

The CLOUD Experiment How to monitor a nuclear reactor

\$

\$

(without getting arrested)

Susie Wakely Supervisor: Alfons Weber

What happens in a nuclear reactor?

Aim: detect particles that escape the reactor.

Detecting neutrinos

Aims:

- As many interactions as possible:
 Large neutrino flux (close to source)
 - Large detector (more target material)
- Background reduction:
 - Deep underground (block cosmic rays)
- Background discrimination:

Particle identification

Signal	Background
Positrons (Inverse beta decay, IBD)	Muons Electrons Gammas

Scintillator detectors

Scintillator: material that produces light when a charged particle travels through it.

Detector design: • Tank full of scintillator (photon production), JUNO Photosensors on tank walls (photon detection). **Transparent** target material Super-Kamiokande 44 m de

(not a scintillator detector but similar design)

Particle interactions – Transparent Scintillator

Scintillator: material that produces light when a charged particle travels through it.

Opaque Scintillator (Liquid-O)

Particle interactions – Liquid-O Scintillator

Scintillator:

A material that produces light when a charged particle travels through it.

Liquid-O:

Short scattering length, Long absorption length.

LiquidO Detector Design

Detector design:

- Tank of LiquidO scintillator
 - (photon production),
- Wavelength shifting fibres
 - (photon collection/transport),
- Photosensors on tank walls
 - (photon detection).

CLOUD Experiment Chooz Liquid-O Ultra-near Detector

Potential physics

Reactor monitoring, Neutrino oscillation (near detector for Super Chooz)

Currently being designed

- Next generation 5-10 ton detector
- ~30m from reactor
- 10 000 WLS fibres (< 2cm spacing)
- Expected to see ~10 000 IBD events per day

CLOUD Experiment Chooz Liquid-O Ultra-near Detector

Potential physics

Reactor monitoring, Neutrino oscillation (near detector for Super Chooz)

Currently being designed

- Next generation 5-10 ton detector
- ~30m from reactor
- 10 000 WLS fibres (< 2cm spacing)
- Expected to see ~10 000 IBD events per day

Fibre Array Geometry

Z-parallel: fibres parallel to the tank walls

Fibre Array Geometry

Z-parallel: fibres parallel to the tank walls

Fibre Array Geometry

What is the best way to arrange the wavelength shifting fibres?

Position resolution:

- x & y, the position is determined from which fibres are hit. Position resolution ~ 1mm (or less).
- z, the position is determined from the timing difference of the signals readout at either end of the detector. Position resolution ~ few cm.

Fibre Array - Stereo Geometries

Can we improve z-resolution?

Yes! Cross the fibres.

Orthogonal crossing:

- Ideal: z-resolution = x-resolution = y-resolution,
- Very expensive!

Fibre Array - Stereo Planes

Fibre Array – Rotated Shells

- Full volume instrumented
- Much more complicated:
 - To simulate
 - To optimise
 - To build
 - To trigger
 - To reconstruct

Conclusion

How to monitor a nuclear reactor:

- Detect the neutrinos.
- Maximise neutrino flux get as close as possible.
- Background reduction and/or background discrimination.
- Liquid-O technology works well for this.
- Designing a fibre array is more complicated than you'd think!

Without getting arrested:

• Don't tunnel under a nuclear reactor!

Backup Slides

Z-Parallel

- Local fibre density: number of fibres per cm² within a chosen radius.
- As high as possible (money allowing)
- Uniform across the detector volume

Fibre Array Geometry - Rotated Shells The Maths

Cnaojc jsbcjabckasjc

Fibre Array Geometry - Rotated Shells The Maths

$$l = 2r \sin \frac{\Phi}{2}$$
$$= L \tan \beta$$

- Rotation Methods:
- Constant \$\overline\$

0

Constant β

Fibre Array Geometry - Rotated Shells The Small r Problem

Constant β is only viable for shells above a certain radius.

Constant φ must be used at small radii.

The two outermost shells of fibres in constant beta geometry.

The two innermost shells of fibres in constant beta geometry.

Fibre Array Geometry - Rotated Shells The Spaghetti Effect

- $\frac{d}{\Phi/r}$
- Uninstrumented volume around the edge of the detector.
- No fibres = no signal
- Solution: Untwisting region, gradually untwist outermost shells.

Fibre Array Geometry - Rotated Shells The Hybrid Design

- This geometry is non-trivial for construction, triggering and reconstruction.
- Is it worth it?

Stereo Planes

beta (deg)	A (%)	B (%)	C (%)	zSpacing/fibreSpacing)
10	27.6	20.3	52.1	5.7
9	24.2	19.1	56.6	6.3
8	21.1	17.6	61.3	7.1
7	18.2	15.9	65.9	8.1
6	15.4	14.0	70.7	9.5
5	12.7	11.9	75.5	11.4
4	10.0	9.6	80.3	14.3
3	7.5	7.3	85.2	19.1
2	5.0	4.9	90.1	28.6
1	2.5	2.5	95.1	57.3

• Volume of zones as a % of the total volume of the detector

Zone C is covered by all layers Zone B is covered by 2/3 layers Zone A is covered by 1/3 layers

