Intrinsic Resolution Limits in Low-Energy Cascade Directional Reconstruction with the IceCube Upgrade

Kaustav Dutta MPA Retreat October 01, 2024

Resolution Limits with Upgrade

Outline

2

What is the IceCube experiment?

How are events simulated realistically?

Machinery to estimate event parameters

What do we finally get out of this?

Outline

MPA Retreat '24

JGU

Phase-1: Introduction

What is the IceCube experiment?

Resolution Limits with Upgrade

Existing detector / Detection technique

Resolution Limits with Upgrade

Existing detector / Detection technique

Resolution Limits with Upgrade

line of

MPA Retreat '24

MPA Retreat '24

JGU

Resolution Limits with Upgrade

Resolution Limits with Upgrade

MPA Retreat '24

JGU

Resolution Limits with Upgrade

9

Why challenging? fewer photons = fewer hits

Why interesting?

- 1. Neutrino Mass Ordering
- 2. Oscillation parameters estimation
- 3. Tau identification
- 4. Sterile Neutrino detection

Resolution Limits with Upgrade

Future IceCube Upgrade

10

doi.org/10.1016/j.nima.2018.11.109

Resolution Limits with Upgrade

MPA Retreat '24

Study Objectives

- Contributions from individual observables (photon direction, timing, charge, etc.)
- Processes **limiting** the reconstruction performance & their contributions.

11

• What are the **resolution limits** if all information loss factors are accounted for?

Outline

MPA Retreat '24

JGU

Phase-2: Simulations

How are events simulated realistically?

Resolution Limits with Upgrade

• Detector Medium

This study: Homogenous Ice (optical properties depth-independent) **Usual MC:** layer stratifications, birefringence, layer undulations

• Detector Geometry

This study: Constant sensor spacing with only 24-PMT modules. **Usual MC:** Fluctuations in spacings; different types of modules.

• Module response

This study: Idealistic, same angular photon acceptance, no electronics simulation **Usual MC:** Angular acceptance fluctuations; photon-to-charge chain simulated

Shower spread

In-ice Scattering

Resolution Limits with Upgrade

MPA Retreat '24

IGL

Module resolutions

- Select the PMT closest to the point of photon impact.
- Include acceptance curve information.
- Project photon direction onto the PMT axis.

Module noise

- Select the PMT closest to the point of photon impact.
- Include acceptance curve information.
- Project photon direction onto the PMT axis.

- **Spatially:** trigger a random PMT on one of the hit modules with physics hits.
- **Temporally:** sample from a uniform distribution within the event time window of physics hits.

WHERE?

Outline

MPA Retreat '24

JGU

Phase-3: Reconstruction

Machinery to estimate event parameters

Resolution Limits with Upgrade

- Event type: Point-like cascades with anisotropic light emission
- Energy range: 1-20 GeV
- **Observables:** hit PMT position on 24-PMT modules, timestamps
- **Reconstruction method:** Maximum Likelihood Estimation
- **Reconstructed parameters:** direction, position, timing of event (7 parameters)
- **Parameter of interest:** Zenith
- **Reconstruction metric:** $|\cos(\theta_{\text{reco}}) \cos(\theta_{\text{true}})|$

MPA Retreat '24

Resolution Limits with Upgrade

Fixed detector geometry creates a **photon sampling bias**

Randomized geometry generated by positioning strings and modules within a string randomly with spacing thresholds to avoid clustering.

20

MPA Retreat '24

IGU

2

MPA Retreat '24

JGU

Vertex-averaged photon distributions with uniformly distributed events in a randomized geometry are direction-independent!

Outline

Phase-4: Results

What do we finally get out of this?

JGU

MPA Retreat '24

Resolution Limits with Upgrade

Result 1: Contributions from individual observables

MPA Retreat '24

JGU

• Simulations include **all** information loss processes.

Resolution Limits with Upgrade

- Simulations include **all** information loss processes.
- Brown line is the approximate resolution limit.

Result 2: Contributions from information limiting processes

27

Resolution Limits with Upgrade

• Benchmark reconstruction uses Graph Neural networks (GNNs) on full-detector simulations. ice and detector systematics

PRiSMA⁺

- GNN trained on all simulated Upgrade events tracks/cascades, reconstruction only on v_e NC events.
- Scope for resolution improvement at low hit counts, however current benchmark approaches limits at high hit counts.

MPA Retreat '24

Why is this a conservative estimate of the intrinsic resolution limit ?

- Homogeneous ice prevents systematic errors from intricate ice modelling.
- Photon direction, timing, and per-module charge information provides optimal input to the reconstruction.
- Averaged PDFs are **good approximations of truth PDFs**; near-ideal likelihood descriptions for a given hypothesis.

- Vertex-averaged PDFs generated within a randomized geometry in homogeneous ice offer near-ideal likelihood description.
- Boost in reconstruction by the using the **correlation** of photon direction and timing.
- **Photon scattering** in ice and **module resolutions** are the **dominant contributors** to limiting physics information in IceCube events.
- Reconstruction performance of the benchmark using GNN **approaches resolution limits** at high photon hit counts.

Thank you!

Questions?

Backups

Resolution Limits with Upgrade

Backup

MPA Retreat '24

Resolution Limits with Upgrade

line of

Backup

0.0

0.5

1.0

1.5

Angle between true dir & hit photon [rad]

MPA Retreat '24

2.0

2.5

3.0

Resolution Limits with Upgrade

18 - TA

Backup

3D correlation PDF slices

Backup

- Slices of constant opening angle (shower axis, radius vector).
- VBW KDE fitting takes almost 2 hours for 10^6 photons (entries).
- Using the KDE values directly from the fit during LLH minimisation for 20,000 events between 1-20 GeV takes around 1 day.
- Therefore, using a **RegularGridInterpolator** in **cubic mode** with 100 bins in each dimension, now takes 10 hours.

MPA Retreat '24

IG

3D correlation PDF slices

Resolution Limits with Upgrade

Backup

- Slices of constant opening angle (shower axis, hit PMT vector).
- VBW KDE fitting takes almost 2 hours for 10⁶ photons (entries).
- Using the KDE values directly from the fit during LLH minimisation for 20,000 events between 1-20 GeV takes around 1 day.
- Therefore, using a RegularGridInterpolator in cubic mode with 100 bins in each dimension, now takes 10 hours.

MPA Retreat '24

IGL

3D correlation PDF slices

Slices of constant residual timings.

- VBW KDE fitting takes almost 2 hours for 10⁶ photons (entries).
- Using the KDE values directly from the fit during LLH minimisation for 20,000 events between 1-20 GeV takes around 1 day.
- Therefore, using a RegularGridInterpolator in cubic mode with 100 bins in each dimension, now takes 10 hours.

MPA Retreat '24

IGU

Charge distribution modeling

Resolution Limits with Upgrade

Backup

MPA Retreat '24

3D PDF from module noise

Resolution Limits with Upgrade

Backup

3D PDF from module noise

Resolution Limits with Upgrade

....

÷.,

Backup

3D PDF from module noise

Resolution Limits with Upgrade

.....

Backup

3D PDF from shower spread

186 a a

Angle $(\vec{u}, \vec{r} - \vec{q}) = 26.1^{\circ}$

0.00025

g(∆t[ns

og(Δt[ns])

og(Δt[ns])

0.00035

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

1.0

0.5

0.0

Resolution Limits with Upgrade

Backup

MPA Retreat '24

3D PDF from shower spread

Resolution Limits with Upgrade

÷.,

Backup

MPA Retreat '24

3D PDF from shower spread

Resolution Limits with Upgrade

186 a a

Backup

MPA Retreat '24

3D PDF from scattering

Resolution Limits with Upgrade

Backup

18 a a

MPA Retreat '24

3D PDF from scattering

Resolution Limits with Upgrade

÷.,

Backup

MPA Retreat '24

3D PDF from scattering

÷.,

Resolution Limits with Upgrade

Backup

3D PDF from module resolutions

Resolution Limits with Upgrade

Backup

MPA Retreat '24

3D PDF from module resolutions

18 a a

Resolution Limits with Upgrade

Backup

3D PDF from module resolutions

Resolution Limits with Upgrade

Backup

MPA Retreat '24

3D PDF ignoring module resolutions

Angle $(\vec{u}, \vec{r} - \vec{q}) = 26.1^{\circ}$

Resolution Limits with Upgrade

Backup

3D PDF ignoring module resolutions

186 a a

Angle $(\vec{u}, \vec{v}) = 26.1^{\circ}$

Resolution Limits with Upgrade

.....

Backup

3D PDF ignoring module resolutions

186 a a

Resolution Limits with Upgrade

Backup

MPA Retreat '24

- **GNN plot** remains the same as v4 of the paper.
- **Resolution limit plot** updated with 3D averaged PDFs+charge PDF.
- For the **Toy simulation**:
 - (a) Timestamps and photon directions constructed by sampling Δt and $\Delta \Psi$ (hit PMT, event) from the averaged PDFs.
 - (b) Charge distribution not changed; only the observed values for each photon from PPC replaced with the PDF sampled values.

Each module has identical PDFs = averaged integrated PDF → No PDF mismodeling errors.

MPA Retreat '24

Resolution Limits with Upgrade

Backup

DeepCore

line of

Upgrade

MPA Retreat '24

JGU

Resolution Limits with Upgrade

Backup

Reconstruction errors for DeepCore

Resolution Limits with Upgrade

.....

Backup

Impact of adding noise on PDFs

Resolution Limits with Upgrade

Backup

