

From wavefunctions to molecular magnetism

MPA RETREAT

ANGELA WITTMANN

Energy challenge

N. Jones, Nature 561, 163 (2018)

CMOS+X: Need for innovation to transform technology fundamentally

WITTMANN-LAB

Overview

Overview

✤ Basics of (molecular) magnetism

Single-molecule magnets

Nitrogen-vacancy center magnetometry

Probing magnetic fluctuations with spin relaxometry

Spintronics in molecular systems

- Unique charge transport mechanisms
- Low spin-orbit coupling
- Plethora of possibilities for molecular design

metalloporphyrin

metallophthalocyanine

S. Fratini et al. Adv. Funct. Mater. 26, 2292 (2016)
G. Szulczewski et al., Nat. Mater. 8, 693 (2009)
T. L. Francis et al., New J. Phys. 6, 185 (2004)
V. Dediu et al., Solid State Commun. 122, 181 (2002)
M. Grünewald et al., Phys. Rev. B 84, 125208 (2011)

Recap: Exchange coupling

Only considering nearest neighbors: Heisenberg model

$$\widehat{\mathcal{H}}_{\mathsf{exch}} = -\sum_{i,j} J_{ij} \, \boldsymbol{S}_i \cdot \boldsymbol{S}_j$$

- If electrons on the same atom: spatial wavefunction is antisymmetric to minimize Coulomb energy → J>0, triplet spin state
- If electrons are located on neighboring atoms, total wave function is combination of two single-state wave functions

Recap: Exchange coupling

- ✤ J depends on electronic properties as well as distance due to balance of the Coulomb energy and the kinetic energy
- ✤ Atoms very close:

Kinetic energy is minimal if both electrons are in between the atoms and hence antiparallel spins \rightarrow Negative J, antiferromagnetism

- ✤ Atoms more distant:
 - Parallel spins can be favored
 - \rightarrow Positive J, ferromagnetism

Binding energy as a function of the distance; binding singlet state (S) and antibinding triplet state (A)

Recap: Magnetization curve

Typical magnetic hysteresis curve:

Recap: Superparamagnetic limit

- For large size: domain formation minimizes stray fields
- Below critical size: single domain state is favorable
- For very small size: coercivity vanishes below the superparamagnetic limit

How can we get finite spontaneous magnetization at zero field on the atomic scale?

Single-molecule magnets (SMMs)

Single-molecule magnets (SMMs)

- Molecules with slow magnetic relaxation of purely molecular origin
- Long-range interactions with other molecules are not necessary
- Finite remanence, spontaneous magnetization
- Multilevel quantum systems showing distinct quantum properties

Polymetallic Mn complex

Two different Mn states:

$$Mn^{IV} d^3 \Rightarrow S = \frac{3}{2}$$

 $Mn^{III} d^4 \Rightarrow S = 2$

$$S_T = 8 \cdot S_{Mn^{III}} - 4 \cdot S_{Mn^{IV}} = 8 \cdot 2 - 4 \cdot \frac{3}{2} = 10$$

 $[Mn_{12}O_{12}(O_2CCH_3)_{16}(H_2O)_4]$

Zero field splitting

Multilevel system

 $m_s = \pm 10$

Multilevel system

Multilevel system

 $S_{T} = 10$

Anisotropy

D. Gatteschi, A. Caneschi, L. Pardi, R. Sessoli, *Science* 1994, *265*, 1054; D. Gatteschi, R. Sessoli, *Angew. Chem. I.E.* 2003, *42*, 268; M. del Carmen Giménez-López, F. Moro, A. La Torre, C. J. Gómez-García, P. D. Brown, J. van Slageren & A. N. Khlobystov; *Nat. Commun.* 2011, *2*, 407

Energy barrier

Relaxation pathways

✤ Direct

Relaxation pathways

- Direct
- ✤ Orbach

Lab

M_s = 0

U

 $M_s = 1$

 $M_s = -1$

Relaxation pathways

- Direct
- Orbach
- Raman

Spin Orientation

 $M_s = -S+1$

 $M_s = -S$

 $M_s = S-1$

 $M_s = S$

Relaxation pathways

- Direct
- ✤ Orbach
- Raman
- Quantum tunneling (QTM)

Spin Orientation

Lab

Relaxation pathways

- Direct
- Orbach
- Raman
- Quantum tunneling (QTM)

Hysteresis in SMMs

Finite hysteresis below blocking temperature

Relaxation pathways

Lab

Relaxation pathways

Metallacrown SMMs

- Magnetic core with a shell of ligands
- Magnetic hysteresis below blocking temperature
- No long-range magnetic ordering necessary
- ✤ Blocking temperature ~ 40 K

$$\label{eq:constraint} \begin{split} [\text{Dy}(4\text{-}\text{Picolin})_5[15\text{-}\text{MC}_{\text{Cu(II)}\text{N(PicHA)}}\text{-}5](4\text{-}\\ \text{Cyanophenol})^2]\text{OTf} \end{split}$$

Can we probe the (quantum) magnetic fluctuations in SMMs directly?

Nitrogen-vacancy center magnetometry

Nitrogen-vacancy centers

- Photoluminescent point defect/ color center in diamond (NV-)
- Triplet ground state

Nitrogen-vacancy centers

- Photoluminescent point defect/ color center in diamond
- Triplet ground state
- Hamiltonian:

NV magnetometry

- Optical initialization
- Continuous microwave drive
- Magnetometry via Zeeman splitting:

Rondin, Rep. Prog. Phys. (2014)

NV magnetometry

- Sensitive technique for quantitative measurement of magnetic fields along the NV axis
- Operational in a wide temperature and magnetic field range
- ✤ No magnetic backaction

Scanning NV magnetometry

- Single NV center on tip of AFM cantilever
- Spatial resolution limited by implantation depth of the NV center

Scanning-NV magnetometry

https://www.youtube.com/watch?v=KvENASIEnU4&ab_channel=petaspin

Scanning NV magnetometry

Tetienne, Nat. Com. (2015) Gross, PRB (2016)

Comparison with theoretical predictions

Scanning NV magnetometry

✤ More examples:

Spin relaxometry: probing noise

- NV centers can also probe AC magnetic fields via spin relaxometry
- Quantum sensor for probing magnetic noise

Spin relaxometry: probing noise

Spin relaxometry: probing noise

Example:

Magnetic noise at around a domain wall

Finco, Nat. Commun. 12, 767 (2021)

0.95 1.0

Spin relaxation measurements

Probing magnetic fluctuations in single-molecule magnets

Single Point T₁ Relaxometry

	T ₁ on bare Au (μs)
Probe in contact	50.5 ± 12.2
Probe retracted	52.6 ± 13.5

• Unchanged T_1 in region with bare Au

Single Point T₁ Relaxometry

	T ₁ on bare Au (μs)	T ₁ on molecules (μs)	1.00 -	• • • •			
Probe in contact	50.5 ± 12.2	50.1 ± 5	0.98 - 0.96 -				•
Probe retracted	52.6 ± 13.5	104.5 ± 25.8	I _{delay} /I _{ref}		e e		
			0.92 -	 Retra Fit Tip or 	n SMMs		
• Unchanged T_1 in region with bare Au			0.88 -	— Fit			
Significantly reduced T ₁ in region with molecules				10 ⁻¹	10 ⁰ Delay Tin	10 ¹ ne τ (μs)	10 ²

Outlook

Toward quantum cooperativity in single-molecule magnets

Summary

- Molecules provide a platform for systematic studies of structure property relations of spin phenomena
- Single-molecule magnets are mesoscopic
 systems exhibiting both quantum and classical properties
- Nitrogen-vacancy center magnetometry is a powerful technique for probing DC and AC magnetic fields
- Quantum fluctuations in SMMs can be probed via spin relaxometry in NV centers

Team and acknowledgments

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

> Julian Skolaut Lukas Cavar Ashish Moharana David Anthofer

JG U

Dominik Laible Eva Rentschler Omkar Dhungel Dmitry Budker Mathias Kläui

MAX-PLANCK-INSTITUT FÜR POLYMERFORSCHUNG Tomasz Marszalek Paul Blom

Gabriel Puebla Hellmann Andrea Morales

Summary

- Molecules provide a platform for systematic studies of structure property relations of spin phenomena
- Single-molecule magnets are mesoscopic
 systems exhibiting both quantum and classical properties
- Nitrogen-vacancy center magnetometry is a powerful technique for probing DC and AC magnetic fields
- Quantum fluctuations in SMMs can be probed via spin relaxometry in NV centers

