Lattice determination of the HVP NLO contributions to the $(g - 2)_{\mu}$

MPA retreat 30th of September 2024

Arnau Beltran & Hartmut Wittig

Table of contents

- Motivation and current muon g-2 status
- LO & NLO contributions and Kernels for the HVP
- $\mathbf{a}_{\mu}^{\mathbf{hvp}}$ from **lattice** simulations
- NLO computation
- Preliminary results and conclusions

Arnau Beltran Martínez

MPA retreat

Lattice determination of the HVP NLO contributions to the $\left(\mathbf{g} - 2
ight)_{u}$

Notivation

Magnetic field couples to the spin of a charged lepton through the g factor

$$\mathscr{H}_l = \overrightarrow{\mu}_l \cdot \overrightarrow{B} \qquad \overrightarrow{\mu}_l = \mathbf{g}_l \frac{q_l}{2m_l} \overrightarrow{S}$$

g > 2. This difference is known as the anomalous magnetic moment of the lepton.

PD Dr. Tobias Huber; October 13, 2021

Precise exp. and th. predictions (picture in 2020) Northwestern 2023, Fermilab 2023 $a_{\mu}^{\exp} = 116592059(22) \times 10^{-11}$ σ discrepancy

WP. 2020 $a_{\mu}^{\text{th}} = 116591810(43) \times 10^{-11}$

Arnau Beltran Martínez

MPA retreat

Motivation and current muon g-2 status

Dirac theory predicts g = 2 for spin 1/2 particles at first order, quantum effects shift this value to BSM physics?

> Most contributing to the total uncertainty for $l = \mu$ and probably for l = e in the near future

Past & current status

Plenty of new results and discoveries since then; new more precise lattice results have changed the way we look at this. => Big discrepancies between lattice and data driven approaches

Arnau Beltran Martínez

MPA retreat

Motivation and current muon g-2 status

Lattice determination of the HVP NLO contributions to the $\left(\mathbf{g}-2
ight) _{\mu}$

E.g. in the LO case:

Hadron Vacuum Polarisation (HVP) function: Includes all the QCD effects \rightarrow non-perturbative nature, must be computed by other means

M. Passera et al. Physics Letters B 834 (2022) 137462

Arnau Beltran Martínez

MPA retreat

E.g. in the LO case:

E.g. photon and muon corrections in the NLO case:

M. Passera et al. Physics Letters B 834 (2022) 137462

Arnau Beltran Martínez

MPA retreat

LO & NLO contributions to the a_{μ}^{hvp}

LO & NLO contributions

M. Passera et al. Physics Letters B 834 (2022) 137462

Involved, in lattice QCD it's usually computed as a small correction of the LO

Arnau Beltran Martínez

MPA retreat

Generally can be expressed as the integral of the Kernel $f(q^2)$ (given by the QED structure) times the HVP $\hat{\Pi}(q^2)$

$$a_{\mu}^{\text{hvp}}[(i)] = \left(\frac{\alpha}{\pi}\right)^{\geq 2} \int_0^\infty dq^2 f^{(i)}(\hat{q}^2) \hat{\Pi}(q^2) \text{ with } i = \text{LO, NLO}_a,$$

$$e.g. f^{(\rm NLO_b)} = 2 f^{(\rm LO)} \times F_l$$

$$a_{\mu}^{\text{hvp}}[(\text{NLO}_{\text{c}})] = \left(\frac{\alpha}{\pi}\right)^3 \int_0^{\infty} dq^2 f^{(\text{LO})}(\hat{q}^2) \left[\hat{\Pi}(q^2)\right]$$

PROBLEM:

non-perturbative QCD effects $\rightarrow \hat{\Pi}(q^2)$ cannot be computed with perturbation theory!

and a property of the lattice

HVP tensor:

 $i\Pi^{\mu\nu}(q) = i\left(g^{\mu\nu}q^2 - \right)$

Lattice correlator:

There's an analytic relation between both descriptions: D.Berneckerand H.B.Meyer. 2011. Eur. Phys.

$$\hat{\Pi}(\omega^2) = \frac{4\pi^2}{\omega^2} \int_0^\infty dt \ G(t) \left[\omega^2 t^2 - 4\sin^2 \frac{\omega t}{2} \right]$$

integral over Euclidian time.

$$\hat{\omega} = \frac{\omega}{m_{\mu}} \\ \hat{t} = m_{\mu}t \\ \hat{f} = m_{\mu}^{2}f$$
 $a_{\mu}^{\text{hvp}}[(i)] = \left(\frac{\alpha}{\pi}\right)^{\geq 2} \int_{0}^{\infty} dt \ \tilde{f}^{(i)}(t)G(t) \quad \text{with} \quad \left[\tilde{f}^{(i)}(t) = 8\pi^{2} \int_{0}^{\infty} \frac{d\hat{\omega}}{\hat{\omega}} \hat{f}^{(i)}(\hat{\omega}^{2}) \left[\hat{\omega}^{2} \hat{t}^{2} - 4\sin^{2}\frac{\hat{\omega}\hat{t}}{2}\right]$ We need to find a suitable representation for these kernels!!

Arnau Beltran Martínez

MPA retreat

 $\hat{\Pi}(q^2)$ must be found non-perturbatively.

$$-q^{\mu}q^{\nu}\right)\Pi(q^{2}) = \int d^{4}x e^{iq\cdot x} \langle j^{\mu}_{\rm em}(x)j^{\nu}_{\rm em}(0) \rangle$$

 $G(\tau) = -\frac{1}{3} \sum_{k=1}^{3} \sum_{k=0}^{3} \langle j_{em}^{k}(\vec{x}, \tau) j_{em}^{k}(0) \rangle \quad \longleftarrow \quad \text{(This can be computed in the lattice)}$

Same idea as before applies, energy integral is absorbed by the Kernel and a_{μ}^{hvp} is expressed as an

for i = LO, NLO_a, NLO_b

$$\tilde{f}^{(\text{LO})}(t) = \frac{8\pi^2}{m_{\mu}^2} \int_0^\infty \frac{d\hat{\omega}^2}{\hat{\omega}^2} \hat{f}^{(\text{LO})}(\hat{\omega}^2) \left[\hat{\omega}^2 \hat{t}^2 - 4\sin^2 \frac{\hat{\omega}\hat{t}}{2} \right] \qquad \hat{f}^{(\text{LO})}(s) = \frac{1}{2} \left(\sqrt{s(s+4)} - s \right) + \frac{1}{\sqrt{s(s+4)}} - 1$$

Has a closed-form solution.

$$\tilde{f}^{(\text{LO})}(t) = \frac{2\pi^2}{m_{\mu}^2} \left(-2 + 8\gamma_{\text{E}} + \frac{4}{\hat{t}^2} + \hat{t}^2 - \frac{8}{\hat{t}} K_{\text{I}}(2\hat{t}) + 8\ln(\hat{t}) + G_{1,3}^{2,1} \left(\hat{t}^2 \begin{vmatrix} \frac{3}{2} \\ 0, 1, \frac{1}{2} \end{vmatrix} \right) \right)$$

Suitable representation of the kernel to combine it with lattice data

$$\frac{\hat{t} \to 0}{\hat{t}^{2} - \hat{t}^{(LO)}(t)} = \begin{cases}
\sum_{n=4,n \in \text{even}}^{N} \frac{a_{n} + b_{n}(\gamma_{E} + \ln \hat{t})}{n!} \hat{t}^{n} & \hat{t} \leq \hat{t}^{*} \\
\frac{\hat{t}^{2}}{8} - \frac{\pi}{4}\hat{t} + \ln(\hat{t}) + \gamma_{E} - \frac{1}{4} + \frac{1}{2\hat{t}^{2}} + \sqrt{\frac{\pi}{t}}e^{-2\hat{t}}\sum_{p=0}^{P}a_{p}^{(b)}\left(\frac{\hat{t}_{0}}{\hat{t}} - 1\right)^{p} & \hat{t} > \hat{t}^{*} \\
\hat{t} \to \infty & \text{Suppressed } \hat{t} \sim \hat{t}_{0}
\end{cases}$$

Arnau Beltran Martínez

MPA retreat

 $a_{\mu}^{\rm hvp}$ from lattice simulations

The hadronic vacuum polarization contribution to the muon g - 2from lattice QCD. 2017. M. Della Morte et al

$$\tilde{f}^{(\text{NLO}_{a})}(t) = \frac{8\pi^{2}}{m_{\mu}^{2}} \int_{0}^{\infty} \frac{d\hat{\omega}^{2}}{\hat{\omega}^{2}} \hat{f}^{(\text{NLO}_{a})}(\hat{\omega}^{2}) \left[\hat{\omega}^{2}\hat{t}^{2} - 4\sin^{2}\frac{\hat{\omega}\hat{t}}{2}\right]$$

$$\hat{f}^{(\text{NLO}_a)}(s) = \frac{2F_4\left(\frac{1}{y(-s)}\right)}{-s} \quad \text{where} \quad y(z) = \frac{z}{z}$$

$$F_4(u) = \frac{23u^6 - 37u^5 + 124u^4 - 86u^3 - 5}{72(u-1)^2u(u+1)}$$
$$+ \frac{(12u^8 - 11u^7 - 78u^6 + 21u^5 + 4u^4 - 15u^3)}{12(u-1)^3u(u+1)^2}$$

$$+\frac{\left(-7u^4-8u^3+8u+7\right)\log(1-u)}{12u^2}+\frac{(u+1)\left(-u^3+7u^2+8u+6\right)\log(u+1)}{12u^2}$$

$$\left(-3u^4 - 5u^3 - 7u^2 - 5u - 3\right) \left(2\text{Li}_2(-u) + 4\text{Li}_2(u) + \log(-u)\log\left((1-u)^2(u+1)\right)\right)$$

$$6u^2$$

Arnau Beltran Martínez

MPA retreat

 $a_{\mu}^{\rm hvp}$ from lattice simulations

$$-\sqrt{z(z-4)} \text{ and :} +\sqrt{z(z-4)} \\7u^2 + 99u + 78 \\) \\+ 13u + 6) \log(-u)$$

NO CLOSED-FORM SOLUTION

$$\tilde{f}^{(\text{NLO}_{a})}(t) = \frac{8\pi^{2}}{m_{\mu}^{2}} \int_{0}^{\infty} \frac{d\hat{\omega}^{2}}{\hat{\omega}^{2}} \hat{f}^{(\text{NLO}_{a})}(\hat{\omega}^{2}) \left[\hat{\omega}^{2}\hat{t}^{2} - 4\sin^{2}\frac{\hat{\omega}\hat{t}}{2}\right]$$

For $\hat{t} \ll 1$ one can proceed as:

$$\int_{0}^{\infty} \frac{d\hat{\omega}^{2}}{\hat{\omega}^{2}} \hat{f}^{(\text{NLO}_{a})}(\hat{\omega}^{2}) \left[\hat{\omega}^{2} \hat{t}^{2} - 4\sin^{2} \frac{\hat{\omega}\hat{t}}{2} \right] = \int_{0}^{\frac{1-\hat{t}}{\sqrt{\hat{t}}}} \frac{d\hat{\omega}^{2}}{\hat{\omega}^{2}} \hat{f}^{(\text{NLO}_{a})}(\hat{\omega}^{2}) \underbrace{\left[\hat{\omega}^{2} \hat{t}^{2} - 4\sin^{2} \frac{\hat{\omega}\hat{t}}{2} \right]}_{\hat{\omega} \sim \infty} + \int_{\frac{1-\hat{t}}{\sqrt{\hat{t}}}}^{\infty} \frac{d\hat{\omega}^{2}}{\hat{\omega}^{2}} \underbrace{\hat{f}^{(\text{NLO}_{a})}(\hat{\omega}^{2})}_{\hat{\omega} \sim \infty} \left[\hat{\omega}^{2} \hat{t}^{2} - 4\sin^{2} \frac{\hat{\omega}\hat{t}}{2} \right]$$

For $\hat{t} \gg 1$ one solves analytically as much as possible and rotates the cosine to the complex plane to make it real and thus make explicit the suppressed contribution. Then, one numerically expands around \hat{t}_0 by studying the asymptotic behavior of each piece.

$$\frac{m_{\mu}^{2}}{16\pi^{2}}\tilde{f}^{\text{NLO}_{a}}(t) = \begin{cases} \sum_{n=4,n\in\text{even}}^{N} \frac{a_{n}+b_{n}\pi^{2}+c_{n}(\gamma_{E}+\ln\hat{t})+d_{n}(\gamma_{E}+\ln\hat{t})^{2}}{n!} \hat{t}^{n} & \hat{t} \leq \hat{t}^{*} \\ \frac{16\pi^{2}}{16\pi^{2}}\tilde{f}^{\text{NLO}_{a}}(t) = \sum_{p=0}^{N} \left[\left(\frac{a_{p}^{(b;1;1)}}{\hat{t}} + \frac{a_{p}^{(b;1;2)}}{\hat{t}^{2}}\right) \left(\frac{\hat{t}_{0}^{2}}{\hat{t}^{2}} - 1\right)^{p} + e^{-2\hat{t}} \left(a_{p}^{(b;2;1)} + \frac{a_{p}^{(b;2;2)}\ln\hat{t} + a_{p}^{(b;2;3)}}{\sqrt{\hat{t}}}\right) \left(\frac{\hat{t}_{0}}{\hat{t}} - 1\right)^{p} \right] & \hat{t} > \hat{t}^{*} \end{cases}$$

With N = 30 and P = 12, $\hat{t}^* = 3.82$ and $\hat{t}_0 = 5$ a precision $\langle 3 \times 10^{-8} \forall \hat{t} \rangle$ is achieved.

Arnau Beltran Martínez

MPA retreat

^{vp} from lattice simulations

NO closed-form solution.

 $\hat{\omega}t \sim 0$

Time-kernel for lattice determinations of NLO hadronic vacuum polarisation contributions to the muon g-2. 2024. S. Laporta et al.

TVRKernels

$$\tilde{f}^{(\text{NLO}_{b})}(t) = \frac{8\pi^{2}}{m_{\mu}^{2}} \int_{0}^{\infty} \frac{d\hat{\omega}^{2}}{\hat{\omega}^{2}} 2\hat{f}^{(\text{LO})}(\hat{\omega}^{2}) F_{e}(\hat{\omega}^{2}, M) \left[\hat{\omega}^{2}\hat{t}^{2} - 4\sin^{2}\frac{\hat{\omega}\hat{t}}{2}\right]; \quad F^{l}(\omega^{2}; m_{l}^{2}) = -\frac{8}{9} + \frac{\beta^{2}}{3} - \left(\frac{1}{2} - \frac{\beta^{2}}{6}\right)\beta \ln\frac{\beta - 1}{\beta + 2}; \quad \beta = \sqrt{1 + 4\frac{m}{\alpha}}$$

We have a new parameter $M = m_e/m_\mu \ll 1$, for $\hat{t} \ll 1$.

$$\int_{0}^{\frac{\sqrt{M}}{1-M}} \frac{d\hat{\omega}^{2}}{\hat{\omega}^{2}} \underbrace{\hat{f}^{(\text{LO})}(\hat{\omega}^{2})}_{\hat{\omega}\sim0} F_{l}(\omega^{2};M) \underbrace{\left[\hat{\omega}^{2}\hat{t}^{2}-4\sin^{2}\frac{\hat{\omega}\hat{t}}{2}\right]}_{\hat{\omega}\hat{t}\sim0} + \int_{\frac{\sqrt{M}}{1-M}}^{\frac{1-\hat{t}}{\sqrt{\hat{t}}}} \frac{d\hat{\omega}^{2}}{\hat{\omega}^{2}} \hat{f}^{(\text{LO})}(\hat{\omega}^{2}) \underbrace{F_{l}(\omega^{2};M)}_{M\sim0} \underbrace{\left[\hat{\omega}^{2}\hat{t}^{2}-4\sin^{2}\frac{\hat{\omega}\hat{t}}{2}\right]}_{\hat{\omega}\hat{t}\sim0} + \int_{\frac{1-\hat{t}}{\sqrt{\hat{t}}}}^{\infty} \frac{d\hat{\omega}^{2}}{\hat{\omega}^{2}} \underbrace{\hat{f}^{(\text{LO})}(\hat{\omega}^{2})}_{\hat{\omega}\sim\infty} \underbrace{F_{l}(\omega^{2};M)}_{M\sim0} \left[\hat{\omega}^{2}\hat{t}^{2}-4\sin^{2}\frac{\hat{\omega}\hat{t}}{2}\right] + \int_{\frac{1-\hat{t}}{\sqrt{\hat{t}}}}^{\infty} \frac{d\hat{\omega}^{2}}{\hat{\omega}^{2}} \underbrace{\hat{f}^{(\text{LO})}(\hat{\omega}^{2})}_{\hat{\omega}\sim\infty} \underbrace{\hat{f}^{(\text{LO})}(\hat{\omega}^{2})}_{\hat{\omega}\leftarrow\infty} \underbrace{\hat{f}^{(\text{LO})}(\hat{\omega}\leftarrow\infty} \underbrace{\hat{f}^{(\text{LO})}(\hat{\omega}\leftarrow\infty}$$

Same procedure for $\hat{t} \gg 1$ as before, now two exp. surpassed behaviors have to be taken into account!

$$\frac{m_{\mu}^{2}}{16\pi^{2}}\tilde{f}^{\text{NLO}_{b}}(t) = \begin{cases} \sum_{n=4}^{N} \sum_{m=0}^{M} \left[a_{nm} + b_{nm}\pi^{2} + c_{nm} \left(\gamma_{E} + \ln \hat{t} \right) + d_{nm} \left(\gamma_{E} + \ln \hat{t} \right)^{2} \right] \frac{\hat{t}^{n}}{n!} M^{m} & \hat{t} \leq \hat{t}^{*} \\ n \in \text{even} \end{cases}$$
$$\text{Dominant}[\propto \hat{t}^{2}] + \sum_{p=0}^{P} \left[\frac{a_{p}^{(b;1,2)}}{\hat{t}^{2}} \left(\frac{\hat{t}_{0}^{2}}{\hat{t}^{2}} - 1 \right)^{p} + \left(\frac{e^{-2\hat{t}}}{\sqrt{\hat{t}}} a_{p}^{(b;2,3)} + \frac{e^{-2M\hat{t}}}{\sqrt{\hat{t}}} a_{p}^{(b;2,4)} \right) \left(\frac{\hat{t}_{0}}{\hat{t}} - 1 \right)^{p} \right] & \hat{t} > \hat{t}^{*} \end{cases}$$

Up to N = 32 and M = 6 coefficients have been extracted to achieve a precision $< 10^{-8}$ for $\hat{t} < \hat{t}^* = 4$.

Arnau Beltran Martínez

MPA retreat

a_{μ}^{nvp} from lattice simulations

 $\frac{1}{2}$

NO closed-form solution.

 $\hat{t} \gg 1$ suppressed contribution is still being worked around; terms with $e^{-2M\hat{t}}$ asymptotic behavior provide a new layer of difficulty to the problem.

n	m=0	m = 2	m=4	m = 6
4	$-\frac{2}{9}\ln M - \frac{1}{18}$	1	$4 + 4 \ln^2 M$	$-\frac{46}{27} + \frac{28 \ln M}{9} - \frac{1}{3} 8 \ln^2 M$
6	$\frac{169 \ln M}{00} - \frac{36931}{10800}$	$-\frac{2}{2}$	$-2-2\ln M$	$\frac{80}{27} + \frac{56 \ln M}{2} + \frac{16 \ln^2 M}{2}$
8	$\frac{1604 \ln M}{105} - \frac{218047}{88920}$	$\frac{704}{105}$	$-\frac{10}{2}+\frac{2}{3}\ln M$	$-\frac{-38}{2} - \frac{8 \ln M}{2}$
10	$\frac{11018 \ln M}{125}$ _ 21513067	$\frac{105}{5344}$	$\frac{17550779}{2020000}$ $-\frac{34756\ln M}{215}$	$-\frac{4}{2} + \frac{16 \ln M}{2}$
12	$\frac{29412 \ln M}{29212 \ln M}$ _ 2894965393	$\frac{105}{130858}$	$\frac{1206809563}{127228 \ln M}$	$\frac{1883184914}{228584 \ln M}$
14	$\frac{612359 \ln M}{2138512657033}$	$\frac{495}{1218348}$	$\frac{4002075}{127013964109}$ _ $\frac{1155}{3616148 \ln M}$	$\frac{36018675}{99638442364} - \frac{10395}{7043536\ln M}$
16	$rac{364}{967681\ln M} \ _ \ rac{787026240}{82365133883}$	$\tfrac{1001}{965085}$	$rac{82818450}{761763635183} \ _ \ rac{6435}{2560820 \ln M}$	$rac{289864575}{428362589497} \ _ \ rac{45045}{15209336 \ln M}$
18	$rac{135}{13741442\ln M}$ _ $rac{6949800}{101648836935029}$	$\frac{182}{17151277}$	$rac{108216108}{58307355653567} \ _ \ rac{1001}{17107145 \ln M}$	$rac{248455350}{184237817350667} \ _ \ rac{544829680 \ln M}{544829680 \ln M}$
20	$rac{459}{2708773132 \ln M} \ _ \ rac{2008492200}{272062917990438103}$	$\frac{765}{1353220726}$	$rac{1895421528}{3951352873426328} \ _ \ rac{1547}{675640394 \ln M}$	$rac{23455841409}{8767893549452644} \ _ \ rac{153153}{1347926756 \ln M}$
20	$rac{21945}{349608740\ln M}$ _ 1277158182300 _ 143168111013691151	$\tfrac{14535}{2795440492}$	$rac{30211070175}{462494576627921483} \ _ \ rac{14535}{2793108812\ln M}$	$rac{256592689353}{91904978008606424} \ _ \ rac{2789228936 \ln M}{2789228936 \ln M}$
24	$rac{693}{16542939190 \ln M} \ _ \ rac{161325244080}{39648833260883466677}$	$\tfrac{7315}{8268943735}$	$rac{845909964900}{254493286584114300817} = rac{14535}{132237346072\ln M}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
24	$rac{8073}{169660886992 \ln M} \ _ \ rac{10806172437060}{2066775856731885303313}$	$\tfrac{5313}{84815201126}$	$rac{112602779739450}{1648232909159109674719} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$rac{335614778574075}{10537105313665625555402} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
20	$rac{20475}{208288358800 \ln M} \ _ \ rac{137034795397500}{2760330939401667649181}$	$\tfrac{13455}{520668477976}$	$rac{177793862746500}{1094517880631620904114} \ _ \ \frac{26565}{520577023756 \ln M}$	$rac{4222604240229375}{12274302884650696941196} = rac{2523675}{1040850944312\ln M}$
30	$6237 \\ 1027838381233 \ln M _ 19232398525323098271692683$	$\underline{6166722206768}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r}1200108573538875\\3045196077582565137399176\\ \underline{61650532771376\ln M}$
30	$\frac{7656}{81187316488225\ln M} = \frac{76420755826272000}{2386174138366482817055076431}$	$\begin{array}{r} 60291 \\ 16237187914229 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccc} 73028499264381375 & 3511755 \\ 24113585205991674411249601813 & 3896357091803752\ln M \end{array}$
52	150722 2331942032060269200	39556	48195227291562351000 1869021	142394989725070582500

Table 1.1: $a_{nm}(\ln M)$ coefficients. All the coefficients that are not explicitly shown are 0.

n $m = 0$ $m = 2$ $m = 4$ $m = 4$ 4 0 </th <th>6</th>	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\frac{1583}{105} - 8 \ln M \qquad -4 \qquad 0$	
$\begin{array}{ c c c c c c } 10 & \frac{105\ddot{6}\ddot{2}}{135} - \frac{112\ln M}{3} & -24 & 8\ln M - \frac{8011}{315} & 0 \end{array}$	
$12 \qquad \frac{251684}{693} - 160 \ln M \qquad -112 \qquad 48 \ln M - \frac{185902}{1155} \qquad \frac{32 \ln M}{3} - 160 \ln M \qquad -112 \qquad $	$\frac{307124}{10395}$
$14 \qquad \frac{871433}{546} - 660 \ln M \qquad -480 \qquad 224 \ln M - \frac{5047292}{6435} \qquad 64 \ln M -$	<u>8412904</u> 45045
$16 \qquad \frac{1835959}{270} - \frac{8008 \ln M}{3} \qquad -1980 \qquad 960 \ln M - \frac{10466956}{3003} \qquad \frac{896 \ln M}{3} - $	$\frac{17570552}{19305}$
$18 \qquad \frac{21741802}{765} - \frac{32032 \ln M}{3} \qquad -8008 \qquad 3960 \ln M - \frac{45885963}{3094} \qquad 1280 \ln M -$	206607056
$\begin{array}{ c c c c c c c c c } 20 & \frac{171608860}{1463} - 42432 \ln M & -32032 & 16016 \ln M - \frac{59715011}{969} & 5280 \ln M - \end{array}$	<u>50661967(</u> 29393
$\begin{array}{ c c c c c c c c } \hline 22 & \frac{2217\overline{33355}}{462} - 167960 \ln M & -127296 & 64064 \ln M - \frac{81545956}{323} & \frac{64064 \ln M}{3} - 127296 & 64064 \ln M - \frac{81545956}{323} & \frac{64064 \ln M}{3} - 127296 & \frac{64064 \ln M}{3} - $	20842569
$\begin{array}{ c c c c c c c c c } \hline 24 & \frac{5251828975}{2691} - \frac{1989680 \ln M}{3} & -503880 & 254592 \ln M - \frac{34489442472}{33649} & \frac{256256 \ln M}{3} - \end{array}$	<u>196614414</u> 66861
$26 \frac{53918626534}{6825} - 2615008 \ln M -1989680 1007760 \ln M - \frac{36628670967}{8855} 339456 \ln M - $	100547746 841225
$\begin{array}{ c c c c c c c c c } \hline 28 & \frac{993906911612}{31185} - \frac{30904640 \ln M}{3} & -7845024 & 3979360 \ln M - \frac{670965894406}{40365} & 1343680 \ln M - \end{array}$	$\frac{11545337}{23908}$
$30 \frac{7363774861147}{57420} - 40562340 \ln M -30904640 15690048 \ln M - \frac{39547820883388}{593775} \frac{15917440 \ln M}{2} - \frac{39547820883388}{593775} = \frac{15917440 \ln M}{2} - \frac{1000}{2} + \frac{1000}$	<u>682265571</u> 351171
$ \begin{vmatrix} 32 & & \frac{465724831544639}{904332} - 159679800 \ln M & -121687020 & 61809280 \ln M - \frac{2488648055384156}{9345105} & 20920064 \ln M - 1200000000000000000000000000000000000$	<u>430341286</u> 55221

Table 1.2: $c_{nm}(\ln M)$ coefficients. All the coefficients that are not explicitly shown are 0.

Arnau Beltran Martínez

MPA retreat

$a_{\mu}^{\rm hvp}$ from lattice simulations

	1	n	m = 0	m = 3	m=4	m=6] [n	m = 0	m = 4	m = 6
		4	0	$-\frac{2}{3}$	$\frac{2}{3}$	$-\frac{4}{9}$		4	0	0	0
		6	$\frac{1}{6}$	0	Ő	$\frac{8}{9}$		6	$-\frac{2}{3}$	0	0
		8	ľ	0	0	Ŏ		8	$-\breve{4}$	0	0
		10	$\frac{14}{3}$	0	-1	0		10	$-\frac{56}{3}$	4	0
24		12	20	0	-6	$-\frac{4}{3}$		12	-80	24	$\frac{16}{3}$
$\frac{21}{95}$		14	$\frac{165}{2}$	0	-28	$-\overset{\circ}{8}$		14	-330	112	32
$\frac{1}{45}$		16	$\frac{1001}{3}$	0	-120	$-\frac{112}{3}$		16	$-\frac{4004}{3}$	480	$\frac{448}{3}$
305 507056		18	$\frac{4004}{3}$	0	-495	-160		18	$-\frac{16016}{3}$	1980	640
$051 \\ 0519670$		20	5304	0	-2002	-660		20	-21216	8008	2640
393 125692		22	20995	0	-8008	$-\frac{8008}{3}$		22	-83980	32032	$\frac{32032}{3}$
907		24	$\frac{248710}{3}$	0	-31824	$-\frac{32032}{3}$		24	$-\frac{994840}{3}$	127296	$\frac{128128}{3}$
$6861 \\ 77461344$		26	326876	0	-125970	$-42\check{4}32$		26	-1307504	503880	169728
$\frac{41225}{4533778012}$		28	$\frac{3863080}{3}$	0	-497420	-167960		28	$-\frac{15452320}{3}$	1989680	671840
$239085 \\ 6557140376$		30	$\frac{10140585}{2}$	0	-1961256	$-\frac{1989680}{3}$		30	-20281170	7845024	$\frac{7958720}{3}$
511755 112863931512		32	$199\bar{5}9975$	0	-7726160	-2615008		32	-79839900	30904640	10460032

 $n \in even$

Table 1.3: b_{nm} (on the left) and d_{nm} (on the right) coefficients. Notice that b_{43} is the only non-zero "odd coefficient". Again, all the coefficients that are not explicitly shown are 0.

$$\tilde{f}^{(\mathrm{NLO}_{0})}(t,\tau) = \frac{8\pi^{2}}{m_{\mu}^{2}} \int_{0}^{\infty} \frac{d\hat{\omega}^{2}}{\hat{\omega}^{2}} \hat{f}^{(\mathrm{LO})}(\hat{\omega}^{2}) \left[\hat{\omega}^{2} \hat{t}^{2} - 4\sin^{2} \frac{\hat{\omega}\hat{t}}{2} \right] \left[\hat{\omega}^{2} \hat{\tau}^{2} - 4\sin^{2} \frac{\hat{\omega}\hat{t}}{2} \right]$$
REMINDER:
$$a_{\mu}^{\mathrm{hvp}}[(\mathrm{NLO}_{0})] = \left(\frac{\alpha}{\pi}\right)^{3} \int_{0}^{\infty} dq^{2} f^{(\mathrm{LO})}(\hat{q}^{2}) \left[\hat{\Pi}(q^{2}) \right]^{2} \iff \hat{\Pi}(\omega^{2}) = \frac{4\pi^{2}}{\omega^{2}} \int_{0}^{\infty} dt \ G(t) \left[\omega^{2} t^{2} - 4\sin^{2} \frac{\omega t}{2} \right]$$

$$a_{\mu}^{\text{hvp}}[(\text{NLO}_{\text{c}})] = \left(\frac{\alpha}{\pi}\right)^{3} \int_{0}^{\infty} \int_{0}^{\infty} dt d\tau \, \tilde{f}^{(\text{NLO}_{\text{c}})}(t,\tau) G(t) G(\tau)$$

Arnau Beltran Martínez

MPA retreat

Two integrals will "come out" from the Π^2 term \rightarrow The Kernel for NLO_c is bi-dimensional.

$$\tilde{f}^{(\text{NLO}_{c})}(t,\tau) = \frac{8\pi^{2}}{m_{\mu}^{2}} \int_{0}^{\infty} \frac{d\hat{\omega}^{2}}{\hat{\omega}^{2}} \hat{f}^{(\text{LO})}(\hat{\omega}^{2}) \left[\hat{\omega}^{2}\hat{\tau}^{2} - 4\sin^{2}\frac{\hat{\omega}\hat{\tau}}{2}\right] \left[\hat{\omega}^{2}\hat{\tau}^{2} - 4\sin^{2}\frac{\hat{\omega}\hat{\tau}}{2}\right]$$

Has a closed-form solution.

The first step is to find the analytical solution:

$$\begin{aligned} \frac{m_{\mu}^{4}}{32\pi^{4}}\tilde{f}^{(4c)}\left(\hat{t},\hat{\tau}\right) &= \frac{\hat{\tau}^{2}\hat{t}^{2}}{4} + \frac{\hat{t}^{2}}{\hat{\tau}^{2}} + \frac{\hat{\tau}^{2}}{\hat{t}^{2}} - \frac{1}{2}\left(\hat{t}^{2} + \hat{\tau}^{2}\right) + \frac{1}{6} - 2(1 + \gamma_{E}) + 2\hat{t}^{2}(\ln\hat{\tau} + \gamma_{E}) + 2\hat{\tau}^{2}(\ln\hat{t} + \gamma_{E}) + 2\left(\hat{t}^{2} - 1\right)\ln\hat{t} + 2\left(\hat{\tau}^{2} - 1\right)\ln\hat{\tau} \\ &+ \left[1 - (\hat{t} + \hat{\tau})^{2}\right]\ln(\hat{t} + \hat{\tau}) + \left[1 - (\hat{t} - \hat{\tau})^{2}\right]\ln|\hat{\tau} - \hat{\tau}| + \left(\frac{\hat{t}^{2}}{6} - 2\right)K_{0}(2t) + \left(\frac{\hat{\tau}^{2}}{6} - 2\right)K_{0}(2\tau) + \left(1 - \frac{1}{12}(\hat{t} + \hat{\tau})^{2}\right)K_{0}(2(\hat{t} + \hat{\tau})) + \left(1 - \frac{1}{12}(\hat{t} - \hat{\tau})^{2}\right)K_{0}(2(\hat{t} + \hat{\tau})) \\ &- \left(\frac{2\hat{t}^{2}}{\hat{\tau}} + \frac{\hat{\tau}}{12}\right)K_{1}(2\hat{\tau}) - \left(\frac{2\hat{\tau}^{2}}{\hat{t}} + \frac{\hat{t}}{12}\right)K_{1}(2\hat{\tau}) + \frac{1}{24}|\hat{\tau} - \hat{\tau}|K_{1}(2|\hat{\tau} - \hat{\tau}|) + \frac{1}{24}(\hat{t} + \hat{\tau})K_{1}(2(\hat{t} + \hat{\tau})) + \left(\frac{\hat{\tau}^{2}}{12} + \frac{\hat{\tau}^{2}}{4} - \frac{15}{16}\right)G_{1,3}^{2,1}\left(\hat{\tau}^{2}\Big|_{0,1,\frac{1}{2}}\right) \\ &+ \left(\frac{\hat{\tau}^{2}}{12} + \frac{\hat{\tau}^{2}}{4} - \frac{15}{16}\right)G_{1,3}^{2,1}\left(\hat{\tau}^{2}\Big|_{0,1,\frac{1}{2}}\right) + \left(\frac{15}{32} - \frac{1}{24}(\hat{t} + \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} + \hat{\tau})^{2}\Big|_{0,1,\frac{1}{2}}\right) + \left(\frac{15}{32} - \frac{1}{24}(\hat{t} - \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right) \\ &+ \left(\frac{\hat{\tau}^{2}}{12} + \frac{\hat{\tau}^{2}}{4} - \frac{15}{16}\right)G_{1,3}^{2,1}\left(\hat{\tau}^{2}\Big|_{0,1,\frac{1}{2}}\right) + \left(\frac{15}{32} - \frac{1}{24}(\hat{t} + \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right) \\ &+ \left(\frac{\hat{\tau}^{2}}{12} + \frac{\hat{\tau}^{2}}{4} - \frac{15}{16}\right)G_{1,3}^{2,1}\left(\hat{\tau}^{2}\Big|_{0,1,\frac{1}{2}}\right) + \left(\frac{15}{32} - \frac{1}{24}(\hat{t} + \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right) \\ &+ \left(\frac{\hat{\tau}^{2}}{12} + \frac{\hat{\tau}^{2}}{4} - \frac{15}{16}\right)G_{1,3}^{2,1}\left(\hat{\tau}^{2}\Big|_{0,1,\frac{1}{2}}\right) + \left(\frac{15}{32} - \frac{1}{24}(\hat{t} + \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right) \\ &+ \left(\frac{\hat{\tau}^{2}}{12} + \frac{\hat{\tau}^{2}}{4} - \frac{15}{16}\right)G_{1,3}^{2,1}\left(\hat{\tau}^{2}\Big|_{0,1,\frac{1}{2}}\right) + \left(\frac{15}{32} - \frac{1}{24}(\hat{t} + \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right)G_{1,3}^$$

$$+ \left[1 - (\hat{t} + \hat{\tau})^{2}\right] \ln(\hat{t} + \hat{\tau}) + \left[1 - (\hat{t} - \hat{\tau})^{2}\right] \ln|\hat{t} - \hat{\tau}| + \left(\frac{\hat{t}^{2}}{6} - 2\right) K_{0}(2t) + \left(\frac{\hat{\tau}^{2}}{6} - 2\right) K_{0}(2\tau) + \left(1 - \frac{1}{12}(\hat{t} + \hat{\tau})^{2}\right) K_{0}(2(\hat{t} + \hat{\tau})) + \left(1 - \frac{1}{12}(\hat{t} - \hat{\tau})^{2}\right) K_{0}(2|\hat{t} - \hat{\tau}|) \\ - \left(\frac{2\hat{t}^{2}}{\hat{\tau}} + \frac{\hat{\tau}}{12}\right) K_{1}(2\hat{\tau}) - \left(\frac{2\hat{\tau}^{2}}{\hat{\tau}} + \frac{\hat{t}}{12}\right) K_{1}(2\hat{t}) + \frac{1}{24}|\hat{t} - \hat{\tau}| K_{1}(2|\hat{t} - \hat{\tau}|) + \frac{1}{24}(\hat{t} + \hat{\tau}) K_{1}(2(\hat{t} + \hat{\tau})) + \left(\frac{\hat{t}^{2}}{12} + \frac{\hat{\tau}^{2}}{4} - \frac{15}{16}\right) G_{1,3}^{2,1}\left(\hat{t}^{2}\Big|_{0,1,\frac{1}{2}}^{\frac{3}{2}}\right) \\ + \left(\frac{\hat{\tau}^{2}}{12} + \frac{\hat{t}^{2}}{4} - \frac{15}{16}\right) G_{1,3}^{2,1}\left(\hat{\tau}^{2}\Big|_{0,1,\frac{1}{2}}^{\frac{3}{2}}\right) + \left(\frac{15}{32} - \frac{1}{24}(\hat{t} + \hat{\tau})^{2}\right) G_{1,3}^{2,1}\left((\hat{t} + \hat{\tau})^{2}\Big|_{0,1,\frac{1}{2}}^{\frac{3}{2}}\right) + \left(\frac{15}{32} - \frac{1}{24}(\hat{t} - \hat{\tau})^{2}\right) G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\Big|_{0,1,\frac{1}{2}}^{\frac{3}{2}}\right)$$

Arnau Beltran Martínez

MPA retreat

$$\tilde{f}^{(\text{NLO}_{c})}(t,\tau) = \frac{8\pi^{2}}{m_{\mu}^{2}} \int_{0}^{\infty} \frac{d\hat{\omega}^{2}}{\hat{\omega}^{2}} \hat{f}^{(\text{LO})}(\hat{\omega}^{2}) \left[\hat{\omega}^{2}\hat{\tau}^{2} - 4\sin^{2}\frac{\hat{\omega}\hat{\tau}}{2}\right] \left[\hat{\omega}^{2}\hat{\tau}^{2} - 4\sin^{2}\frac{\hat{\omega}\hat{\tau}}{2}\right]$$

Has a closed-form solution.

The first step is to find the analytical solution:

$$\begin{aligned} \frac{m_{\mu}^{4}}{32\pi^{4}}\tilde{f}^{(4c)}\left(\hat{t},\hat{\tau}\right) &= \frac{\hat{\tau}^{2}\hat{t}^{2}}{4} + \frac{\hat{t}^{2}}{\hat{\tau}^{2}} + \frac{\hat{\tau}^{2}}{\hat{\tau}^{2}} + \frac{\hat{\tau}^{2}}{\hat{\tau}^{2}} - \frac{1}{2}\left(\hat{t}^{2} + \hat{\tau}^{2}\right) + \frac{1}{6} - 2(1 + \gamma_{E}) + 2\hat{\tau}^{2}(\ln\hat{\tau} + \gamma_{E}) + 2\hat{\tau}^{2}(\ln\hat{\tau} + \gamma_{E}) + 2\left(\hat{\tau}^{2} - 1\right)\ln\hat{\tau} + 2\left(\hat{\tau}^{2} - 1\right)\ln\hat{\tau} \\ &+ \left[1 - (\hat{t} + \hat{\tau})^{2}\right]\ln(\hat{t} + \hat{\tau}) + \left[1 - (\hat{t} - \hat{\tau})^{2}\right]\ln[\hat{t} - \hat{\tau}] + \left(\frac{\hat{\tau}^{2}}{6} - 2\right)K_{0}(2t) + \left(\frac{\hat{\tau}^{2}}{6} - 2\right)K_{0}(2\tau) + \left(1 - \frac{1}{12}(\hat{t} + \hat{\tau})^{2}\right)K_{0}(2(\hat{t} + \hat{\tau})) + \left(1 - \frac{1}{12}(\hat{t} - \hat{\tau})^{2}\right)K_{0}(2(\hat{t} - \hat{\tau})^{2}) \\ &- \left(\frac{2\hat{t}^{2}}{\hat{\tau}} + \frac{\hat{\tau}}{12}\right)K_{1}(2\hat{\tau}) - \left(\frac{2\hat{\tau}^{2}}{\hat{\tau}} + \frac{\hat{t}}{12}\right)K_{1}(2\hat{t}) + \frac{1}{24}(\hat{t} - \hat{\tau})K_{1}(2\hat{t}(\hat{t} - \hat{\tau})) + \frac{1}{24}(\hat{t} + \hat{\tau})K_{1}(2(\hat{t} + \hat{\tau})) + \left(\frac{\hat{\tau}^{2}}{12} + \frac{\hat{\tau}^{2}}{4} - \frac{15}{16}\right)G_{1,3}^{2,1}\left(\hat{\tau}^{2}\Big|_{0,1,\frac{1}{2}}\right) \\ &+ \left(\frac{\hat{\tau}^{2}}{12} + \frac{\hat{\tau}^{2}}{4} - \frac{15}{16}\right)G_{1,3}^{2,1}\left(\hat{\tau}^{2}\Big|_{0,1,\frac{1}{2}}\right) + \left(\frac{15}{32} - \frac{1}{24}(\hat{t} + \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} + \hat{\tau})^{2}\Big|_{0,1,\frac{1}{2}}\right) + \left(\frac{15}{32} - \frac{1}{24}(\hat{t} - \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left(\hat{t} - \hat{\tau}^{2}\right) \\ &+ \left(\frac{\hat{\tau}^{2}}{12} + \frac{\hat{\tau}^{2}}{4} - \frac{15}{16}\right)G_{1,3}^{2,1}\left(\hat{\tau}^{2}\Big|_{0,1,\frac{1}{2}}\right) + \left(\frac{15}{32} - \frac{1}{24}(\hat{t} + \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right) \\ &+ \left(\frac{\hat{\tau}^{2}}{12} + \frac{\hat{\tau}^{2}}{4} - \frac{15}{16}\right)G_{1,3}^{2,1}\left(\hat{\tau}^{2}\Big|_{0,1,\frac{1}{2}}\right) + \left(\frac{15}{32} - \frac{1}{24}(\hat{t} + \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right) \\ &+ \left(\frac{\hat{\tau}^{2}}{12} + \frac{\hat{\tau}^{2}}{4} - \frac{15}{16}\right)G_{1,3}^{2,1}\left(\hat{\tau}^{2}\Big|_{0,1,\frac{1}{2}}\right) + \left(\frac{15}{32} - \frac{1}{24}(\hat{t} + \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right) \\ &+ \left(\frac{\hat{\tau}^{2}}{12} + \frac{\hat{\tau}^{2}}{4} - \frac{15}{16}\right)G_{1,3}^{2,1}\left(\hat{\tau}^{2}\Big|_{0,1,\frac{1}{2}}\right) + \left(\frac{15}{32} - \frac{1}{24}(\hat{t} + \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left((\hat{t} - \hat{\tau})^{2}\right) \\ &+ \left(\frac{\hat{\tau}^{2}}{12} + \frac{\hat{\tau}^{2}}{4} - \frac{15}{16}\right)G_{1,3}^{2,1}\left(\hat{\tau}^{2}\Big|_{0,1,\frac{1}{2}}\right) + \left(\frac{15}{32} - \frac{1}{24}(\hat{t} + \hat{\tau})^{2}\right)G_{1,3}^{2,1}\left(\hat{\tau}^{2} + \frac{1}{2}\right) \\ &+ \left(\frac{15}{32} - \frac{1}{24}(\hat{t} - \hat{\tau})^$$

Arnau Beltran Martínez

MPA retreat

Lattice determination of the HVP NLO contributions to the $(\mathbf{g}-\mathbf{2})_{\mu}$

$$\tilde{f}^{(\text{NLO}_{c})}(t,\tau) = \frac{8\pi^{2}}{m_{\mu}^{2}} \int_{0}^{\infty} \frac{d\hat{\omega}^{2}}{\hat{\omega}^{2}} \hat{f}^{(\text{LO})}(\hat{\omega}^{2}) \left[\hat{\omega}^{2}\hat{t}^{2} - 4\sin^{2}\frac{\hat{\omega}\hat{t}}{2}\right] \left[\hat{\omega}^{2}\hat{\tau}^{2} - 4\sin^{2}\frac{\hat{\omega}\hat{\tau}}{2}\right]$$

Similar procedure as before

- We expand for $\hat{t}, \hat{\tau} \ll 1$ in the green region.
- We expand for $\hat{t}, \hat{\tau}, \hat{t} + \hat{\tau}, |\hat{t} \hat{\tau}| \gg 1$ in the blue region.
- Exp. suppressed terms are expanded around $\hat{t}_0 =$ interpolate both limit expansions.

 $\propto e^{-2\hat{t}}, e^{-2\hat{\tau}}, e^{-2(\hat{t}+\hat{\tau})}, e^{-2(\hat{t}-\hat{\tau})}$

- For the red region, the asymptotic expansion from terms with $\hat{t} \hat{\tau}$ dependence is subtracted and expanded around $\hat{t} - \hat{\tau} \ll 1$.
- For the yellow region, the asymptotic expansion from terms with $\hat{t}(\hat{\tau})$ dependence is subtracted and expanded around $\hat{t} \ll 1$ ($\hat{\tau} \ll 1$).

By a correct choice of the region limits and by computing terms up to N = 30 and P = 13for $T_0 = 2.2$ a precision $< 10^{-8} \forall \hat{t}, \hat{\tau}$ has been achieved.

Arnau Beltran Martínez

MPA retreat

$$\hat{\tau}_0 = T_0 = 2.2 \text{ to}$$

$$\tilde{f}^{(\text{NLO}_{c})}(t,\tau) = \frac{8\pi^{2}}{m_{\mu}^{2}} \int_{0}^{\infty} \frac{d\hat{\omega}^{2}}{\hat{\omega}^{2}} \hat{f}^{(\text{LO})}(\hat{\omega}^{2}) \left[\hat{\omega}^{2} \hat{\tau}^{2} - 4\sin^{2}\frac{\hat{\omega}\hat{\tau}}{2} \right] \left[\hat{\omega}^{2} \hat{\tau}^{2} - 4\sin^{2}\frac{\hat{\omega}\hat{\tau}}{2} \right]$$

Expansion for the green region:

$$\frac{m_{\mu}^{4}}{32\pi^{4}}\tilde{f}^{(\mathsf{NLO}_{c})}\left(\hat{t},\hat{\tau}\right) = \sum_{\substack{n=4\\n\in\text{ even}}}^{N} \left[\frac{a_{n}^{(2)}}{n!}\left(\hat{t}^{2}\hat{\tau}^{n} + \hat{\tau}^{2}\hat{t}^{n}\right) + \frac{b_{n}^{(2)}}{n!}\left(\hat{t}^{2}(\gamma_{E} + \ln\hat{\tau})\hat{\tau}^{n} + \hat{\tau}^{2}(\gamma_{E} + \ln\hat{\tau})\hat{t}^{n}\right)\right]$$
$$+ 2\sum_{\substack{n=6\\n\in\text{ even}}}^{N} \left[\frac{a_{n}^{(3)}}{n!}\left((\hat{t} + \hat{\tau})^{n} + (\hat{t} - \hat{\tau})^{n} - 2\hat{\tau}^{n} - 2\hat{t}^{n}\right) + \frac{b_{n}^{(3)}}{n!}\left((\gamma_{E} + \ln(\hat{t} + \hat{\tau}))(\hat{t} + \hat{\tau})^{n} + (\gamma_{E} + \ln|\hat{t} - \hat{\tau}|)(\hat{t} - \hat{\tau})^{n} - 2(\gamma_{E} + \ln\hat{t})\hat{\tau}^{n} - 2(\gamma_{E} + \ln\hat{\tau})\hat{\tau}^{n}\right]$$

By a correct choice of the region limits and by computing terms up to N = 30 and P = 13for $T_0 = 2.2$ a precision $< 10^{-8} \forall \hat{t}, \hat{\tau}$ has been achieved.

Arnau Beltran Martínez

MPA retreat

Table 1.4: Small distance expansion coefficients $a_n^{(2)}$, $b_n^{(2)}$, $a_n^{(3)}$ and $b_n^{(3)}$.

 (\hat{t}^n)

$$a_{\mu}^{\rm hvp}$$
 from lattice simulation

Procedure and CLS ensembles

• For this analysis, so far 12 different CLS ensembles with $N_f = 2 + 1$ flavors, different lattice spacing, pion, and kaon masses have been used. Since Gérardin et al., 1904.03120

Arnau Beltran Martínez

MPA retreat

NLO computation

Now we are ready to combine our NLO Kernels with G(t) from the lattice simulations.

Sospsin basis

It is convenient to work on the isospin basis

$$j_{\mu}^{\text{em}} = \frac{2}{3}\overline{u}\gamma_{\mu}u - \frac{1}{3}\overline{d}\gamma_{\mu}d - \frac{1}{3}\overline{s}\gamma_{\mu}s + \frac{2}{3}\overline{c}\gamma_{\mu}c + \dots = j_{\mu}^{3} + \frac{1}{\sqrt{3}}j_{\mu}^{8} + \frac{2}{3}\overline{c}\gamma_{\mu}c + \dots$$

Contributions coming from the ... correspond to contributions from the bottom and top which are neglected.

This description will give place to some mixing between the currents in the full correlator:

Arnau Beltran Martínez

MPA retreat

NLO computation

Lattice determination of the HVP NLO contributions to the $\left(\mathbf{g}-2
ight) _{\mu}$

Isospsin basis

$$G = -\frac{1}{3} \sum_{\vec{x} \in \Lambda} \langle j^{em}_{\mu} j^{em}_{\mu} \rangle = G^{33} + \frac{1}{3} G^{88} + \dots$$

Arnau Beltran Martínez

MPA retreat

NLO computation

$\mathcal{O}(a)$ improvement and current descriptions

will be used in the extrapolation (conserved currents are normalized by construction)

$$j^{(C),a}_{\mu}(x) = \frac{1}{2} \left(\overline{\psi}(x+a\hat{\mu})(1+\gamma_{\mu})U^{\dagger}_{\mu}(x)T^{a}\psi(x) - \overline{\psi}(x)(1-\gamma_{\mu})U_{\mu}(x)T^{a}\psi(x+a\hat{\mu}) \right)$$

which differ only at $\mathcal{O}(a^2)$, we will refer to these as "Set 1" and "Set 2". $j_{\mu}^{(\alpha),a}(x) \sim \mathcal{O}(a)$

$$j_{\mu}^{(\alpha),a,I(\text{set})}(x) = j_{\mu}^{(\alpha),a}(x) + c_{\nu}^{(\text{set})} \tilde{\partial}_{\nu} \left(-\frac{1}{2} \overline{\psi}(x) \left[\gamma_{\mu}, \gamma_{\nu} \right] \frac{\lambda^{a}}{2} \psi(x) \right) \sim \mathcal{O}(a^{2})$$

Arnau Beltran Martínez

MPA retreat

NLO computation

• Two different current discretizations have been used, local-local and local-conserved correlators

 $j_{\mu}^{(L),a}(x) = \overline{\psi}(x)\gamma_{\mu}T^{a}\psi(x)$

• Currents are also improved to $\mathcal{O}(a)$ following two different Symanzik improvement programs

Physical point extrapolation Model average

Arnau Beltran Martínez

MPA retreat

NLO computation

Preliminary results

$$a_{\mu}^{\text{hvp}}[\text{NLO}_{a}] = -16.60(37)(55) + \frac{1}{3}[-10.33(27)(51)] + \frac{4}{9}[-1.986(26)(78) + 67.0(0.0)(7.0) \times 10^{-5}] + \frac{2}{3\sqrt{3}}[3.0(6.0)(2.0) \times 10^{-5}] = -20.92(42)(57) \quad [3.38\%]$$

$$a_{\mu}^{\text{hvp}}[\text{NLO}_{b}] = 8.64(25)(34) + \frac{1}{3}[4.83(19)(29)] + \frac{4}{9}[0.556(07)(22) - 20.2(0.0)(5.7) \times 10^{-5}] + \frac{2}{3\sqrt{3}}[-1.6(4.0)(4.4) \times 10^{-5}] = 10.49(28)(35) \quad [4.27\%]$$

$$\Rightarrow a_{\mu}^{\text{hvp}}[\text{NLO}_{a\&b}] = -7.96(13)(19) + \frac{1}{3}[-5.50(10)(22)] + \frac{4}{9}[-1.430(16)(56) + 47(22)(12) \times 10^{-5}] + \frac{2}{3\sqrt{3}}[1.7(5.9)(7.2) \times 10^{-5}] = -10.43(15)(21) \quad [2.47\%]$$

$$\Rightarrow a_{\mu}^{\text{hvp}}[\text{NLO}_{c}] = 0.226(09)(12) + \frac{1}{9}[0.0810(52)(87)] + \frac{16}{81}[0.00213(50)(17)] + \frac{2}{3}[0.1253(60)(95)] + \frac{8}{9}[0.0180(05)(10)] + \frac{8}{27}[0.0087(19)(38)] = 0.338(13)(14) \quad [5.65\%]$$

$$a_{\mu}^{\text{hvp}}[\text{NLO}_{c}] = -10.10(25) \quad [2.50\%]$$

Agreement between lattice and data-driven determinations at this stage of precision. Future plans include an increase in the lattice phase space which will severely improve the extrapolation, hopefully achieving an increase in precision by a factor ≥ 3 .

Arnau Beltran Martínez

MPA retreat

Preliminary results and conclusions

Lattice determination of the HVP NLO contributions to the $\left(\mathbf{g}-2
ight) _{u}$

Conclusions and outlook

- NLO electromagnetic corrections to the HVP can be computed in the lattice, these, will become relevant in the full lattice HVP estimation as different collaborations keep pushing for precision.
- This computation provides a new tool to prove lattice vs data-driven approaches.
- Already at this stage, a 2.5 % precession can be obtained. NLO may be naturally more precise than the LO computation.
- Next step, include full CLS ensembles and statics to increase precision to sub-percent accuracy.
- Improved bounding method and other Finite-Volume correctors will be studied. As well as corrections for the charm mass miss-tuning.
- Blinding analysis to avoid unconscious bias.

Preliminary results and conclusions

and a second state of the second seco

known process: $e^+e^- \rightarrow$ hadrons (or $\tau \rightarrow$ hadrons + ν).

$$\hat{\Pi}(q^2) = \frac{q^2}{3} \int_{s_{th}}^{\infty} ds \frac{R(s)}{s(s+q^2)}$$
$$R(s) = \frac{\sigma \left(e^+ e^- \to \text{hadrons}\right)}{4\pi \alpha^2 / s}$$

So $a_{\mu}^{\rm hvp}$ is rewritten in the following form:

$$a_{\mu}^{\text{hvp}}[(i)] = \left(\frac{\alpha}{\pi}\right)^{\geq 2} \int_{s_{th}}^{\infty} \frac{ds}{s} K^{(i)}(s) R(s)$$
$$K^{(i)}(s) = \frac{1}{3} \int_{0}^{\infty} d\hat{q}^{2} \ \hat{f}^{(i)}(\hat{q}^{2}) \frac{\hat{q}^{2}}{\hat{s} + \hat{q}^{2}}$$

Arnau Beltran Martínez

MPA retreat

 $\hat{\Pi}(q^2)$ must be found non-perturbatively.

- Analyticity and the optical theorem allow rewriting the HVP as the cross-section of a well-

Lattice determination of the HVP NLO contributions to the $\left(\mathbf{g}-2
ight) _{u}$

 $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$

Alex Kashevarzi, KNTW:Data-Driven HVP, 7th plenary workshop muon g-2

5:KLOE (201

