

The CLOUD Experiment How to monitor a nuclear reactor (without getting arrested) Susie Wakely

 $\frac{1}{2}$

 $\frac{1}{2}$

Supervisor: Alfons Weber

What happens in a nuclear reactor?

Aim: detect particles that escape the reactor.

Detecting neutrinos

Aims:

- As many interactions as possible: ➢Large neutrino flux (close to source)
	- ➢Large detector (more target material)
- Background reduction:
	- ➢Deep underground (block cosmic rays)
- Background discrimination:

➢**Particle identification**

Scintillator detectors

Scintillator: material that produces light when a charged particle travels through it.

Detector design: • Tank full of scintillator **(photon production), JUNO** • Photosensors on tank walls **(photon detection). Transparent target material** 44 m d **Super-Kamiokande** 44 m de

(not a scintillator detector but similar design)

Particle interactions – Transparent Scintillator

Scintillator: material that produces light when a charged particle travels through it.

Opaque Scintillator (Liquid-O)

Particle interactions – Liquid-O Scintillator

Scintillator:

A material that produces light when a charged particle travels through it.

Liquid-O:

Short scattering length, Long absorption length.

LiquidO Detector Design

Detector design:

- Tank of LiquidO scintillator
	- **(photon production),**
- Wavelength shifting fibres
	- **(photon collection/transport),**
- Photosensors on tank walls
	- **(photon detection).**

CLOUD Experiment Chooz Liquid-O Ultra-near Detector

Potential physics

Reactor monitoring, Neutrino oscillation (near detector for Super Chooz)

Currently being designed

- Next generation 5-10 ton detector
- ~30m from reactor
- 10 000 WLS fibres (< 2cm spacing)
- Expected to see ~10 000 IBD events per day

CLOUD Experiment Chooz Liquid-O Ultra-near Detector

Potential physics

Reactor monitoring, Neutrino oscillation (near detector for Super Chooz)

Currently being designed

- Next generation 5-10 ton detector
- ~30m from reactor
- **10 000 WLS fibres (< 2cm spacing)**
- Expected to see ~10 000 IBD events per day

Fibre Array Geometry

Z-parallel: fibres parallel to the tank walls

Fibre Array Geometry

Z-parallel: fibres parallel to the tank walls

Fibre Array Geometry

What is the best way to arrange the wavelength shifting fibres?

Position resolution:

- x & y, the position is determined from **which fibres are hit**. Position resolution \sim 1mm (or less).
- z, the position is determined from the **timing difference** of the signals readout at either end of the detector. Position resolution ~ few cm.

Fibre Array - Stereo Geometries

Can we improve z-resolution?

Yes! Cross the fibres.

Orthogonal crossing:

- Ideal: z-resolution = x-resolution = y-resolution,
- Very expensive!

Fibre Array - Stereo Planes

x

Fibre Array – Rotated Shells

- Full volume instrumented
- Much more complicated:
	- To simulate
	- To optimise
	- To build
	- To trigger
	- To reconstruct

But: z-resolution is much improved! 16

Conclusion

How to monitor a nuclear reactor:

- Detect the neutrinos.
- Maximise neutrino flux get as close as possible.
- Background reduction and/or background discrimination.
- Liquid-O technology works well for this.
- Designing a fibre array is more complicated than you'd think!

Without getting arrested:

• Don't tunnel under a nuclear reactor!

Backup Slides

Z-Parallel

- Local fibre density: number of fibres per cm² within a chosen radius.
- As high as possible (money allowing)
- Uniform across the detector volume

Fibre Array Geometry - Rotated Shells The Maths

Cnaojc jsbcjabckasjc

Fibre Array Geometry - Rotated Shells The Maths

$$
d = 2r \sin \frac{\phi}{2}
$$

$$
= L \tan \beta
$$

- Rotation Methods:
- Constant ɸ
- **Constant β**

Fibre Array Geometry - Rotated Shells The Small r Problem

The two outermost shells of fibres in constant beta geometry.

The two innermost shells of fibres in constant beta geometry.

No fibres = no signal

Constant β is only viable for shells above a certain radius.

Constant ɸ must be used at small radii.

Fibre Array Geometry - Rotated Shells The Spaghetti Effect

• **Uninstrumented volume** around the edge of the detector.

 $\overline{\Phi}$

 \boldsymbol{d}

 \boldsymbol{r}

- **No fibres = no signal**
- Solution: **Untwisting region**, gradually untwist outermost shells.

β

 \overline{d}

 \overline{I}

Fibre Array Geometry - Rotated Shells The Hybrid Design

- This geometry is non-trivial for construction, triggering and reconstruction.
- **Is it worth it?**

Stereo Planes

• Volume of zones as a % of the total volume of the detector

Zone C is covered by all layers Zone B is covered by 2/3 layers Zone A is covered by 1/3 layers

