
From wavefunctions to molecular magnetism
A N GEL A WI T T M A N N  M PA  R ET R EAT



WITTMANN-LAB 2

 CMOS+X: Need for innovation to transform technology fundamentally

Energy challenge

N. Jones, Nature 561, 163 (2018) 
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Overview

Exotic topological 
magnetic textures

Tuning hybrid interfaces 
by molecular design 

Chiral-induced 
spin selectivity



Overview
 Basics of (molecular) magnetism

 Single-molecule magnets

 Nitrogen-vacancy center magnetometry

 Probing magnetic fluctuations with spin relaxometry
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Spintronics in molecular systems
 Unique charge transport mechanisms

 Low spin-orbit coupling

 Plethora of possibilities for molecular design

S. Fratini et al. Adv. Funct. Mater. 26, 2292 (2016)
G. Szulczewski et al., Nat. Mater. 8, 693 (2009)
T. L. Francis et al., New J. Phys. 6, 185 (2004)
V. Dediu et al., Solid State Commun. 122, 181 (2002)
M. Grünewald et al., Phys. Rev. B 84, 125208 (2011)
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Recap: Exchange coupling
 Only considering nearest neighbors: Heisenberg model

 If electrons on the same atom: spatial wavefunction is antisymmetric to minimize 
Coulomb energy → J>0, triplet spin state

 If electrons are located on neighboring atoms, total wave function is combination of 
two single-state wave functions
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Recap: Exchange coupling
 J depends on electronic properties as well as distance due 

to balance of the Coulomb energy and the kinetic energy

 Atoms very close:
Kinetic energy is minimal if both electrons are in between 
the atoms and hence antiparallel spins
→ Negative J, antiferromagnetism

 Atoms more distant:
Parallel spins can be favored
→ Positive J, ferromagnetism Binding energy as a function of the 

distance; binding singlet state (S) and 
antibinding triplet state (A)
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Recap: Magnetization curve
Typical magnetic hysteresis curve:
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Recap: Superparamagnetic limit
 For large size: domain formation minimizes stray fields

 Below critical size: single domain state is favorable

 For very small size: coercivity vanishes below the superparamagnetic limit

How can we get finite spontaneous magnetization at zero field on the atomic scale?



Single-molecule magnets (SMMs)
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 Molecules with slow magnetic relaxation 
of purely molecular origin

 Long-range interactions with other 
molecules are not necessary

 Finite remanence, spontaneous 
magnetization

 Multilevel quantum systems showing 
distinct quantum properties
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Single-molecule magnets (SMMs)



 First widely studied SMM

 Two different Mn states:

 Total spin:
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Polymetallic Mn complex



 Jahn-Teller-distortion

 Zero field splitting
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Zero field splitting



 Multilevel quantum system
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Multilevel system



 Multilevel quantum system
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Multilevel system



 Multilevel quantum system
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Multilevel system
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Anisotropy
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Energy barrier



 Direct
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Relaxation pathways



 Direct

 Orbach
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Relaxation pathways



 Direct

 Orbach

 Raman
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Relaxation pathways



 Direct

 Orbach

 Raman

 Quantum tunneling (QTM)
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Relaxation pathways



 Direct

 Orbach

 Raman

 Quantum tunneling (QTM)
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Relaxation pathways



 Finite hysteresis below blocking temperature
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Hysteresis in SMMs
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Relaxation pathways
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Relaxation pathways



WITTMANN-LAB 27

Metallacrown SMMs
 Magnetic core with a shell of ligands

 Magnetic hysteresis below blocking temperature

 No long-range magnetic ordering necessary

 Blocking temperature ~ 40 K

Chakraborty, A. et al., Eur. J. Inorg. Chem., 1180-1200 (2019)

Shi-DyCu5-CNP

[Dy(4-Picolin)5[15-MCCu(II)N(PicHA)-5](4-
Cyanophenol)2]OTf

Dy

Cu

ms = -10 ms = +10

Can we probe the (quantum) magnetic 
fluctuations in SMMs directly?



Nitrogen-vacancy center magnetometry
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 Photoluminescent point defect/ color center in diamond (NV-)

 Triplet ground state
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Nitrogen-vacancy centers



 Photoluminescent point defect/ color center in diamond

 Triplet ground state

 Hamiltonian:
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Nitrogen-vacancy centers



 Optical initialization

 Continuous microwave drive

 Magnetometry via Zeeman splitting:
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NV magnetometry



 Sensitive technique for quantitative measurement of 
magnetic fields along the NV axis

 Operational in a wide temperature and magnetic field 
range

 No magnetic backaction
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NV magnetometry



 Single NV center on tip of AFM cantilever

 Spatial resolution limited by implantation depth of 
the NV center
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Scanning NV magnetometry

https://www.youtube.com/watch?v=KvENASIEnU4&ab_channel=petaspin
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Scanning NV magnetometry
 Example: Imaging a domain wall
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Scanning NV magnetometry
 More examples:
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Spin relaxometry: probing noise
 NV centers can also probe AC magnetic fields via spin relaxometry

 Quantum sensor for probing magnetic noise

https://www.youtube.com/watch?v=KvENASIEnU4&ab_channel=petaspin
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Spin relaxometry: probing noise

https://www.youtube.com/watch?v=KvENASIEnU4&ab_channel=petaspin
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Spin relaxometry: probing noise
 Example: 

Magnetic noise at around a domain wall



Probing magnetic fluctuations in single-molecule magnets
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 Unchanged T1 in region with bare Au

Single Point T1 Relaxometry

T1 on bare Au (µs)

Probe in 
contact

50.5 ± 12.2

Probe 
retracted

52.6 ± 13.5
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 Unchanged T1 in region with bare Au

 Significantly reduced T1 in region with molecules

Single Point T1 Relaxometry

T1 on bare Au (µs) T1 on molecules (µs)

Probe in 
contact

50.5 ± 12.2 50.1 ± 5

Probe 
retracted

52.6 ± 13.5 104.5 ± 25.8
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Toward quantum cooperativity in single-molecule magnets

Outlook
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Summary
 Molecules provide a platform for systematic 

studies of structure property relations of spin 
phenomena 

 Single-molecule magnets are mesoscopic 
systems exhibiting both quantum and classical 
properties

 Nitrogen-vacancy center magnetometry is a 
powerful technique for probing DC and AC 
magnetic fields

 Quantum fluctuations in SMMs can be 
probed via spin relaxometry in NV centers
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Summary
 Molecules provide a platform for systematic 

studies of structure property relations of spin 
phenomena 

 Single-molecule magnets are mesoscopic 
systems exhibiting both quantum and classical 
properties

 Nitrogen-vacancy center magnetometry is a 
powerful technique for probing DC and AC 
magnetic fields

 Quantum fluctuations in SMMs can be 
probed via spin relaxometry in NV centers
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