Timing properties of T2K ND280Upgrade detector

Gioele Reina (he/him)

MPA retreat 2024

- Neutrino oscillations
- **T2K** experiment and its near detector ND280
- **D** Neutron reconstruction in ND280
- **D** Timing characterization of the detector

Neutrino are produced in a specific **flavour eigenstate** (v_e, v_μ, v_τ) but they travel through the **mass eigenstate** (v_1, v_2, v_3) and so can be detected in a different flavour

Neutrino are produced in a specific **flavour eigenstate** (v_e, v_μ, v_τ) but they travel through the **mass eigenstate** (v_1, v_2, v_3) and so can be detected in a different flavour

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$s_{ij} = \sin \theta_{ij}, \ c_{ij} = \cos \theta_{ij}$$

Two flavour neutrino oscillation probability where:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2(2\theta)\sin^2(1.27\Delta m^2 \frac{L(km)}{E(GeV)})$$

- \Box *L* is the distance to the source
- **E** is the neutrino energy

 $\Box \qquad \Delta m^2 = m_k^2 - m_l^2 \text{ with } m \text{ neutrino mass eigenstate } k, l = 1, 2, 3$

Neutrino are produced in a specific **flavour eigenstate** (v_e, v_μ, v_τ) but they travel through the **mass eigenstate** (v_1, v_2, v_3) and so can be detected in a different flavour

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$s_{ij} = \sin \theta_{ij}, \ c_{ij} = \cos \theta_{ij}$$

Atmospherics and LBL

 $\theta_{23} \sim 47.8^{\circ}$ $|\Delta m_{32}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2$ Reactors and LBL

Solar and Reactors

$$\theta_{12} \sim 33.6^{\circ}$$

 $\Delta m_{12}^2 \sim 7.5 \times 10^{-5} \text{ eV}^2$

Timing properties of T2K ND280Upgrade

Neutrino are produced in a specific **flavour eigenstate** (v_e, v_μ, v_τ) but they travel through the **mass eigenstate** (v_1, v_2, v_3) and so can be detected in a different flavour

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}$$

$$Atmospherics and LBL \\ \theta_{23} \sim 47.8^{\circ} \\ |\Delta m_{32}^{2}| \sim 2.5 \times 10^{-3} eV^{2} \end{pmatrix} \qquad Reactors and LBL \\ \theta_{13} \sim 8.5^{\circ} \\ \theta_{13} \sim 8.5^{\circ} \\ \delta_{CP} unknown \end{pmatrix} \qquad Solar and Reactors \\ \theta_{12} \sim 33.6^{\circ} \\ \Delta m_{12}^{2} \sim 7.5 \times 10^{-5} eV^{2}$$

Timing properties of T2K ND280Upgrade

- Long-baseline neutrino experiment
- □ Neutrino oscillation parameters measurement: δ_{CP} , θ_{23} , Δm_{23}^2 , θ_{13}
- $\Box \quad \text{Accelerator } v_{\mu} \text{ produced at J-PARC}$
- v detected in two facilities:
 - Three near detectors (INGRID, WAGASCI-BabyMIND, ND280)
 - □ Super-Kamiokande far detector (2.5° off-axis)

□ Super-Kamiokande far detector (2.5° off-axis)

Timing properties of T2K ND280Upgrade

- Long-baseline neutrino experiment
- □ Neutrino oscillation parameters measurement: δ_{CP} , θ_{23} , Δm_{23}^2 , θ_{13}
- □ Accelerator v_µ produced at J-PARC
- v detected in two facilities:
 - Three near detectors (INGRID, WAGASCI-BabyMIND, ND280)
 - Super-Kamiokande far detector (2.5° off-axis)

ND280 Upgrade

Three new detectors:

- **D** Time of Flight (ToF)
 - □ 150 ps time resolution
- High-Angle TPC (HATPC)
 - □ full angular coverage
- **Gamma** Super Fine-Grained Detector (FGD)
 - novel detector concept

SuperFGD Detector

- > 2M independent 1 cm³ cubes of plastic scintillator
- WLS fibers crossing the cube along three orthogonal directions
- **Photosensor** at one end of each WLS fibers

SuperFGD Detector

- > 2M independent 1 cm³ cubes of plastic scintillator
- WLS fibers crossing the cube along three orthogonal directions
- **Photosensor** at one end of each WLS fibers

Neutrino energy reconstruction from lepton kinematics **Nuclear effects** are not considered

Bias in the neutrino energy reconstruction

- □ **Final State Interactions** (FSI) make interaction identification challenging
- Topologies identification is the way
- □ Neutrons come in many of these topologies:
 - (CC0π1n, CC0π0p1n, CC0π0pNn)

Neutron reconstruction can recover the bias

Neutrino energy reconstruction from lepton kinematics **Nuclear effects** are not considered

Bias in the neutrino energy reconstruction

$$\overline{\nu}_{\mu} + p \to \mu^+ + n$$

Neutrino energy reconstruction from lepton kinematics **Nuclear effects** are not considered

Bias in the neutrino energy reconstruction

$$\overline{\nu}_{\mu} + p \to \mu^+ + n$$

Time calibration: time offsets + time walk

Time resolution

Goal: evaluate

- **Channel time offsets** (bias in time ~ns given by electronic units)
- **Time walk** (effect ~10 ns depending on signal amplitude)

Important for:

- Neutron analysis
- Track direction

Channel time offsets

Time Walk Effect

Run on 11k cosmic muons mc

Applied a fake offset between -3 and 3 ns

Algorithm works pretty well in MC

Channel offsets: Data

Channel offsets: Data

Final offset

Channel offsets: Data run-by-run stability

Timing properties of T2K ND280Upgrade

Time walk correction

□ Apply the offset correction

□ Check the difference between the expected times vs charge

Time resolution

Time resolution

- **ND280 Upgrade** for systematic errors reduction
- □ Neutrons will play a key role in systematic errors
- □ Neutron reconstruction relies on time of flight of neutrons

- **Time calibration** on going
- **Time resolution** only tested in MC
- Given a methodology for **time calibration for high granularity detector**

SuperF

Backup

- Neutrinos v belong to the Standard Model of particle physics
- □ Chargeless leptons
- □ Treated as **massless particles** (wrongly)

Homestake first (of many) experiment to observe **neutrino oscillations** proves this wrong

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} \mathsf{PMNS} \\ \mathsf{matrix} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$\begin{aligned} U &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \end{pmatrix} \end{aligned}$$

$$P_{lpha
ightarrow eta, lpha
eq eta} = \sin^2(2 heta) \, \sin^2\!\left(1.27 \, rac{\Delta m^2 L}{E} \, rac{[\mathrm{eV}^2]\,[\mathrm{km}]}{[\mathrm{GeV}]}
ight)$$

CP violation phase

CP violation phase

	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 7.1)$	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\sin^2 heta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$
$ heta_{12}/^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$
$\sin^2 heta_{23}$	$0.573\substack{+0.016\\-0.020}$	$0.415 \rightarrow 0.616$	$0.575\substack{+0.016\\-0.019}$	$0.419 \rightarrow 0.617$
$ heta_{23}/^{\circ}$	$49.2^{+0.9}_{-1.2}$	$40.1 \rightarrow 51.7$	$49.3^{+0.9}_{-1.1}$	$40.3 \rightarrow 51.8$
$\sin^2 heta_{13}$	$0.02219\substack{+0.00062\\-0.00063}$	$0.02032 \rightarrow 0.02410$	$0.02238\substack{+0.00063\\-0.00062}$	$0.02052 \rightarrow 0.02428$
$ heta_{13}/^{\circ}$	$8.57^{+0.12}_{-0.12}$	$8.20 \rightarrow 8.93$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.96$
$\delta_{ m CP}/^{\circ}$	197^{+27}_{-24}	$120 \rightarrow 369$	282^{+26}_{-30}	$193 \rightarrow 352$
$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
$\frac{\Delta m_{3\ell}^2}{10^{-3}~{\rm eV}^2}$	$+2.517^{+0.026}_{-0.028}$	$+2.435 \rightarrow +2.598$	$-2.498^{+0.028}_{-0.028}$	$-2.581 \rightarrow -2.414$

Neutrino flux

Neutrino - nucleus cross section

Nuclear effects FSI

On-axis

□ 16 modules

- 9 iron target plates + 11 tracking scintillator planes
- Surrounded by scintillator veto planes
- Flux direction monitoring

WAGASCI-BabyMIND

1.5° off-axis

Reduce systematic errors

WAGASCI

- □ Main target: pure water
- Cross section ratio scintillator-water

Baby MIND

- Magnetized iron neutrino detector
- Charge and momentum of outgoing muon

SFGD properties

- Polystyrene doped with 1.5% of paraterphenyl (PTP) and 0.01% of POPOP
- Hamamatsu MPPC S13081-050C
- L.Y. around 40 p.e. for MIP

Time Of Flight

- □ 6 modules of plastic scintillator layers
- □ 150 ps time resolution
- Background discrimination
- □ Ingoing and outgoing particle identification

Aim: CP violation with > 3σ significance exclusion

- Extended T2K running time (Hyper-Kamiokande)
- Collect **20x10**²¹ Protons-on-Target (PoT)
- □ J-PARC accelerator upgrade reaching 1.3 MW in few years (485 kW currently achieved)

Better understanding of detector

uncertainties is crucial!

JPARC - Upgrade

- □ 50k metric tons
- 11'000 PMTs

- □ 48 x 54 x 250 m³
- 1 million metric tons
- 99'000 PMTs

Neutrino energy reconstruction from lepton kinematics **Nuclear effects** (FSI) are not considered

$$E_{\nu} = \frac{m_n^2 - m_p^2 - m_{\mu}^2 + 2m_p E_{\mu}}{2(m_p - E_{\mu} + p_{\mu} \cos \theta_{\mu})}$$

$$\overline{\nu}_{\mu} + p \to \mu^+ + n \qquad \delta p_{\mathrm{T}} = |\vec{p}_T^l + \vec{p}_T^n|$$

SuperFGD improvements

Timing properties of T2K ND280Upgrade

SFGD time calibration doesn't take into account channel offsets and time walk correction

Goal: time offsets and time walk evaluation

Important for:

- Neutron analysis
- □ Track direction

We define:

- **G fiber hit**: a THit with time, charge and MPPC position
- □ matchedHit: a match between 2 fiber hits
- **t_i**: the time recorded by the i_th channel
- □ **s_i**: distance from the MPPC to the reconstructed cube in one of the 2 hits matched
- □ v: speed of light in the fiber

Using **cosmics** (µ) in both MonteCarlo and Data:

- □ Each event has a single track
- Each track is reconstructed as a set of **3D cube hits**
- Each cube hit has **3 fiber hits**, meaning **3 matched hits**
- □ Noise cut: 10 photoelectrons (p.e.)

End up with a set of vectors of: [(t,s,ch,q), (t,s,ch,q)]

- Loop through matched hits
- Given Service For each matched hit:

□ Evaluate: Δt_{ij} = (t_i - t_j) - (s_i - s_j)/v/2 dividing by 2 necessary to distribute the correction equally to each channel of the matched hit
 □ Evaluate: Δt_i = ∑_j Δt_{ij}/N which is the correction on the offset
 □ Apply the correction: t_iⁿ⁺¹ = t_iⁿ ± Δt_i

- Repeat loop until convergence: maximum number of iteration
- Generation Final channel offset is the sum of all the corrections at each iteration
- □ In the end the two times should be as close as possible

	t _i		1		
t					
			V	t,	
			↑		
	t.		V	Iteration N	
	Ĵ	Iteration 0			

Channel entries

Run on 11k cosmic mc

Unseen channels

For the "unseen" channels we could use the citiroc's average offset

Gioele Reina