduction on heavy nucleus in forward directions

• $e^- + Ta \rightarrow e' + \gamma^* + Ta \rightarrow e' + X + Ta$, with $X \rightarrow e^+e^-$ (with tracking)

and $X \rightarrow \gamma \gamma$ (without tracking)

in mass range of [3 - 60] MeV/ c^2

- Detection of all final state particles (e', e+e- and/or $\gamma\gamma$)
 - Scattered electrons e' with 2 GEMs and PbWO₄ calorimeter
 - Decay e+ and e- with 2 GEMs and PbWO₄ calorimeter
 - Decay $\gamma\gamma$ pairs with PbWO₄ calorimeter and GEMs for veto
 - → full control of kinematics
 - \rightarrow full control of background
- Bump hunting in invariant mass spectrum over SM background

X17 Search Setup in Hall B

Experimental setup based on PRad-II apparatus

- Hall B Photon Tagger for PbWO₄ calorimeter calibration
- 1 μ m Ta (2.4 x 10⁻⁴ X_0) thin foil targets
- Large vacuum box to minimize scattering
- Two planes of GEM detectors for tracking

Electromagnetic Calorimeter

Hybrid Calorimeter HyCal from PrimEx

- 34 x 34 =1156 PbWO₄ modules, each 2 x 2 x 18 cm³
- 68 x 68 cm² total detection area
- 2 x 2 or more crystals removed for beam passage
- New Flash-ADC readout electronics

PRad-II / X17 Experiments at JLab

GEM Detector Tracking

Two planes (4 layers) of new GEMs

- Located in front of PbWO₄ behind vacuum window
- Optimized relative distance of 40 cm for resolution
- Good position resolution of $\sigma = 72 \,\mu \text{m}$
- Veto of neutral particles for X → e⁺e⁻ channel and veto of charged particles for X → γγ channels
- New electronics based on APV-25 readout system

Under construction at University of Virginia subcontracted by Jefferson Lab

Invariant Mass and Vertex Resolutions

Invariant mass reconstruction

- Vertex, GEMs and PbWO₄ calorimeter provide $\sigma_{\rm m} = 0.48 \text{ MeV/}c^2$ for X17 particle
- GEMs and PbWO₄ calorimeter alone is worse
- GEM planes (with PbWO₄) discriminate events not originating from the target but do not to measure decay length, not a "displaced vertex" search experiment

Energy Sum and Angular Resolutions

Good energy resolution of PbWO₄ calorimeter
 (2.6% @ E = 1 GeV) and 1 μm thin target provide powerful energy selection cut:

 $\sigma_{E} = 47 \text{ MeV} @ 3.3 \text{ GeV}$ beam

• GEMs excellent position resolution ($\sigma = 72 \ \mu m$) and

1 μ m thin target provide further event selection criterion:

Coplanarity between $\vec{p}_{e'}$ and $(\vec{p}_{e+} + \vec{p}_{e-}) \sigma_{\Delta\phi} = 0.9^{\circ}$

Physics Background Simulations

Physics background was simulated in two different ways:

1) GEANT4 based Monte Carlo background simulations

- PRad experimental setup
- Physics processes from GEANT package
- Large statistics of beam electrons incident on target
- Events with $N_{cluster} \ge 3$ analyzed in same way as signals
- 2) MadGraph5 EM event generator background simulations
 - Large statistics (~2M) of radiative trident events
 - Events were fed into the GEANT MC simulation
 - Same analysis procedure was applied for these events

X production channel

Trigger and Physics Background Rates

- Hardware trigger requires 3-cluster ($N_{cluster} \ge 3$) events:
 - Each one within 30 MeV < $E_{cluster}$ < 0.8 x E_{beam}
 - E_{total} > 0.7 x E_{beam}
- Two high-rate processes in this experiment:
 - Electron-nucleus elastic scattering: trigger will effectively suppress these events
 - Møller scattering: source of major accidentals
- Estimated rates for two main sources are:
 - Singles from Møller: Rate \approx 107 kHz
 - Doubles from Møller: Rate \approx 81.7 kHz
- Assuming 2 ns time resolution (bunch size):
 - Accidental coincidence rate: ≈17 Hz: not a significant background contribution

Reach Projection of X17 Search

Exclusion of relevant parameter space

- Based on Bjorken paper yield formula
- Assumes cross section averaging
- Invariant mass range: 3 60 MeV/c²
- Coupling constant: $\varepsilon^2 \approx 10^{-8} 10^{-7}$
- Showing 5σ limits (discovery criterion)
- Event-by-event MC is being developed

Update of experimental reach is expected before experiment is performed

Reach from approved proposal:

PRad-II at Jefferson Lab

Nucleon Elastic Factor Factors

The cross section:

$$\frac{\left(\frac{d\sigma}{d\Omega}\right)}{\left(\frac{d\sigma}{d\Omega}\right)_{Mott}} = \frac{1}{\varepsilon \left(1+\tau\right)} \left[\varepsilon G_{E}^{2}\left(Q^{2}\right) + \tau G_{M}^{2}\left(Q^{2}\right)\right]$$

with:

$$au = rac{Q^2}{4m_
ho^2}, \quad arepsilon = \left(1 + 2\left(1 + au
ight) an^2 rac{ heta_e}{2}
ight)^{-1}$$

Fourier-transform of G_E , $G_M \rightarrow$ spatial distribution (Breit frame)

$$\left\langle r_E^2 \right\rangle = -6\hbar^2 \left. \frac{\mathrm{d}G_E}{\mathrm{d}Q^2} \right|_{Q^2=0} \quad \left\langle r_M^2 \right\rangle = -6\hbar^2 \left. \frac{\mathrm{d}\left(G_M/\mu_p\right)}{\mathrm{d}Q^2} \right|_{Q^2=0}$$

Mean squared radii determined from slope of corresponding form factors at $Q^2 = 0$

Measured Elastic Scattering Cross Sections

Dipole form factor as "classical" description of elastic cross sections

Q²-Evolution of Form Factor Ratio

Discrepancies between data sets at Q^2 between 0.03 and 0.06 GeV²/ c^2

PRad-II Setup in Hall B

Background-minimized forward detection

Elastic to Møller scattering

Molle Hydrogen e-beam Ebeam = 2.2 GeV 2500 NeW A 2000 Bue 1500 101 1500 Reconstructed 10² 1000 500 2 3 5 Reconstructed scattering angle [deg]

Data from PRad Collaboration

This particular experimental design:

- Allows control of systematics
- Eliminates need to monitor luminosity

Windowless Gas Flow Target

PRad-II / X17 Experiments at JLab

Projections of Cross Section Precision

Cross sections

Extremely low Q² coverage with overlap for different beam energies

Jan 2025 P Achenbach, JLab

Proton electric form factor

Existing Data and Projected Radius Precision

PRad result: 0.831 ± 0.007 (stat.) ± 0.012 (syst.) fm \rightarrow ± 0.002 (stat.) ± 0.003 (syst.) fm

PRad-II/X17 Run Group Status

Current Status of the Experiment Preparation

- Refurbishment and testing of HyCal calorimeter started last summer
- Construction of two GEM detectors is on track at University of Virginia; delivery to JLab and commissioning in Spring 2025
- DAQ electronics is procured (based on new fADC-250 modules); ready in Spring 2025
- PRad-II gas flow target has been set up and is tested in a lab
- Conceptual design of beamline finalized; engineering design in progress
- Work on new cabling and other experimental parts is underway in Hall B
- Experiments are tentatively and conditionally scheduled for Fall 2025

Conditional Schedule 2025-26

SAD or scheduled Run Group	Setup / Status	Target	Beam Energy	Start Date	End Date	Scheduled Calendar Days	Scheduled PAC Days = Cal.Days/2	Remaining PAC Days After Run
X17 search	HyCal/GEMs	Ta foil / Radiator	2.2	2025-11-10	2025-12-22	42	21	39
	winter break			2025-12-22	2026-01-12			
X17 search	HyCal/GEMs	Ta foil	2.2	2026-01-12	2026-03-02	49	25	15
	reconfigure	change		2026-03-02	2026-03-09	7		
PRad-II	HyCal/GEMs	H2 gas	2.1	2026-03-09	2026-04-07	29	15	26
	pass change			2026-04-07	2026-04-08	1		
PRad-II	HyCal/GEMs	H2 gas	0.7	2026-04-08	2026-04-21	13	7	19
	pass change			2026-04-21	2026-04-22	1		
PRad-II	HyCal/GEMs	H2 gas	1.4	2026-04-22	2026-05-25	33	17	2
Scheduled	Accelerator D	own 2026			Total days:	175	84	

Assuming 24 weeks of physics running and successful Experimental Readiness Review

Invisible Decay Searches: Positron Annihilation

A' Search with Ce+BAF

- 50 nA positron beam, energy of 2.2, 4.4, and 11 GeV
- 5-cm-long target of liquid hydrogen
- Detection of photon from $e^+ + e^- \rightarrow A' + \gamma$
- Setup includes sweeper magnet and beam dump

Reach Projection for Invisible Decay Search

A' Search with Ce+BAF

- Mass range from 15 to 90 MeV
- Sensitivity reaches $\varepsilon \ge 10^{-4}$
- Experimental sensitivity does not rely on coupling of A'-boson to quarks or possible semi-visible decay

PAC approved experiment that could possibly run in the 2030s

Summary

PRad-II and X17 Search are two cost-effective, mostly ready-to-run experiments:

- Validate existence or set an experimental upper limit on a search for X17
- Search for hidden sector particles in the [3 60] MeV mass range

- Validate existence or resolve discrepancy in proton form factor data
- Improve the precision on the proton charge raduis

Experiments could run as early as 2025/26