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Plan for first lecture

1. Scalar field theory in the path integral formulation on the lattice;

2. Dirac fermion on the lattice;

3. Gauge fields in the continuum, and on the lattice;

4. The QCD path integral on the lattice;

5. Perturbation theory in lattice regularisation;

6. The static potential & asymptotic freedom;

7. Computing hadron masses;

8. Aspects of importance sampling Monte-Carlo.



Scalar field theory

Expectation values in the Euclidean path integral for a real scalar field φ:

〈O〉 =
1
Z

∫
Dφ exp(−S[φ]) O[φ], Z such that 〈1〉 = 1, (1)

with the measure formally defined as Dφ =
∏

x dφ(x).

In continuum field theory, the action in d spacetime dimensions is defined as

S[φ] =

∫
ddx

(
1
2

(∂µφ(x))2 +
1
2

m2φ2 +
1
4!
λφ4
)
. (2)

The parameter m corresponds to the mass of the scalar particle and λ to the
strength of its self-interaction.

The lattice regularization
• renders the number of degrees of freedom countable
• makes all correlation functions finite.



Here: consider only cubic lattices,

Λ =
{

x ∈ Rd ∣∣ x = a n, n ∈ Zd
}
. (3)

The length a is referred to as the lattice spacing. A lattice field φ(x) is the
assignment of a real number to every point on the lattice.

We write unit vectors in the four directions as µ̂, µ = 0, 1, . . . d.
Introduce the discretized forward and backward derivatives,

∂µφ(x) =
1
a

(φ(x + aµ̂)− φ(x)), ∂?µφ(x) =
1
a

(φ(x)− φ(x− aµ̂)), (4)

as well as the symmetric derivative ∂̃µ = 1
2 (∂µ + ∂?µ).

Making the simplest choice to discretize the continuum action:

S[φ] = ad
∑

x

(
1
2

(∂µφ(x))2 +
1
2

m2φ(x)2 +
1
4!
λφ(x)4

)
. (5)



Analysis in momentum space

Representation of lattice fields in momentum space,

φ̃(p) = ad
∑

x

e−ipxφ(x), (6)

then clearly φ̃(p + 2π
a n) = φ̃(p) for n ∈ Zd.

The independent momenta are therefore restricted to the Brillouin zone,

B =
{

p ∈ Rd
∣∣∣ |pµ| ≤ π

a

}
(7)

and the position-space field can be written as

φ(x) =

∫
B

ddp
(2π)d eipx φ̃(p). (8)

 The lattice introduces a momentum cutoff of order 1
a , since

higher-momentum modes do not appear in Eq. (8).



Exercises

Show that in momentum space the lattice Laplacian acts like

4 ≡
∑
µ

∂∗µ∂µ −→ −p̂2,

where p̂µ ≡ 2
a sin( 1

2 apµ).

Show (by contour integration) that the scalar propagator on the lattice is given by

〈φ(x)φ(y)〉 =

∫
B

ddp
(2π)d

eip(x−y)

p̂2 + m2 =

∫ π/a

−π/a

dd−1~p
(2π)d−1

e−Ω~p|x0−y0|+i~p(~x−~y)

2
a sinh(aΩ~p)

(9)

with Ω~p = 2
a asinh( a

2

√
~̂p2 + m2).



Symmetries

A very important aspect of any regularization is, how much symmetry of the
original action it preserves.

Translations, rotations and boosts are no longer continuous symmetries of
the lattice action.

The lattice regularization breaks space-time symmetries, leaving only a
discrete subgroup intact.

 There is no strictly conserved energy-momentum tensor on the lattice.



Symmetries (2)

Complex scalar field on the lattice: Z =
∫

D[φ]D[φ∗] e−S[φ,φ∗],

S[φ, φ∗] = ad
∑

x

(
∂µφ(x)∂µφ(x)∗ + m2φ(x)φ(x)∗ +

1
4
λ(φ(x)φ(x)∗)2

)
.

Exercise: Give the expression of the conserved current associated with the
U(1) symmetry transformation

φ′(x) = eiαφ(x), (φ∗)′(x) = φ∗(x)e−iα. (10)

Answer:

jµ(x) = i ((∂µφ)(x)φ(x + µ̂)∗ − (∂µφ)(x)∗φ(x + µ̂)) (11)

=
i
a

(φ(x)∗ φ(x + µ̂)− φ(x + µ̂)∗ φ(x)) . (12)

Conservation equation in correlation functions: if O1(x1), . . . On(xn) are local
operators located at a fixed distance from x,

〈∂∗µjµ(x)O1(x1) . . .On(xn)〉 = 0.



Fermions (in 4d)

Continuum Euclidean space: the action for a Dirac fermion of mass m reads

Sf[ψ, ψ̄] =

∫
d4x ψ̄(x)(γµ∂µ + m)ψ(x) (13)

where all four 4× 4 matrices γµ are hermitian and satisfy {γµ, γν} = 2δµν .

Correspondingly, the propagator, which coincides with the Green’s function of
(γµ∂µ + m), reads

〈ψ(x)ψ̄(y)〉 =

∫
d4p

(2π)4

eip(x−y)

ip/+ m
(14)

with p/ ≡ pµγµ.

Wick’s theorem: n-point functions can be expressed as a sum of products of
propagators with appropriate minus signs.



Wilson’s lattice action for fermions

The original 1974 Wilson action for fermions on the lattice reads

Sf[ψ, ψ̄] = a4
∑

x

ψ̄(x)(Dw + m)ψ(x), (15)

Dw =
∑
µ

(
γµ∂̃µ −

a
2
∂∗µ∂µ

)
, ∂̃µ = 1

2 (∂µ + ∂?µ). (16)

• The first-order derivatives are discretized symmetrically in the first term;
• an additional term proportional to the lattice Laplacian operator has been

added;
• the first-order derivatives alone would not couple neighbouring points;
• this would lead to unwanted additional light degrees of freedom called

‘doublers’;
• This problem is fixed by the (dimension-five) Laplacian term.



Discrete symmetries of the Wilson fermion action

1. Verify that the following transformations are symmetries of the Wilson
action: Parity:

ψ(x)→ γ0ψ(x0,−~x), ψ̄(x)→ ψ̄(x0,−~x)γ0 ; (17)

Euclidean time reversal: with γ5 ≡ γ0γ1γ2γ3,

ψ(x)→ γ0γ5ψ(−x0,~x), ψ̄(x)→ ψ̄(−x0,~x)γ5γ0 ; (18)

Charge conjugation1:

ψ(x)→ (ψ̄(x)γ0γ2)
>, ψ̄(x)→ (γ0γ2ψ(x))>. (19)

2. With respect to the obvious scalar product of lattice fermion fields, show
that the Wilson-Dirac operator satisfies the γ5-hermiticity relation

D†w = γ5Dwγ5. (20)

1This transformation law applies for certain representations of the Dirac matrices, e.g.

γ0 =

(
0 1
1 0

)
, γi =

(
0 −iσi

iσi 0

)
with σi the Pauli matrices.



Wick’s theorem for fermionic correlation functions has a representation in
terms of a path integral over Grassmann variables.

Let η1, . . . , ηn and η̄1, . . . , η̄n be anticommuting generators of a Grassmann
algebra.
Let also ζ and ζ̄ be vectors of anticommuting variables and A an n× n
c-number matrix.
Define the ‘integration’ rules as∫

dηi =

∫
dη̄i = 0,

∫
dηi ηj =

∫
dη̄i η̄j = δij,

∫
dηi η̄j =

∫
dη̄i ηj = 0 ;

then the Gaussian integral for the generating functional

Z[ζ, ζ̄] ≡
∫

dη1 . . . dηn dη̄1 . . . dη̄n exp
(
−
∑

i,j

(η̄iAijηj) +
∑

i

(η̄iζi + ζ̄iηi)
)

(21)

is given by
Z[ζ, ζ̄] = c · det(A) exp

(∑
i,j

ζ̄i(A−1)ijζj

)
. (22)

NB. The determinant appears in the numerator rather than in the denominator!



Path-integral representation of fermionic n-point functions

〈ψ(x1) . . . ψ(xn) ψ̄(y1) . . . ψ̄(yn)〉 (23)

=
1

Z[0, 0]

∫
D[ψ]D[ψ̄]ψ(x1) . . . ψ(xn) ψ̄(y1) . . . ψ̄(yn) exp(−Sf[ψ, ψ̄])

with
D[ψ] =

∏
α,x

dψα(x), D[ψ̄] =
∏
α,x

dψ̄α(x). (24)

Since Wick’s theorem gives all correlation functions in terms of the
propagator, only the latter remains to be specified:

〈ψ(x)ψ̄(y)〉 =

∫
B

d4p
(2π)4

eip(x−y)

i
∑
µ(̊pµγµ) + 1

2 ap̂2 + m
. (25)

where p̊µ = 1
a sin(apµ).



Gauge fields in the continuum

If the fermion field is replaced by an N-tuplet (corresponding to N ‘colors’), the
global symmetry becomes U(N). Here we will focus on the SU(N) subgroup.

We will use traceless hermitian generators Ta, normalized according to
Tr {TaTb} = 1

2δ
ab and satisfying the commutation relations [Ta, Tb] = if abcTc.

The structure constants f abc are real and totally antisymmetric. With
Λ(x) ∈ SU(N), the gauge-transformed fields are defined as

ψΛ(x) = Λ(x)ψ(x), ψ̄Λ(x) = ψ̄(x)Λ(x)−1, (26)

AΛ
µ(x) = Λ(x)Aµ(x)Λ(x)−1 + iΛ(x)∂µΛ(x)−1.

The covariant derivative of the fermion field

Dµψ(x) = (∂µ − iAµ(x))ψ(x) (27)

then transforms like ψ(x) and the fermion action

Sf[ψ, ψ̄] =

∫
d4x ψ̄(x)(γµDµ + m)ψ(x) (28)

is gauge invariant.



Gauge fields in the continuum (2)

The field strength tensor

Gµν = Ga
µνTa ≡ ∂µAν − ∂νAµ − i[Aµ,Aν ] (29)

transforms covariantly,

GΛ
µν(x) = Λ(x)Gµν(x)Λ(x)−1. (30)

In particular, the gauge action

Sg[A] =
1

2g2
0

∫
d4x Tr {Gµν(x)Gµν(x)} (31)

is gauge invariant.



Gauge fields on the lattice

We follow the same logic on the lattice. The raison d’être of the gauge field is
to make finite-difference operators gauge covariant.

If Uµ(x) ∈ SU(N) is a variable which transforms as

UΛ
µ (x) = Λ(x)Uµ(x)Λ(x + aµ̂)−1, (32)

then

∇µψ(x) ≡ 1
a

(Uµ(x)ψ(x + aµ̂)− ψ(x)) , (33)

∇∗µψ(x) ≡ 1
a

(
ψ(x)− Uµ(x− aµ̂)−1ψ(x− aµ̂)

)
(34)

transform like ψ(x) itself.

Uµ(x) is naturally associated with the ‘link’ joining the points x and x + aµ̂.
It is therefore called a ‘link variable’.
It can be thought of as the Wilson line exp(i

∫
Aµdxµ) from x to x + aµ̂.



The QCD action on the lattice

Gauge invariant lattice fermion action:

Sf[ψ, ψ̄,U] = a4
∑

x

ψ̄(x)(Dw + m0)ψ(x), Dw =
∑
µ

(γµ∇̃µ− a
2∇µ∇

∗
µ). (35)

Gauge invariant operators made solely of the link variables:
the trace of a product of link variables along a closed loop is gauge invariant.

The shortest non-trivial Wilson loop on the lattice is the plaquette

Pµν(x) = Uµ(x)Uν(x + aµ̂)Uµ(x + aν̂)−1Uν(x)−1. (36)

The simplest lattice action for the gauge fields is

Sg[U] =
2
g2

0

∑
x

∑
µ<ν

Re Tr {1− Pµν(x)}. (37)

QCD action on the lattice:

S[U, ψ, ψ̄] = Sf[U, ψ, ψ̄] + Sg[U]. (38)



Lattice QCD path integral

Fermions are represented by Grassmann variables in the path integral.

What about the gauge field measure D[U] =
∏

x,µ dUµ(x) ?
It is required to be ‘SU(N) invariant’; that is∫

dU f (UV) =

∫
dU f (VU) =

∫
dU f (U) ∀V ∈ SU(N). (39)

Expectation values are then defined as2

〈O1 . . .On〉 =
1
Z

∫
D[U]

∫
D[ψ]D[ψ̄] O1 . . .On exp(−S[U, ψ, ψ̄]). (40)

No gauge fixing is needed, because the volume of the gauge group is finite!

2The partition function Z is chosen such that 〈1〉 = 1.



Recap: discretisation of QCD on a four-dimensional lattice
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Pµν

Uµ

µ

ν

Gluons: Uµ(x) = eiag0Aµ(x) ∈ SU(3)

Quarks: ψ(x) = Dirac Fermion

Gauge invariance ist preserved by the discretisation.

 Lattice QCD = 4d statistical mechanics system

Starting point for Monte-Carlo simulations, similar to Ising model.



Perturbation theory in lattice regularisation

The perturbative expansion is based on the idea that for g0 very small, the
path integral should be dominated by the fields that minimize the action.
Perturbation theory is then a saddle point expansion around such field
configurations.

The gauge fields minimizing Sg[U] are of the form Uµ(x) = Λ(x)Λ(x + aµ̂)−1

and are thus gauge-equivalent to the ‘unit-configuration’ Uµ(x) = 1 ∀µ, x.
The small fluctuations of the link variables are then parametrized by a gauge
potential,

Uµ(x) = exp(ig0aAµ(x)), Aµ(x) = Aa
µ(x)Ta. (41)

Jacobian of the change of integration variables is

dUµ(x) =
( N2−1∏

a=1

dAa
µ(x)

)(
1 +

g2
0N
12

a2Ab
ν(x)Ab

ν(x) + . . .
)
. (42)



Perturbation theory in lattice regularisation (2)

Natural gauge-fixing condition ∂∗µAµ = 0: it is equivalent to the condition that
the variation ε∂ωAµ(x) of the field Aµ(x) under any infinitesimal gauge
transformation Λ(x) = 1 + iεω(x) is orthogonal to Aµ(x) itself3.
Perturbative expansion of an observable O:

〈O〉 =
1
Z

∫
D[U]D[c]D[c̄]O[U] exp(−Stot[A, c, c̄]), (43)

where c and c̄ are Fadeev-Popov ghosts, and

Stot[A, c, c̄] = Sg[U] + Sgf[A] + SFP[A, c, c̄], (44)

SFP[A, c, c̄] = a4
∑

x

c̄a(x)4ab
FP cb(x), 4FPω(x) ≡ g0∂

∗
µ ∂ωAµ(x), (45)

Sgf[A] =
λ0a4

2

∑
x

∂∗µAa
µ(x)∂∗νAa

ν(x) (46)

where it is understood that Uµ(x) = exp(ig0aAµ(x)) and that the integration
measure is given by Eq. (42).

3With respect to the scalar product (A, B) = a4∑
x,µ,a Aa

µ(x)Ba
µ(x).



Feynman rules (3)

The gauge-field and ghost propagators read

〈Aa
µ(x)Ab

ν(y)〉 = δab
∫
B

d4p
(2π)4

ei(p(x−y)+ 1
2 apµ− 1

2 apν)

p̂2

(
δµν − (1− λ−1

0 )
p̂µp̂ν

p̂2

)
, (47)

〈ca(x)cb(y)〉 = δab
∫
B

d4p
(2π)4

eip(x−y)

p̂2 . (48)

Vertices: e.g. quark-quark-gluon vertex is given by

ig0(Ta)ij

(
γµ cos( 1

2 a(p + p′)µ)− i sin( 1
2 a(p + p′)µ)

)
, (49)

with p the incoming momentum of a quark with color index j and p′ the
outgoing momentum of the other quark line.



The force between two static quarks

Rectangular Wilson loop of size d × d′:

Wµν(x, d, d′) ≡ Lµ(x, d)Lν(x + dµ̂, d′)Lµ(x + d′ν̂, d)−1Lν(x, d′)−1, (50)

Lµ(x, d) ≡ Uµ(x)Uµ(x + aµ̂) . . .Uµ(x + (d − a)µ̂). (51)

Define a static potential V(R) from the loop of size R× T via

〈W0k(x,R, T)〉 T→∞
= c(R) exp(−TV(R)) + . . . (52)

It has the interpretation of the potential energy between two static
(= infinitely massive) quarks.

To remove an ultraviolet-divergent additive constant, consider the ‘static force’

F(R) ≡ −∂V
∂R

.

We expect R2 · F(R) for a fixed separation R to reach a finite limit when a→ 0.



One-loop calculation of the static force

A one-loop calculation in the pure SU(N) gauge theory yields the result

F(R, g0, a)
R�a
=

CF

4πR2

(
g2

0 +
11N
24π2 g4

0(log(R/a) + c̄) + O(g6
0)

)
(53)

with CF = (N2 − 1)/(2N) and c̄ a numerical constant. The form (53) clearly
shows that R2 · F(R) only has a finite limit when a→ 0 if g0 is adjusted as a
function of a.

How exactly it must be adjusted can be worked out by requiring that F be
independent of a (Callan-Symanzik equation),

0 = a
d
da

F(R, g0(a), a) =

(
a
∂

∂a
− β(g0)

∂

∂g0

)
F(R, g0, a)

∣∣∣
g0=g0(a)

, (54)

with
β(g0) ≡ −a

∂g0

∂a
. (55)



Asymptotic freedom

Inserting the one-loop expression (53) into Eq. (54), one finds

β(g0) = −b0g3
0, b0 =

11N
48π2 . (56)

The definition (55) of β(g0) can now be read as a differential equation for g0.
The negative value of the beta function means that g0 must be made smaller
in order to reduce the lattice spacing. The asymptotic solution of the
differential equation is

g2
0 = − 1

2b0 log(aΛ)
+ . . . (57)

This is the expression of the asymptotic freedom property of QCD at the level
of the bare regularized theory: in order to send a→ 0, you need to take
g0 → 0.

NB. A mass scale Λ had to be introduced (the ‘Lambda parameter’).
NB. With Nf quarks: b0 = 11N−2Nf

48π2 .



Illustration: Monte-Carlo evaluation of F(r) at long distances

F(r) tends to a finite value at large r: the ‘string tension’.

Fig. from M. Lüscher & P. Weisz, hep-lat/0207003 (pure SU(3) gauge theory simulations).



Continuum limit and universality

In the statistical-mechanics language, the ‘critical point’ g0 = 0, where
correlation lengths in lattice units diverge, is a trivial or Gaussian one.

However, we are interested in non-trivial ratios of correlation lengths, or
equivalently ratios of hadron masses, which tend to a finite value when
a→ 0.

There is a degree of arbitrariness in the choice of the discretization. Ratios of
correlation lengths associated with source fields of different quantum
numbers do not depend on the details of the discretization (universality).

Add suitable terms that accelerate the approach to the continuum: lattice
artefacts can be made to vanish as a2 instead of as a by adding the Pauli term

S→ S +
i
4

cswa5
∑

x

ψ̄(x)σµνĜµνψ(x). (58)

with a suitable improvement coefficient csw.



Hadron spectroscopy: how to compute the pion mass

Heisenberg representation of operator φ̂ in Euclidean time:

φ̂(x) = eHx0−i~P·~x φ̂(0) e−Hx0+i~P·~x (59)

Suppose we use as an interpolating operator φ̂(x) = d̄γ5u and write

〈0|φ̂(x)|~p〉 =
√
φπ e−E~px0+i~p·~x.

⇒ G(x0,~p) ≡
∫

d3x e−i~p·~x〈0|φ̂(x)φ̂(0)†|0〉 x0>0
=

∫
d3x e−i~p·~x 〈φ(x)φ(0)†〉. (60)

Inserting a complete set of states4 of total momentum ~p,

1 =

∫
d3~p

(2π)32E~p
|~p〉〈~p|+ (projector onto states of energy > 3mπ), (61)

we have

G(x0,~0)
|x0|→∞

= φπ
e−mπ|x0|

2mπ
+ O(e−3mπ|x0|). (62)

4One-particle states are normalized according to 〈~p′|~p〉 = (2π)32E~pδ(~p−~p′).



Illustration: effective mass plots

meff(x0) = − d
dx0

log G(x0,~0)

The quality of the signal depends strongly on the hadronic channel.

NB. The length scale r0 ≈ 0.5 fm is defined by the property r2
0F(r0) = 1.65.

Fig. from R. Sommer 1401.3270. Data is for mπ = 340 MeV.



Importance sampling Monte-Carlo methods

First consider the case of the pure gauge theory.

1. Interpret

p[U] =
1
Z

D[U] exp(−Sg[U]) (63)

as a normalized probability distribution on the space of all gauge fields.

2. Generate a representative sample of field ‘configurations’ {U1, . . . ,UNc},
meaning that the fraction of the number of configurations belonging to a
domain D of field space is given by∫

D
D[U] p[U],

with an error of order N−1/2
c .

3. Estimate the path-integral expectation value of observables according to

〈O[U]〉 =
1

Nc

Nc∑
i=1

O[Ui] + O(N−1/2
c ). (64)

One thus needs a methods of generating the probability distribution (63).



Importance sampling Monte-Carlo methods (2)

• Usually, a complicated probability distribution must be generated
iteratively; a Markov chain is a general method that achieves this.

• The chain starts from an initial configuration and then visits a sequence
of configurations according to a given transition probability.

• General criteria exist that guarantee that the configurations visited after
a sufficient number of iterations are indeed distributed according to the
desired probability distribution

See M. Lüscher, 1002.4232 for details. In recent years, machine-learning
techniques have been applied to ‘learn’ the probability distribution.



Including dynamical quarks in the simulation

• Fermions are integrated out, yielding the determinant of the Dirac
operator in the numerator of the path integral

• The determinant can be treated as part of the probability distribution
p[U], provided it is positive on all gauge-field configurations.

• The γ5 hermiticity of the Dirac operator implies that the determinant is
real. For a doublet of mass-degenerate quarks, the square of the
determinant is thus positive.

• Standard algorithm to generate the distribution of gauge fields including
the effect of the quarks: hybrid Monte-Carlo algorithm (1987).

• Many important refinements for speed-up and better stability
(see e.g. St. Schaefer 1211.5069).

• The generated sample of gauge-field configurations (an ‘ensemble’) is
stored on disk, so that observables can be calculated on the
configurations at a later stage.



Example: two-point function of quark bilinears O(x) = ū(x)Γu(x)

O′(x) = ū(x)Γ′u(x) (with Γ,Γ′ some Dirac matrices) are evaluated as

〈O(x) O′(y)〉 =
1
N

Nc∑
i=1

(
− Tr

{
ΓD−1([Ui]; x, y)Γ′D−1([Ui]; y, x)

}
(65)

+Tr
{

ΓD−1([Ui]; x, x)} Tr{Γ′D−1([Ui]; y, y)
})

+ O(N−1/2
c ),

where D is the lattice Dirac operator and the traces are taken with respect to
color and spin indices.

Connected Disconnected diagram


