
DANIEL G. FIGUEROA
IFIC, Valencia

— BACKGROUNDS —
GRAVITATIONAL WAVE

2nd Lecture

MITP Summer School - CrossLinks of Early Universe Cosmology, 15 July - August 2, 2024



OUTLINE

Gravitational Wave 
Backgrounds

2) GWs from Inflation
3) GWs from Preheating
4) GWs from Phase Transitions
5) GWs from Cosmic Defects 
6) Astrophysical Background(s)

7) Observational Constraints/Prospects
(Briefly)

<latexit sha1_base64="yo0dhHq8LhKAS+vdcsUPS6xygbM=">AAAB7nicdVBNS8NAEN3Ur1q/qh69LBbBU0hqaOut6MVjBfsBbSib7aRdutmE3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zMCxLOlHacD6uwtr6xuVXcLu3s7u0flA+POipOJYU2jXksewFRwJmAtmaaQy+RQKKAQzeYXud+9x6kYrG407ME/IiMBQsZJdpI3YEMJKEwLFcc+7JRq3o17NiOU3erbk6qde/Cw65RclTQCq1h+X0wimkagdCUE6X6rpNoPyNSM8phXhqkChJCp2QMfUMFiUD52eLcOT4zygiHsTQlNF6o3ycyEik1iwLTGRE9Ub+9XPzL66c6bPgZE0mqQdDlojDlWMc4/x2PmASq+cwQQiUzt2I6ISYAbRIqmRC+PsX/k07Vdmu2d+tVmlerOIroBJ2ic+SiOmqiG9RCbUTRFD2gJ/RsJdaj9WK9LlsL1mrmGP2A9fYJtSiP1g==</latexit>

}

1st Topic
 1) Grav. Waves (GWs)

(Formal Th.)



OUTLINE

Gravitational Wave 
Backgrounds

2) GWs from Inflation
3) GWs from Preheating
4) GWs from Phase Transitions
5) GWs from Cosmic Defects 
6) Astrophysical Background(s)

7) Observational Constraints/Prospects
(Briefly)

<latexit sha1_base64="yo0dhHq8LhKAS+vdcsUPS6xygbM=">AAAB7nicdVBNS8NAEN3Ur1q/qh69LBbBU0hqaOut6MVjBfsBbSib7aRdutmE3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zMCxLOlHacD6uwtr6xuVXcLu3s7u0flA+POipOJYU2jXksewFRwJmAtmaaQy+RQKKAQzeYXud+9x6kYrG407ME/IiMBQsZJdpI3YEMJKEwLFcc+7JRq3o17NiOU3erbk6qde/Cw65RclTQCq1h+X0wimkagdCUE6X6rpNoPyNSM8phXhqkChJCp2QMfUMFiUD52eLcOT4zygiHsTQlNF6o3ycyEik1iwLTGRE9Ub+9XPzL66c6bPgZE0mqQdDlojDlWMc4/x2PmASq+cwQQiUzt2I6ISYAbRIqmRC+PsX/k07Vdmu2d+tVmlerOIroBJ2ic+SiOmqiG9RCbUTRFD2gJ/RsJdaj9WK9LlsL1mrmGP2A9fYJtSiP1g==</latexit>

}

Core~
Topics~

 1) Grav. Waves (GWs)

Early 
Universe
Sources

<latexit sha1_base64="yo0dhHq8LhKAS+vdcsUPS6xygbM=">AAAB7nicdVBNS8NAEN3Ur1q/qh69LBbBU0hqaOut6MVjBfsBbSib7aRdutmE3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zMCxLOlHacD6uwtr6xuVXcLu3s7u0flA+POipOJYU2jXksewFRwJmAtmaaQy+RQKKAQzeYXud+9x6kYrG407ME/IiMBQsZJdpI3YEMJKEwLFcc+7JRq3o17NiOU3erbk6qde/Cw65RclTQCq1h+X0wimkagdCUE6X6rpNoPyNSM8phXhqkChJCp2QMfUMFiUD52eLcOT4zygiHsTQlNF6o3ycyEik1iwLTGRE9Ub+9XPzL66c6bPgZE0mqQdDlojDlWMc4/x2PmASq+cwQQiUzt2I6ISYAbRIqmRC+PsX/k07Vdmu2d+tVmlerOIroBJ2ic+SiOmqiG9RCbUTRFD2gJ/RsJdaj9WK9LlsL1mrmGP2A9fYJtSiP1g==</latexit>

}
1st Topic

(Formal Th.)

(Pheno Th.)



The Gravity of 
the Situation …



1. Gravitational Waves (GWs) [Basics]

• GW: ds2 = a
2(�d⌘

2 + (�ij + hij)dxi
dx

j), TT :

⇢
hii = 0
hij ,j = 0

Eom: h00
ij + 2Hh

0
ij �r2

hij = 16⇡G⇧TT
ij , ⇧ij = Tij � hTiji

FRW

Transverse-Traceless (TT) dof carry energy out of the source!!!

• GW Source(s): ( SCALARS , VECTOR , FERMIONS )

⇧TT
ij / {@i�a

@j�
a}TT

, {EiEj +BiBj}TT
, { ̄�iDj }TT

FLRW:

GW Propagation/Creation
in Cosmology

(conformal time)
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]

⇢GW(t) =
1

32⇡Ga2(t)

D
ḣij(x, t)ḣij(x, t)

E

V
(10)

⌘ 1

32⇡Ga2(t)

1

V

Z

V
dx ḣij(x, t)ḣij(x, t)

=
1

32⇡Ga2(t)

Z
dk

(2⇡)3
dk0

(2⇡)3
ḣij(k, t)ḣ

⇤
ij(k

0, t)

⇥ 1

V

Z

V
dx e�ix(k�k0) ,

with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
V
dx e�ix(k�k0) ! (2⇡)3�(3)(k� k0), and then

⇢GW(t) =
1

32⇡Ga2(t)V

Z
dk

(2⇡)3
ḣij(k, t)ḣ

⇤
ij(k, t) . (11)

The GW energy density spectrum per logarithmic inter-
val, is then defined as

⇢GW(t) =

Z
d⇢GW

d log k
d log k , (12)

with

d⇢GW

d log k
=

k3

(4⇡)3Ga2(t)V

Z
d⌦k

4⇡
ḣij(k, t)ḣ

⇤
ij(k, t) , (13)

where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by

⇢GW =
1

32⇡Ga2(t)

D
ḣij(x, t)ḣij(x, t)

E

=
1

32⇡Ga2(t)

Z
dk

(2⇡)3
dk0

(2⇡)3
eix(k�k0)

⇥
D
ḣij (k, t) ḣ

⇤
ij (k

0, t)
E
. (14)

The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
D
ḣij (k, t) ḣ

⇤
ij (k

0, t)
E
⌘ (2⇡)3 Pḣ(k, t)�

(3)(k� k0) . (15)

Thus

⇢GW(t) =
1

(4⇡)3Ga2(t)

Z
dk

k
k3 Pḣ(k, t) , (16)

and from here, the GW energy density spectrum reads

d⇢GW

d log k
(k, t) =

1

(4⇡)3Ga2(t)
k3 Pḣ(k, t) . (17)

Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
first we write

ḣij(k, t) =
16⇡G

ka(t)

Z t

tI

dt0a(t0)G(k(t�t0))⇧TT
ij (k, t0), (18)

where G(k(t� t0)) ⌘ (k cos[k(t� t0)]�H sin[k(t� t0)]).
From here we obtain

Pḣ(k, t) =
(16⇡G)2

k2a2(t)

Z t

tI

dt0
Z t

tI

dt00a(t0)a(t00) (19)

⇥G(k(t� t0))G(k(t� t00))⇧2(k, t0, t00) ,

where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT

ij ,

⌦
⇧TT

ij (k, t)⇧TT
ij (k0, t0)

↵
⌘ (2⇡)3 ⇧2(k, t, t0) �(3)(k� k0),

.(20)

Recall, from previous lecture on  
the energy-momentum of GW

GW energy density spectrum 
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ḣij(x, t)ḣij(x, t)

E

V
(10)

⌘ 1

32⇡Ga2(t)

1

V

Z

V
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⇤
ij(k, t) . (11)

The GW energy density spectrum per logarithmic inter-
val, is then defined as

⇢GW(t) =

Z
d⇢GW

d log k
d log k , (12)

with

d⇢GW

d log k
=

k3

(4⇡)3Ga2(t)V

Z
d⌦k

4⇡
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⇤
ij(k, t) , (13)

where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by

⇢GW =
1

32⇡Ga2(t)

D
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where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT

ij ,
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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ḣij(k, t)ḣ
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
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The GW energy density spectrum per logarithmic inter-
val, is then defined as
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
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(3)(k� k0) . (15)

Thus

⇢GW(t) =
1

(4⇡)3Ga2(t)

Z
dk

k
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first we write
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stress ⇧TT

ij ,

⌦
⇧TT

ij (k, t)⇧TT
ij (k0, t0)

↵
⌘ (2⇡)3 ⇧2(k, t, t0) �(3)(k� k0),

.(20)

Recall, from previous lecture on  
the energy-momentum of GW

GW energy density spectrum 

: conformal time



3

where ⇤ij,lm(k̂) is a TT-projection operator defined as
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Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
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1

32⇡Ga2(t)V

Z
dk

(2⇡)3
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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ḣij (k, t) ḣ
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Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
first we write
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2
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Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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ḣij(x, t)ḣij(x, t)

E

V
(10)

⌘ 1

32⇡Ga2(t)

1

V

Z

V
dx ḣij(x, t)ḣij(x, t)
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ḣij(k, t)ḣ
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
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dx e�ix(k�k0) ! (2⇡)3�(3)(k� k0), and then
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
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ḣij(k, t) =
16⇡G

ka(t)

Z t

tI

dt0a(t0)G(k(t�t0))⇧TT
ij (k, t0), (18)

where G(k(t� t0)) ⌘ (k cos[k(t� t0)]�H sin[k(t� t0)]).
From here we obtain
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fulfilled at any time, thanks to the fact that Pij k̂j = 0
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ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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ḣij(x, t)ḣij(x, t)
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⇤
ij(k

0, t)

⇥ 1

V

Z

V
dx e�ix(k�k0) ,

with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are
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ḣij(k, t)ḣ
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⇤
ij(k, t) , (13)

where d⌦k represents a solid angle element in k-space.
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cosmic defects. As the symmetry breaking process that
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⇤
ij (k

0, t)
E
⌘ (2⇡)3 Pḣ(k, t)�
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ḣij(k, t)ḣ

⇤
ij(k, t) , (13)

where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by

⇢GW =
1

32⇡Ga2(t)

D
ḣij(x, t)ḣij(x, t)

E

=
1

32⇡Ga2(t)

Z
dk

(2⇡)3
dk0

(2⇡)3
eix(k�k0)

⇥
D
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⇤
ij (k

0, t)
E
. (14)

The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
D
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ḣij(k, t)ḣ
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k3 Pḣ(k, t) . (17)
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ḣij(x, t)ḣij(x, t)
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[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give

ĥij(x, ⌘) =
X

r=+,⇥

Z
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(2⇡)3/2

�
hk(⌘) e

ikx
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ij
(k̂) (125)

The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as

|hk(⌘)| ' H

mPl k
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, for k ⌧ aH (126)
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1 � ln(2) �  0
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✏ ' 1 � 0.27✏, and  0(x) the

Digamma function. In the limit of exact de Sitter ✏ ! 0, Ḣ ! 0, f(✏ ! 0) ! 1 and�
k

aH

��✏ ! 1. Hence the amplitude reduces to⇤

|hk(⌘)| ! H

mPl k
3/2

, for ✏ ! 0 , k ⌧ aH (127)

As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as

h0|ĥij(x, ⌘) ĥij(x, ⌘)|0i =
Z

dk

k
Ph(k) . (128)

Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain

Ph(k) ' 2
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H
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m
2

Pl
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At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to

Ph(k) ' 2

⇡2

H
2

k

m
2

Pl

for k = akHk , (130)

⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).

3

where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
V
dx e�ix(k�k0) ! (2⇡)3�(3)(k� k0), and then
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The GW energy density spectrum per logarithmic inter-
val, is then defined as

⇢GW(t) =
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d log k
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with
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
D
ḣij (k, t) ḣ
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Thus
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and from here, the GW energy density spectrum reads
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d log k
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k3 Pḣ(k, t) . (17)

Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
first we write

ḣij(k, t) =
16⇡G

ka(t)

Z t

tI

dt0a(t0)G(k(t�t0))⇧TT
ij (k, t0), (18)

where G(k(t� t0)) ⌘ (k cos[k(t� t0)]�H sin[k(t� t0)]).
From here we obtain
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where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT

ij ,
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[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give
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The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as
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As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as

h0|ĥij(x, ⌘) ĥij(x, ⌘)|0i =
Z

dk

k
Ph(k) . (128)

Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain

Ph(k) ' 2

⇡2

H
2

m
2

Pl

f
2(✏)

✓
k

aH

◆�2✏

for k ⌧ aH . (129)

At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to

Ph(k) ' 2

⇡2
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for k = akHk , (130)

⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).

Polarizations: +, xquantum operators
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
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The GW energy density spectrum per logarithmic inter-
val, is then defined as
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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ḣij(x, t)ḣij(x, t)
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Pḣ(k, t) =
(16⇡G)2

k2a2(t)

Z t

tI

dt0
Z t

tI

dt00a(t0)a(t00) (19)

⇥G(k(t� t0))G(k(t� t00))⇧2(k, t0, t00) ,

where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT

ij ,

⌦
⇧TT

ij (k, t)⇧TT
ij (k0, t0)

↵
⌘ (2⇡)3 ⇧2(k, t, t0) �(3)(k� k0),

.(20)

h⇤
k(⌘)



Irreducible GW background from Inflation
Tensors = GWs

Stochastic gravitational wave backgrounds and early universe cosmology. 49

[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give
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â
+

kr

�
e

r

ij
(k̂) (125)

The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as
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As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as

h0|ĥij(x, ⌘) ĥij(x, ⌘)|0i =
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Ph(k) . (128)

Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain
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At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to

Ph(k) ' 2
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for k = akHk , (130)

⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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⇤
ij(k

0, t)

⇥ 1

V

Z

V
dx e�ix(k�k0) ,

with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
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The GW energy density spectrum per logarithmic inter-
val, is then defined as
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
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Thus
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and from here, the GW energy density spectrum reads
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Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
first we write
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[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give
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The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as
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As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as
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Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain
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At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to
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⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).
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where ⇤ij,lm(k̂) is a TT-projection operator defined as
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One can easily see that the transverse-traceless condi-
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ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
V
dx e�ix(k�k0) ! (2⇡)3�(3)(k� k0), and then
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The GW energy density spectrum per logarithmic inter-
val, is then defined as
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
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[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give
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The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as
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As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as
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Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain
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At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to
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⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
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val, is then defined as
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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where ⇤ij,lm(k̂) is a TT-projection operator defined as
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One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT
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ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
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ḣij(k, t) =
16⇡G

ka(t)

Z t

tI

dt0a(t0)G(k(t�t0))⇧TT
ij (k, t0), (18)

where G(k(t� t0)) ⌘ (k cos[k(t� t0)]�H sin[k(t� t0)]).
From here we obtain
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[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give
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The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as
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As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as
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Ph(k) . (128)

Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain
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At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to
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for k = akHk , (130)

⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).
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where ⇤ij,lm(k̂) is a TT-projection operator defined as
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One can easily see that the transverse-traceless condi-
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ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
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val, is then defined as
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⇤
ij(k, t) , (13)

where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
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where d⌦k represents a solid angle element in k-space.
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where ⇤ij,lm(k̂) is a TT-projection operator defined as
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Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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ḣij(x, t)ḣij(x, t)

E

=
1

32⇡Ga2(t)

Z
dk

(2⇡)3
dk0

(2⇡)3
eix(k�k0)

⇥
D
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The expectation value in the second line of Eq. (??), as-
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ḣij (k, t) ḣ
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which implies that what will act as a source of GW is the
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[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give
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The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as
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��✏ ! 1. Hence the amplitude reduces to⇤

|hk(⌘)| ! H

mPl k
3/2

, for ✏ ! 0 , k ⌧ aH (127)

As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as
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Ph(k) . (128)

Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain
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At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to
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for k = akHk , (130)

⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).
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where ⇤ij,lm(k̂) is a TT-projection operator defined as
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2
Pij(k̂)Plm(k̂), (7)
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One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
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val, is then defined as
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
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we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
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stochastic background of GWs can then be described by

⇢GW =
1

32⇡Ga2(t)

D
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ḣij(k, t)ḣ

⇤
ij(k, t) . (11)

The GW energy density spectrum per logarithmic inter-
val, is then defined as

⇢GW(t) =

Z
d⇢GW

d log k
d log k , (12)

with

d⇢GW

d log k
=

k3

(4⇡)3Ga2(t)V

Z
d⌦k

4⇡
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[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give
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The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as
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As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as
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Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain
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At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to
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⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).
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ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read
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with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf
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defects, which have their own energy-momentum tensor
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by Tij = T pf
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which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
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k3 Pḣ(k, t) . (17)
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
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ḣij (k, t) ḣ
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k3 Pḣ(k, t) . (17)
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ḣij(x, t)ḣij(x, t)
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⇤
ij (k

0, t)
E
⌘ (2⇡)3 Pḣ(k, t)�
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k3 Pḣ(k, t) , (16)

and from here, the GW energy density spectrum reads

d⇢GW

d log k
(k, t) =

1

(4⇡)3Ga2(t)
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ḣij(k, t)ḣ
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k3 Pḣ(k, t) , (16)

and from here, the GW energy density spectrum reads

d⇢GW

d log k
(k, t) =

1

(4⇡)3Ga2(t)
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bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
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Thus
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and from here, the GW energy density spectrum reads
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d log k
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(4⇡)3Ga2(t)
k3 Pḣ(k, t) . (17)

Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
first we write

ḣij(k, t) =
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where G(k(t� t0)) ⌘ (k cos[k(t� t0)]�H sin[k(t� t0)]).
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where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT
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the corresponding free solutions of Eq. (4) in the two regimes of interest in a cosmological

setting: for wavelengths that are small and large compared to the Hubble radius. Let us

therefore for the moment restrict to the case in which the source is absent, ⇧TT

ij
(x, t) = 0

(the solution in the presence of a generic stochastic source is deferred to section 2.5). It

is convenient to work with conformal time d⌘ = dt/a(t), so that the metric (2) reads

ds
2 = a

2(⌘)
⇥
�d⌘

2 + (�ij + hij) dx
i
dx

j
⇤
. (13)

Defining

Hij(k, ⌘) = a hij(k, ⌘) (14)

Eq. (4) in Fourier space gives
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where a prime denotes the derivative with respect to ⌘ and k = |k| is the comoving wave-

number. We are interested to solve for the time-dependence of the Fourier amplitudes

hr(k, ⌘) given in Eq. (9), which can be easily obtained from equation

H
00

r
(k, ⌘) +

✓
k

2 � a
00

a

◆
Hr(k, ⌘) = 0 (16)

where Hr(k, ⌘) = a hr(k, ⌘) and we have set the source to zero.

Let us focus on a generic scale factor with power law behaviour a(⌘) = an⌘
n,

covering the cases of radiation (n = 1) and matter (n = 2) domination, and De Sitter

inflation with a(⌘) = a�1/|⌘| (see e.g. [7]). The general solution is
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where jn(x), yn(x) are the spherical Bessel functions and Ar(k) and Br(k) are

dimensional constants, to be established from the initial conditions.

Somewhat more explicit solutions can be obtained using the fact that, for a power

law scale factor, a00
/a / H2, where H = a

0
/a is the comoving Hubble factor (see e.g. [7]).

One can therefore solve approximately Eq. (16) in the limits of super-Hubble (k ⌧ H)

and sub-Hubble (k � H) scales (clearly the solutions one obtains are equivalent to the

limits k⌘ ⌧ 1 and k⌘ � 1 of (17)).
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hr(k, ⌘) =
Ar(k)

a(⌘)
e

ik⌘ +
Br(k)

a(⌘)
e

�ik⌘ for k � H . (18)

Again, Ar(k) and Br(k) are dimensional constants, to be established from the initial

conditions. For hij(x, ⌘) to be real, they must satisfy the conditions Ar(�k) = B
⇤
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(k)

and Br(�k) = A
⇤

r
(k). With the above solution for sub-Hubble modes, Eq. (9) reduces to

a superposition of plane waves with wave-vectors k and amplitude decaying as 1/a(⌘):
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}



Irreducible GW background from Inflation

3

where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
V
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The GW energy density spectrum per logarithmic inter-
val, is then defined as
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d log k
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with
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by

⇢GW =
1

32⇡Ga2(t)
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
D
ḣij (k, t) ḣ
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Thus

⇢GW(t) =
1

(4⇡)3Ga2(t)

Z
dk
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k3 Pḣ(k, t) , (16)

and from here, the GW energy density spectrum reads

d⇢GW

d log k
(k, t) =

1

(4⇡)3Ga2(t)
k3 Pḣ(k, t) . (17)

Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
first we write

ḣij(k, t) =
16⇡G

ka(t)
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tI

dt0a(t0)G(k(t�t0))⇧TT
ij (k, t0), (18)

where G(k(t� t0)) ⌘ (k cos[k(t� t0)]�H sin[k(t� t0)]).
From here we obtain
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where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT

ij ,
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↵
⌘ (2⇡)3 ⇧2(k, t, t0) �(3)(k� k0),

.(20)
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fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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power spectrum of the tensor perturbation first deriva-
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Thus
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and from here, the GW energy density spectrum reads
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1

(4⇡)3Ga2(t)
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Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
first we write

ḣij(k, t) =
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where G(k(t� t0)) ⌘ (k cos[k(t� t0)]�H sin[k(t� t0)]).
From here we obtain
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the corresponding free solutions of Eq. (4) in the two regimes of interest in a cosmological

setting: for wavelengths that are small and large compared to the Hubble radius. Let us

therefore for the moment restrict to the case in which the source is absent, ⇧TT

ij
(x, t) = 0

(the solution in the presence of a generic stochastic source is deferred to section 2.5). It

is convenient to work with conformal time d⌘ = dt/a(t), so that the metric (2) reads

ds
2 = a

2(⌘)
⇥
�d⌘

2 + (�ij + hij) dx
i
dx

j
⇤
. (13)

Defining

Hij(k, ⌘) = a hij(k, ⌘) (14)

Eq. (4) in Fourier space gives
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Hij(k, ⌘) = 16⇡Ga

3 ⇧TT
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(k, ⌘) (15)

where a prime denotes the derivative with respect to ⌘ and k = |k| is the comoving wave-

number. We are interested to solve for the time-dependence of the Fourier amplitudes

hr(k, ⌘) given in Eq. (9), which can be easily obtained from equation

H
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(k, ⌘) +

✓
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◆
Hr(k, ⌘) = 0 (16)

where Hr(k, ⌘) = a hr(k, ⌘) and we have set the source to zero.

Let us focus on a generic scale factor with power law behaviour a(⌘) = an⌘
n,

covering the cases of radiation (n = 1) and matter (n = 2) domination, and De Sitter

inflation with a(⌘) = a�1/|⌘| (see e.g. [7]). The general solution is

hr(k, ⌘) =
Ar(k)

an⌘
n�1

jn�1(k⌘) +
Br(k)

an⌘
n�1

yn�1(k⌘) , (17)

where jn(x), yn(x) are the spherical Bessel functions and Ar(k) and Br(k) are

dimensional constants, to be established from the initial conditions.

Somewhat more explicit solutions can be obtained using the fact that, for a power

law scale factor, a00
/a / H2, where H = a

0
/a is the comoving Hubble factor (see e.g. [7]).

One can therefore solve approximately Eq. (16) in the limits of super-Hubble (k ⌧ H)

and sub-Hubble (k � H) scales (clearly the solutions one obtains are equivalent to the

limits k⌘ ⌧ 1 and k⌘ � 1 of (17)).

For sub-Hubble scales, one neglects the term a
00
/a in the coe�cient of Hr(k, ⌘) with

respect to the term k
2; the solution becomes
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ik⌘ +
Br(k)

a(⌘)
e

�ik⌘ for k � H . (18)

Again, Ar(k) and Br(k) are dimensional constants, to be established from the initial

conditions. For hij(x, ⌘) to be real, they must satisfy the conditions Ar(�k) = B
⇤

r
(k)

and Br(�k) = A
⇤

r
(k). With the above solution for sub-Hubble modes, Eq. (9) reduces to

a superposition of plane waves with wave-vectors k and amplitude decaying as 1/a(⌘):
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where ⇤ij,lm(k̂) is a TT-projection operator defined as
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2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
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The GW energy density spectrum per logarithmic inter-
val, is then defined as
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with
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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ḣij(x, t)ḣij(x, t)

E

=
1

32⇡Ga2(t)

Z
dk

(2⇡)3
dk0

(2⇡)3
eix(k�k0)

⇥
D
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
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and from here, the GW energy density spectrum reads
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Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
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fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
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⇤
ij(k, t) . (11)

The GW energy density spectrum per logarithmic inter-
val, is then defined as

⇢GW(t) =

Z
d⇢GW

d log k
d log k , (12)

with

d⇢GW

d log k
=

k3

(4⇡)3Ga2(t)V

Z
d⌦k

4⇡
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⇤
ij (k

0, t)
E
. (14)

The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
D
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k3 Pḣ(k, t) . (17)
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the corresponding free solutions of Eq. (4) in the two regimes of interest in a cosmological

setting: for wavelengths that are small and large compared to the Hubble radius. Let us

therefore for the moment restrict to the case in which the source is absent, ⇧TT

ij
(x, t) = 0

(the solution in the presence of a generic stochastic source is deferred to section 2.5). It

is convenient to work with conformal time d⌘ = dt/a(t), so that the metric (2) reads

ds
2 = a

2(⌘)
⇥
�d⌘

2 + (�ij + hij) dx
i
dx

j
⇤
. (13)

Defining

Hij(k, ⌘) = a hij(k, ⌘) (14)

Eq. (4) in Fourier space gives
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where a prime denotes the derivative with respect to ⌘ and k = |k| is the comoving wave-

number. We are interested to solve for the time-dependence of the Fourier amplitudes

hr(k, ⌘) given in Eq. (9), which can be easily obtained from equation
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Hr(k, ⌘) = 0 (16)

where Hr(k, ⌘) = a hr(k, ⌘) and we have set the source to zero.

Let us focus on a generic scale factor with power law behaviour a(⌘) = an⌘
n,

covering the cases of radiation (n = 1) and matter (n = 2) domination, and De Sitter

inflation with a(⌘) = a�1/|⌘| (see e.g. [7]). The general solution is

hr(k, ⌘) =
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an⌘
n�1
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an⌘
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where jn(x), yn(x) are the spherical Bessel functions and Ar(k) and Br(k) are

dimensional constants, to be established from the initial conditions.

Somewhat more explicit solutions can be obtained using the fact that, for a power

law scale factor, a00
/a / H2, where H = a

0
/a is the comoving Hubble factor (see e.g. [7]).

One can therefore solve approximately Eq. (16) in the limits of super-Hubble (k ⌧ H)

and sub-Hubble (k � H) scales (clearly the solutions one obtains are equivalent to the

limits k⌘ ⌧ 1 and k⌘ � 1 of (17)).

For sub-Hubble scales, one neglects the term a
00
/a in the coe�cient of Hr(k, ⌘) with

respect to the term k
2; the solution becomes
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Again, Ar(k) and Br(k) are dimensional constants, to be established from the initial

conditions. For hij(x, ⌘) to be real, they must satisfy the conditions Ar(�k) = B
⇤

r
(k)

and Br(�k) = A
⇤

r
(k). With the above solution for sub-Hubble modes, Eq. (9) reduces to

a superposition of plane waves with wave-vectors k and amplitude decaying as 1/a(⌘):
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]

⇢GW(t) =
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
V
dx e�ix(k�k0) ! (2⇡)3�(3)(k� k0), and then

⇢GW(t) =
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The GW energy density spectrum per logarithmic inter-
val, is then defined as

⇢GW(t) =
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d log k
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with
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by

⇢GW =
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ḣij (k, t) ḣ
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
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ḣij (k, t) ḣ
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Thus
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and from here, the GW energy density spectrum reads
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Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
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fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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the corresponding free solutions of Eq. (4) in the two regimes of interest in a cosmological

setting: for wavelengths that are small and large compared to the Hubble radius. Let us

therefore for the moment restrict to the case in which the source is absent, ⇧TT

ij
(x, t) = 0

(the solution in the presence of a generic stochastic source is deferred to section 2.5). It

is convenient to work with conformal time d⌘ = dt/a(t), so that the metric (2) reads

ds
2 = a

2(⌘)
⇥
�d⌘

2 + (�ij + hij) dx
i
dx

j
⇤
. (13)

Defining

Hij(k, ⌘) = a hij(k, ⌘) (14)

Eq. (4) in Fourier space gives
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ij
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where a prime denotes the derivative with respect to ⌘ and k = |k| is the comoving wave-

number. We are interested to solve for the time-dependence of the Fourier amplitudes

hr(k, ⌘) given in Eq. (9), which can be easily obtained from equation
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where Hr(k, ⌘) = a hr(k, ⌘) and we have set the source to zero.

Let us focus on a generic scale factor with power law behaviour a(⌘) = an⌘
n,

covering the cases of radiation (n = 1) and matter (n = 2) domination, and De Sitter

inflation with a(⌘) = a�1/|⌘| (see e.g. [7]). The general solution is
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where jn(x), yn(x) are the spherical Bessel functions and Ar(k) and Br(k) are

dimensional constants, to be established from the initial conditions.

Somewhat more explicit solutions can be obtained using the fact that, for a power

law scale factor, a00
/a / H2, where H = a

0
/a is the comoving Hubble factor (see e.g. [7]).

One can therefore solve approximately Eq. (16) in the limits of super-Hubble (k ⌧ H)

and sub-Hubble (k � H) scales (clearly the solutions one obtains are equivalent to the
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Again, Ar(k) and Br(k) are dimensional constants, to be established from the initial

conditions. For hij(x, ⌘) to be real, they must satisfy the conditions Ar(�k) = B
⇤

r
(k)

and Br(�k) = A
⇤

r
(k). With the above solution for sub-Hubble modes, Eq. (9) reduces to

a superposition of plane waves with wave-vectors k and amplitude decaying as 1/a(⌘):
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ḣḣ
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]

⇢GW(t) =
1

32⇡Ga2(t)

D
ḣij(x, t)ḣij(x, t)

E

V
(10)
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V
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=
1

32⇡Ga2(t)

Z
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(2⇡)3
dk0

(2⇡)3
ḣij(k, t)ḣ

⇤
ij(k

0, t)

⇥ 1

V

Z

V
dx e�ix(k�k0) ,

with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
V
dx e�ix(k�k0) ! (2⇡)3�(3)(k� k0), and then

⇢GW(t) =
1

32⇡Ga2(t)V

Z
dk

(2⇡)3
ḣij(k, t)ḣ

⇤
ij(k, t) . (11)

The GW energy density spectrum per logarithmic inter-
val, is then defined as

⇢GW(t) =

Z
d⇢GW

d log k
d log k , (12)

with

d⇢GW

d log k
=

k3

(4⇡)3Ga2(t)V

Z
d⌦k

4⇡
ḣij(k, t)ḣ

⇤
ij(k, t) , (13)

where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by

⇢GW =
1

32⇡Ga2(t)

D
ḣij(x, t)ḣij(x, t)

E
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ij (k

0, t)
E
. (14)

The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
D
ḣij (k, t) ḣ

⇤
ij (k

0, t)
E
⌘ (2⇡)3 Pḣ(k, t)�

(3)(k� k0) . (15)

Thus

⇢GW(t) =
1

(4⇡)3Ga2(t)

Z
dk

k
k3 Pḣ(k, t) , (16)

and from here, the GW energy density spectrum reads

d⇢GW

d log k
(k, t) =

1

(4⇡)3Ga2(t)
k3 Pḣ(k, t) . (17)

Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
first we write

ḣij(k, t) =
16⇡G

ka(t)

Z t

tI

dt0a(t0)G(k(t�t0))⇧TT
ij (k, t0), (18)

where G(k(t� t0)) ⌘ (k cos[k(t� t0)]�H sin[k(t� t0)]).
From here we obtain

Pḣ(k, t) =
(16⇡G)2

k2a2(t)

Z t

tI

dt0
Z t

tI

dt00a(t0)a(t00) (19)

⇥G(k(t� t0))G(k(t� t00))⇧2(k, t0, t00) ,

where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT

ij ,

⌦
⇧TT

ij (k, t)⇧TT
ij (k0, t0)

↵
⌘ (2⇡)3 ⇧2(k, t, t0) �(3)(k� k0),

.(20)
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One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT
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ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]

⇢GW(t) =
1

32⇡Ga2(t)
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
V
dx e�ix(k�k0) ! (2⇡)3�(3)(k� k0), and then

⇢GW(t) =
1

32⇡Ga2(t)V

Z
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ḣij(k, t)ḣ
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ij(k, t) . (11)

The GW energy density spectrum per logarithmic inter-
val, is then defined as

⇢GW(t) =
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d log k
d log k , (12)

with

d⇢GW

d log k
=

k3

(4⇡)3Ga2(t)V
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d⌦k
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ḣij(k, t)ḣ

⇤
ij(k, t) , (13)

where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by

⇢GW =
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D
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
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Thus
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(4⇡)3Ga2(t)
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k3 Pḣ(k, t) , (16)

and from here, the GW energy density spectrum reads
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d log k
(k, t) =

1

(4⇡)3Ga2(t)
k3 Pḣ(k, t) . (17)

Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
first we write

ḣij(k, t) =
16⇡G

ka(t)
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tI

dt0a(t0)G(k(t�t0))⇧TT
ij (k, t0), (18)

where G(k(t� t0)) ⌘ (k cos[k(t� t0)]�H sin[k(t� t0)]).
From here we obtain
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dt00a(t0)a(t00) (19)
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where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT
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the corresponding free solutions of Eq. (4) in the two regimes of interest in a cosmological

setting: for wavelengths that are small and large compared to the Hubble radius. Let us

therefore for the moment restrict to the case in which the source is absent, ⇧TT

ij
(x, t) = 0

(the solution in the presence of a generic stochastic source is deferred to section 2.5). It

is convenient to work with conformal time d⌘ = dt/a(t), so that the metric (2) reads

ds
2 = a

2(⌘)
⇥
�d⌘

2 + (�ij + hij) dx
i
dx

j
⇤
. (13)

Defining

Hij(k, ⌘) = a hij(k, ⌘) (14)

Eq. (4) in Fourier space gives
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Hij(k, ⌘) = 16⇡Ga

3 ⇧TT

ij
(k, ⌘) (15)

where a prime denotes the derivative with respect to ⌘ and k = |k| is the comoving wave-

number. We are interested to solve for the time-dependence of the Fourier amplitudes

hr(k, ⌘) given in Eq. (9), which can be easily obtained from equation

H
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(k, ⌘) +
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◆
Hr(k, ⌘) = 0 (16)

where Hr(k, ⌘) = a hr(k, ⌘) and we have set the source to zero.

Let us focus on a generic scale factor with power law behaviour a(⌘) = an⌘
n,

covering the cases of radiation (n = 1) and matter (n = 2) domination, and De Sitter

inflation with a(⌘) = a�1/|⌘| (see e.g. [7]). The general solution is

hr(k, ⌘) =
Ar(k)

an⌘
n�1

jn�1(k⌘) +
Br(k)
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n�1

yn�1(k⌘) , (17)

where jn(x), yn(x) are the spherical Bessel functions and Ar(k) and Br(k) are

dimensional constants, to be established from the initial conditions.

Somewhat more explicit solutions can be obtained using the fact that, for a power

law scale factor, a00
/a / H2, where H = a

0
/a is the comoving Hubble factor (see e.g. [7]).

One can therefore solve approximately Eq. (16) in the limits of super-Hubble (k ⌧ H)

and sub-Hubble (k � H) scales (clearly the solutions one obtains are equivalent to the

limits k⌘ ⌧ 1 and k⌘ � 1 of (17)).

For sub-Hubble scales, one neglects the term a
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/a in the coe�cient of Hr(k, ⌘) with

respect to the term k
2; the solution becomes
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Again, Ar(k) and Br(k) are dimensional constants, to be established from the initial

conditions. For hij(x, ⌘) to be real, they must satisfy the conditions Ar(�k) = B
⇤

r
(k)

and Br(�k) = A
⇤

r
(k). With the above solution for sub-Hubble modes, Eq. (9) reduces to

a superposition of plane waves with wave-vectors k and amplitude decaying as 1/a(⌘):
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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ḣij(k, t)ḣ
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
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The GW energy density spectrum per logarithmic inter-
val, is then defined as
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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ḣij (k, t) ḣ
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and from here, the GW energy density spectrum reads

d⇢GW

d log k
(k, t) =

1

(4⇡)3Ga2(t)
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where G(k(t� t0)) ⌘ (k cos[k(t� t0)]�H sin[k(t� t0)]).
From here we obtain
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where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT

ij ,

⌦
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↵
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
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The GW energy density spectrum per logarithmic inter-
val, is then defined as
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with
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
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Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
first we write

ḣij(k, t) =
16⇡G

ka(t)

Z t

tI

dt0a(t0)G(k(t�t0))⇧TT
ij (k, t0), (18)

where G(k(t� t0)) ⌘ (k cos[k(t� t0)]�H sin[k(t� t0)]).
From here we obtain

Pḣ(k, t) =
(16⇡G)2

k2a2(t)
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where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT

ij ,
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the corresponding free solutions of Eq. (4) in the two regimes of interest in a cosmological

setting: for wavelengths that are small and large compared to the Hubble radius. Let us

therefore for the moment restrict to the case in which the source is absent, ⇧TT

ij
(x, t) = 0

(the solution in the presence of a generic stochastic source is deferred to section 2.5). It

is convenient to work with conformal time d⌘ = dt/a(t), so that the metric (2) reads

ds
2 = a

2(⌘)
⇥
�d⌘

2 + (�ij + hij) dx
i
dx

j
⇤
. (13)

Defining

Hij(k, ⌘) = a hij(k, ⌘) (14)

Eq. (4) in Fourier space gives

H
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Hij(k, ⌘) = 16⇡Ga

3 ⇧TT

ij
(k, ⌘) (15)

where a prime denotes the derivative with respect to ⌘ and k = |k| is the comoving wave-

number. We are interested to solve for the time-dependence of the Fourier amplitudes

hr(k, ⌘) given in Eq. (9), which can be easily obtained from equation

H
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r
(k, ⌘) +

✓
k

2 � a
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a

◆
Hr(k, ⌘) = 0 (16)

where Hr(k, ⌘) = a hr(k, ⌘) and we have set the source to zero.

Let us focus on a generic scale factor with power law behaviour a(⌘) = an⌘
n,

covering the cases of radiation (n = 1) and matter (n = 2) domination, and De Sitter

inflation with a(⌘) = a�1/|⌘| (see e.g. [7]). The general solution is

hr(k, ⌘) =
Ar(k)

an⌘
n�1

jn�1(k⌘) +
Br(k)

an⌘
n�1

yn�1(k⌘) , (17)

where jn(x), yn(x) are the spherical Bessel functions and Ar(k) and Br(k) are

dimensional constants, to be established from the initial conditions.

Somewhat more explicit solutions can be obtained using the fact that, for a power

law scale factor, a00
/a / H2, where H = a

0
/a is the comoving Hubble factor (see e.g. [7]).

One can therefore solve approximately Eq. (16) in the limits of super-Hubble (k ⌧ H)

and sub-Hubble (k � H) scales (clearly the solutions one obtains are equivalent to the

limits k⌘ ⌧ 1 and k⌘ � 1 of (17)).

For sub-Hubble scales, one neglects the term a
00
/a in the coe�cient of Hr(k, ⌘) with

respect to the term k
2; the solution becomes

hr(k, ⌘) =
Ar(k)

a(⌘)
e

ik⌘ +
Br(k)

a(⌘)
e

�ik⌘ for k � H . (18)

Again, Ar(k) and Br(k) are dimensional constants, to be established from the initial

conditions. For hij(x, ⌘) to be real, they must satisfy the conditions Ar(�k) = B
⇤

r
(k)

and Br(�k) = A
⇤

r
(k). With the above solution for sub-Hubble modes, Eq. (9) reduces to

a superposition of plane waves with wave-vectors k and amplitude decaying as 1/a(⌘):
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]

⇢GW(t) =
1

32⇡Ga2(t)
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ḣij(x, t)ḣij(x, t)

E

V
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⇤
ij(k

0, t)

⇥ 1

V

Z

V
dx e�ix(k�k0) ,

with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
V
dx e�ix(k�k0) ! (2⇡)3�(3)(k� k0), and then

⇢GW(t) =
1

32⇡Ga2(t)V

Z
dk

(2⇡)3
ḣij(k, t)ḣ

⇤
ij(k, t) . (11)

The GW energy density spectrum per logarithmic inter-
val, is then defined as

⇢GW(t) =

Z
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d log k
d log k , (12)

with
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d log k
=
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(4⇡)3Ga2(t)V
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ḣij(k, t)ḣ

⇤
ij(k, t) , (13)

where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by

⇢GW =
1
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
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Thus
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and from here, the GW energy density spectrum reads
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Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
first we write
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]

⇢GW(t) =
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
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⇢GW(t) =
1

32⇡Ga2(t)V
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The GW energy density spectrum per logarithmic inter-
val, is then defined as

⇢GW(t) =
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
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d⇢GW

d log k
(k, t) =

1

(4⇡)3Ga2(t)
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
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read

⇧ij ⌘ Tij � p gij , (9)
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the scenarios we consider in this paper the energy bud-
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tively either as RD or MD. The corresponding energy-
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ij = p gij . On top of
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ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def
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which implies that what will act as a source of GW is the
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distribution of the GW therefore, will be also assumed to
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ḣij(x, t)ḣij(x, t)
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Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
first we write
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Pḣ(k, t) =
(16⇡G)2

k2a2(t)

Z t

tI

dt0
Z t

tI

dt00a(t0)a(t00) (19)

⇥G(k(t� t0))G(k(t� t00))⇧2(k, t0, t00) ,

where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT

ij ,

⌦
⇧TT

ij (k, t)⇧TT
ij (k0, t0)

↵
⌘ (2⇡)3 ⇧2(k, t, t0) �(3)(k� k0),

.(20)

=
⇣ao
a

⌘2 k2

2(1 + z⇤)2
2⇡2

k3
�2

h⇤

d log ⇢GW

d log k
=

1

8

a2o
a4

m2
pk

2

(1 + z⇤)2
�2

h⇤
Ph0Pḣ
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ḣij (k, t) ḣ
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k3 Pḣ(k, t) . (17)
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
V
dx e�ix(k�k0) ! (2⇡)3�(3)(k� k0), and then
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The GW energy density spectrum per logarithmic inter-
val, is then defined as
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d log k
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
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and from here, the GW energy density spectrum reads
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Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
first we write

ḣij(k, t) =
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where G(k(t� t0)) ⌘ (k cos[k(t� t0)]�H sin[k(t� t0)]).
From here we obtain

Pḣ(k, t) =
(16⇡G)2

k2a2(t)

Z t

tI

dt0
Z t

tI

dt00a(t0)a(t00) (19)

⇥G(k(t� t0))G(k(t� t00))⇧2(k, t0, t00) ,

where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT

ij ,
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ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read
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with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf
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defects, which have their own energy-momentum tensor
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ij . It is clear then that ⇧ij = T def
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which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.
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ḣij(x, t)ḣij(x, t)
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ḣij(k, t)ḣ
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dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
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where ⇤ij,lm(k̂) is a TT-projection operator defined as
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One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT
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ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
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defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
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density of a GW background is given by [? ]
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
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first we write
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where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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=
1

32⇡Ga2(t)

Z
dk

(2⇡)3
dk0

(2⇡)3
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with h...iV a spatial average over a su�ciently large vol-
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ḣij(k, t)ḣ
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
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The GW energy density spectrum per logarithmic inter-
val, is then defined as
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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ḣij (k, t) ḣ
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
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One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
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fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf
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T def
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ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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where d⌦k represents a solid angle element in k-space.
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cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
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where ⇤ij,lm(k̂) is a TT-projection operator defined as

⇤ij,lm(k̂) ⌘ Pil(k̂)Pjm(k̂)� 1

2
Pij(k̂)Plm(k̂), (7)

Pij = �ij � k̂ik̂j , k̂i = ki/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, ki⇧TT

ij (k̂, t) = ⇧TT
ii (k̂, t) = 0, are

fulfilled at any time, thanks to the fact that Pij k̂j = 0
and PijPjm = Pim.

The anisotropic stress tensor ⇧µ⌫ describes the devi-
ation of the energy momentum tensor Tµ⌫ with respect
that of a perfect fluid. The spatial-spatial components
read

⇧ij ⌘ Tij � p gij , (9)

with p the homogeneous background pressure and gij =
a2(t)(�ij + hij) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij = p gij . On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij . Hence, in these scenarios, the (spatial-spatial com-

ponents of the) total energy-momentum tensor are given
by Tij = T pf

ij + T def
ij . It is clear then that ⇧ij = T def

ij ,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...iV a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the hij perturbations. In the limit V 1/3 � �⇤,R
V
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The GW energy density spectrum per logarithmic inter-
val, is then defined as
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Z
d⇢GW

d log k
d log k , (12)

with

d⇢GW

d log k
=

k3

(4⇡)3Ga2(t)V

Z
d⌦k

4⇡
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where d⌦k represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...iV by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
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Thus
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and from here, the GW energy density spectrum reads
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Obtaining Pḣ(k, t) is simple. With the help of Eq. (??),
first we write
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where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT
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Pḣ(k, t) =
(16⇡G)2

k2a2(t)

Z t

tI

dt0
Z t

tI

dt00a(t0)a(t00) (19)

⇥G(k(t� t0))G(k(t� t00))⇧2(k, t0, t00) ,

where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT

ij ,

⌦
⇧TT

ij (k, t)⇧TT
ij (k0, t0)

↵
⌘ (2⇡)3 ⇧2(k, t, t0) �(3)(k� k0),

.(20)

=
⇣ao
a

⌘2 k2

2(1 + z⇤)2
2⇡2

k3
�2

h⇤

d log ⇢GW

d log k
=

1

8

a2o
a4

m2
pk

2

(1 + z⇤)2
�2

h⇤
Ph0

⌦(o)
GW

(f) ⌘ 1

⇢(o)c

✓
d log ⇢GW

d log k

◆

o

=
⌦(o)

Rad

24
�2

h⇤(k) (k = 2⇡f)

Pḣ
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Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.

63

scale-invariant (RD modes)

(MD modes)
⌦GW / 1/k2

red tilted (quasi-) scale-invariant (RD modes)

Transfer Funct.:

aLIGO

LISA

Inflation
GW spectrum

d⇢GW

d log k

<latexit sha1_base64="+9RTxZ17J1ucUDvn8M5MeokMd6s=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFclUQK6kYKLnRZwT6gCWEymbRDJzNhZiKUkJUbf8WNC0Xc+g3u/BunbRbaemDgcM653LknTBlV2nG+raXlldW19cpGdXNre2fX3tvvKJFJTNpYMCF7IVKEUU7ammpGeqkkKAkZ6Yaj64nffSBSUcHv9TglfoIGnMYUI22kwD7KI08ORZB7MoE33cITJg0jj4kBHBWBXXPqzhRwkbglqYESrcD+8iKBs4RwjRlSqu86qfZzJDXFjBRVL1MkRXiEBqRvKEcJUX4+PaOAJ0aJYCykeVzDqfp7IkeJUuMkNMkE6aGa9ybif14/0/GFn1OeZppwPFsUZwxqASedwIhKgjUbG4KwpOavEA+RRFib5qqmBHf+5EXSOau7jfrlXaPWvCrrqIBDcAxOgQvOQRPcghZoAwwewTN4BW/Wk/VivVsfs+iSVc4cgD+wPn8AJbeY6w==</latexit>

<latexit sha1_base64="pbxRySdSr1ckhirEGah40Oq2v9Q=">AAACVHicbVFBSxwxGM2M1eq02tUeewldWlaQdUZEvQiiPfRSsMVVYbNdMtlvdsNkMmPyjbAM8yPtQegv6cVDs+NAW+0HgZf3vu8leYkLJS2G4U/PX3qxvPJydS149Xp9401nc+vS5qURMBC5ys11zC0oqWGAEhVcFwZ4Fiu4itOzhX51C8bKXF/gvIBRxqdaJlJwdNS4k1700m16TJmCBJmKDRdAAxbDVOqKG8PndSVUHUT0I92hFTMZ/fapZizopeNmBzf1brr9fe+P/qXRGehJaxAwI6cz7I873bAfNkWfg6gFXdLW+bjzg01yUWagUShu7TAKCxw5V5RCgfMtLRRcpHwKQwc1z8COqiaUmn5wzIQmuXFLI23Yvycqnlk7z2LXmXGc2afagvyfNiwxORpVUhclghaPByWlopjTRcJ0Ig0IVHMHuDDS3ZWKGXfBovuHwIUQPX3yc3C5148O+vtf97snp20cq+QdeU96JCKH5IR8JudkQAS5I7884nnevffgL/nLj62+1868Jf+Uv/Ebn92vYw==</latexit>

T (k) =

⇢
1 ,RD

(keq/k)2 ,MD

Not Observable !

except (perhaps)  

@ the CMB

Ω(o)
rad

24
T(k)Δ2

h*
(k)

energy scale

Small red-tilt



Irreducible GW background from Inflation

⌦(o)
GW

(f) ⌘ 1

⇢(o)c

✓
d log ⇢GW

d log k

◆

o

=
⌦(o)

Rad

24
�2

h⇤(k) �2
h(k) =

2

⇡2

✓
H

mp

◆2 ✓
k

aH

◆nt

nt ⌘ �2✏

-18.0 -14.0 -10.0 -6.0 -2.0 2.0 6.0 10.0
Log[f]

-16.0

-14.0

-12.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0
Lo
g[
h 0

2 Ω
G
W
]

Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.

4
As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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2

[17]
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It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
primordial inflationary spectrum �2

h,inf(k) [c.f. Eq. (2.6)] by means of a transfer function
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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where in the first line we have used k = akHk and introduced the RD transfer function
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
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(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.

4
As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.

– 11 –

Rad. 
Plateau

} }

factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.
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it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
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h,inf(k) [c.f. Eq. (2.6)] by means of a transfer function
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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where in the first line we have used k = akHk and introduced the RD transfer function
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.
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As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.
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CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
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(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.
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approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.
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consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.
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During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
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(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
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the plateau characterizing the energy density spectrum today is [5]
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background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
primordial inflationary spectrum �2

h,inf(k) [c.f. Eq. (2.6)] by means of a transfer function
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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where in the first line we have used k = akHk and introduced the RD transfer function
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.

4
As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.
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to quantify the ability of GW direct detection experiments to measure the inflationary GW
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Figure 2. Comparison among di↵erent forms of the present-day GW energy density spectra: full
form in the instant transition case (blue) found (exactly) analytically in Eq. (3.32), full form in the
smooth transition case (red) evaluated numerically, oscillation-averaged in the instant transition case
() found (exactly) analytically in Eq. (3.23), oscillation-averaged in the smooth transition case ()
found (approximately) analytically in Eq. (3.30), and

For completeness, we also plot the GW spectrum without averaging over oscillations. In the
instant transition this corresponds to
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whereas in a smooth transition we need to obtain the spectrum fully numerically as
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where a(⌧) and Hk(⌧) are the solution to the di↵erential equations

a0(⌧) = a(⌧)2H⇤
⇣
(1� �)a(⌧)�3(1+ws) + � a(⌧)�4

⌘1/2
, a(⌧⇤) = 1 (3.36)

H00
k
(⌧) + 2

a0(⌧)

a(⌧)
H0

k
(⌧) + k2Hk(⌧) = 0 ,

⇢
Hk(⌧ = ✏/k) = 1 ,
Hk(⌧ = ✏/k) = 0 ,

, (3.37)

with ✏ ⌧ 1 an arbitrary small (positive) number guaranteeing that the evolution of the tensor
modes start at super-horizon scales, and � ⌘ ⇢⇤rad/⇢⇤ is the initial fraction of the radiation
energy density. We observe that if we average the expression of Wosc() from Eq. (3.33) over
mode oscillations, we recover the expression for W() from Eq. (3.20), as it should.

– 14 –

Real signal:
highly oscillatorySmooth transition

Instant transition
Stochastic Signal: 

average measurement
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.

4
As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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[17]
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It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
primordial inflationary spectrum �2

h,inf(k) [c.f. Eq. (2.6)] by means of a transfer function
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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where in the first line we have used k = akHk and introduced the RD transfer function
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.
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As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
primordial inflationary spectrum �2

h,inf(k) [c.f. Eq. (2.6)] by means of a transfer function
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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where in the first line we have used k = akHk and introduced the RD transfer function
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
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(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale
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4 Detection Prospects

4.1 Parameter space region probe-able by LISA and Advanced LIGO

The GW energy spectrum h2⌦(abrupt)
GW (⌧0, f) in the abrupt transition case for modes that re-

enter the horizon before the matter-radiation equality for di↵erent values of the inflationary
Hubble rate Hinf, the equation of state parameter in the SD epoch wS, and the frequency
corresponding to the mode that re-enters the hoirzon at the transition from SD to RD
epoch fRD, together with the sensitivity curves of LISA and Advanced LIGO, are shown in
Figure 35. As can be seen, the spectrum consists of two parts: a plateau and a blue-tilted
part. The model parameters Hinf, wS, and fRD, respectively, control the level of the plateau,
the slope of the blue-tilted part, and the location (in frequency space) of the “elbow” where
the plateau part and the blue-tilted part are connected. The non-detection of B-modes in
the CMB puts a bound on the Hubble rate Hinf during inflation Hinf . 6.6⇥ 1013 GeV and
the requirement to reheat before the start of BBN puts a bound on fRD, fRD & 10�11 Hz.
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Figure 3. The expected GW energy spectra in the abrupt transition case h2⌦(abrupt)
GW (⌧0, f) (black

solid lines) for di↵erent values of Hinf, fRD, and wS, together with the LISA sensitivity curve (blue
solid line), LIGO sensitivity curves (green solid lines), and BBN extra degrees of freedom bound (red
dotted line). In the top-left figure, we fix w = 0.8 and fRD = 10�9 Hz and plot the GW energy
spectrum for Hinf = 1012 GeV, 1013 GeV, 1014 GeV. In the top-right figure, we fix Hinf = 1013 GeV
and w = 0.8 and plot the GW energy spectrum for fRD = 10�7 Hz, 10�9 Hz, 10�11 Hz. In the bottom
figure, we fix Hinf = 1013 GeV and fRD = 10�9 Hz and plot the GW energy spectrum for w = 0.5,
0.7, 1.
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(smooth)

GW
(⌧0, f) is also shown in the same figure,
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.

4
As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
primordial inflationary spectrum �2

h,inf(k) [c.f. Eq. (2.6)] by means of a transfer function
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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where in the first line we have used k = akHk and introduced the RD transfer function
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
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It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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where in the first line we have used k = akHk and introduced the RD transfer function
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon
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4 Detection Prospects

4.1 Parameter space region probe-able by LISA and Advanced LIGO

The GW energy spectrum h2⌦(abrupt)
GW (⌧0, f) in the abrupt transition case for modes that re-

enter the horizon before the matter-radiation equality for di↵erent values of the inflationary
Hubble rate Hinf, the equation of state parameter in the SD epoch wS, and the frequency
corresponding to the mode that re-enters the hoirzon at the transition from SD to RD
epoch fRD, together with the sensitivity curves of LISA and Advanced LIGO, are shown in
Figure 35. As can be seen, the spectrum consists of two parts: a plateau and a blue-tilted
part. The model parameters Hinf, wS, and fRD, respectively, control the level of the plateau,
the slope of the blue-tilted part, and the location (in frequency space) of the “elbow” where
the plateau part and the blue-tilted part are connected. The non-detection of B-modes in
the CMB puts a bound on the Hubble rate Hinf during inflation Hinf . 6.6⇥ 1013 GeV and
the requirement to reheat before the start of BBN puts a bound on fRD, fRD & 10�11 Hz.
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Figure 3. The expected GW energy spectra in the abrupt transition case h2⌦(abrupt)
GW (⌧0, f) (black

solid lines) for di↵erent values of Hinf, fRD, and wS, together with the LISA sensitivity curve (blue
solid line), LIGO sensitivity curves (green solid lines), and BBN extra degrees of freedom bound (red
dotted line). In the top-left figure, we fix w = 0.8 and fRD = 10�9 Hz and plot the GW energy
spectrum for Hinf = 1012 GeV, 1013 GeV, 1014 GeV. In the top-right figure, we fix Hinf = 1013 GeV
and w = 0.8 and plot the GW energy spectrum for fRD = 10�7 Hz, 10�9 Hz, 10�11 Hz. In the bottom
figure, we fix Hinf = 1013 GeV and fRD = 10�9 Hz and plot the GW energy spectrum for w = 0.5,
0.7, 1.
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain

W(f/fRD ⌧ 1) �! A�1
s

✓
f

fRD

◆�2(1�↵s)

, W(f/fRD � 1) �! 1 , (3.25)

and hence

⌦(0)
GW(f) ' ⌦(0)

GW

���
plateau

⇥

8
><

>:

1 , f ⌧ fRD

As

⇣
f

fRD

⌘2(1�↵s)
, f � fRD

(3.26)

What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
primordial inflationary spectrum �2

h,inf(k) [c.f. Eq. (2.6)] by means of a transfer function
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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where in the first line we have used k = akHk and introduced the RD transfer function
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon
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a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.
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(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
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Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
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being we simply consider an identical suppression of all the modes crossing during RD as
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4 Detection Prospects

4.1 Parameter space region probe-able by LISA and Advanced LIGO

The GW energy spectrum h2⌦(abrupt)
GW (⌧0, f) in the abrupt transition case for modes that re-

enter the horizon before the matter-radiation equality for di↵erent values of the inflationary
Hubble rate Hinf, the equation of state parameter in the SD epoch wS, and the frequency
corresponding to the mode that re-enters the hoirzon at the transition from SD to RD
epoch fRD, together with the sensitivity curves of LISA and Advanced LIGO, are shown in
Figure 35. As can be seen, the spectrum consists of two parts: a plateau and a blue-tilted
part. The model parameters Hinf, wS, and fRD, respectively, control the level of the plateau,
the slope of the blue-tilted part, and the location (in frequency space) of the “elbow” where
the plateau part and the blue-tilted part are connected. The non-detection of B-modes in
the CMB puts a bound on the Hubble rate Hinf during inflation Hinf . 6.6⇥ 1013 GeV and
the requirement to reheat before the start of BBN puts a bound on fRD, fRD & 10�11 Hz.
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Figure 3. The expected GW energy spectra in the abrupt transition case h2⌦(abrupt)
GW (⌧0, f) (black

solid lines) for di↵erent values of Hinf, fRD, and wS, together with the LISA sensitivity curve (blue
solid line), LIGO sensitivity curves (green solid lines), and BBN extra degrees of freedom bound (red
dotted line). In the top-left figure, we fix w = 0.8 and fRD = 10�9 Hz and plot the GW energy
spectrum for Hinf = 1012 GeV, 1013 GeV, 1014 GeV. In the top-right figure, we fix Hinf = 1013 GeV
and w = 0.8 and plot the GW energy spectrum for fRD = 10�7 Hz, 10�9 Hz, 10�11 Hz. In the bottom
figure, we fix Hinf = 1013 GeV and fRD = 10�9 Hz and plot the GW energy spectrum for w = 0.5,
0.7, 1.
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Taking the sub-horizon limit of expression (3.10), squaring it, and averaging over oscillations,
we arrive at
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where we recall that  ⌘ k/kRD = f/fRD, a⇤H⇤⌧̃s(⌧) = ↵s + a⇤H⇤(⌧ � ⌧⇤) [c.f. (3.8)], and in
the second line we have used the scale factor a(⌧) = a1+↵s

⇤ H↵s

⇤ ↵�↵s

s [⌧̃s(⌧)]↵s deep inside SD
during ⌧⇤  ⌧ ⌧ ⌧RD [c.f. (3.3)], and we have used (3.28) and kRD ⌘ aRDHRD.

Now that the solution is expressed in terms of the scale factor, it remains valid in all the
subsequent epochs, and so we can omit the superscript (sti↵). Building the present-day tensor
power spectrum �2
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(⌧0)|2 with (3.19), and plugging this into (2.9), leads

to the present-day energy spectrum for the modes k � kRD re-entering the horizon during
the SD,
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where in the second step we have introduced the inflationary tensor power spectrum (2.6)
(with nt = 0) and used  ⌘ k/kRD, kRD = aRDHRD and ⇡ = 4�2(3/2), whereas in the third
step we have used that  = f/fRD, the definition of As [c.f. Eq. (3.24)] and of the inflationary
plateau [c.f. (2.11)], and the fact that in a smooth transition ⇢rad(⌧RD) = ⇢crit(⌧RD)/2 =
3H2

RD/16⇡G, which implies
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We notice that in (3.31) there is an extra factor of 2 compared to the analogous expression
(3.22) for the abrupt transition case. As before, in the final expression of Eq. (3.30) we

absorbed the e↵ects due to the changes in the relativistic degrees of freedom into ⌦(0)
GW

���
plateau

.

If we compare the expression of the high-frequency branch of the GW energy spectrum
we just obtained in the smooth transition case with its instant transition counterpart (3.26),
we see that the normalization constant is now a factor 21�↵s larger, which ranges from 1 (if
wS = 1/3) to

p
2 (if wS ! 1). For comparison we plot in Fig. 3.2 the present GW energy

density power spectrum obtained in the instant SD-to-RD transition model, c.f. Eq. (3.23), to-
gether with the high frequency branch obtained in the smooth transition case, c.f. Eq. (3.30).
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2

pH
2
RD. This and the scaling law of radiation

energy density implies

✓
aRD

a0

◆4✓HRD

H0

◆2

=
8⇡G⇢rad(⌧0)

3H2
0

= ⌦(0)
rad

✓
g⇤,k
g⇤,0

◆✓
gs,0
gs,k

◆4/3

. (3.22)

Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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✓
f

fRD

◆2(1�↵s)

, (3.23)

where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant

As ⌘
�2 (↵s + 1/2)

22(1�↵s)↵2↵s
s �2(3/2)

, (3.24)

which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain

W(f/fRD ⌧ 1) �! A�1
s

✓
f

fRD

◆�2(1�↵s)

, W(f/fRD � 1) �! 1 , (3.25)

and hence

⌦(0)
GW(f) ' ⌦(0)

GW

���
plateau

⇥

8
><

>:

1 , f ⌧ fRD

As

⇣
f

fRD

⌘2(1�↵s)
, f � fRD

(3.26)

What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,

nt ⌘
d log⌦(0)

GW

d log f
= 2(1� ↵s) = 2

✓
3!S � 1

3!S + 1

◆
> 0 , (3.27)

which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.

4
As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.
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4 Detection Prospects

4.1 Parameter space region probe-able by LISA and Advanced LIGO

The GW energy spectrum h2⌦(abrupt)
GW (⌧0, f) in the abrupt transition case for modes that re-

enter the horizon before the matter-radiation equality for di↵erent values of the inflationary
Hubble rate Hinf, the equation of state parameter in the SD epoch wS, and the frequency
corresponding to the mode that re-enters the hoirzon at the transition from SD to RD
epoch fRD, together with the sensitivity curves of LISA and Advanced LIGO, are shown in
Figure 35. As can be seen, the spectrum consists of two parts: a plateau and a blue-tilted
part. The model parameters Hinf, wS, and fRD, respectively, control the level of the plateau,
the slope of the blue-tilted part, and the location (in frequency space) of the “elbow” where
the plateau part and the blue-tilted part are connected. The non-detection of B-modes in
the CMB puts a bound on the Hubble rate Hinf during inflation Hinf . 6.6⇥ 1013 GeV and
the requirement to reheat before the start of BBN puts a bound on fRD, fRD & 10�11 Hz.
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Figure 3. The expected GW energy spectra in the abrupt transition case h2⌦(abrupt)
GW (⌧0, f) (black

solid lines) for di↵erent values of Hinf, fRD, and wS, together with the LISA sensitivity curve (blue
solid line), LIGO sensitivity curves (green solid lines), and BBN extra degrees of freedom bound (red
dotted line). In the top-left figure, we fix w = 0.8 and fRD = 10�9 Hz and plot the GW energy
spectrum for Hinf = 1012 GeV, 1013 GeV, 1014 GeV. In the top-right figure, we fix Hinf = 1013 GeV
and w = 0.8 and plot the GW energy spectrum for fRD = 10�7 Hz, 10�9 Hz, 10�11 Hz. In the bottom
figure, we fix Hinf = 1013 GeV and fRD = 10�9 Hz and plot the GW energy spectrum for w = 0.5,
0.7, 1.

5
If the GW energy spectrum in the smooth transition case ⌦

(smooth)

GW
(⌧0, f) is also shown in the same figure,

the di↵erence between ⌦
(abrupt)

GW
(⌧0, f) and ⌦

(smooth)

GW
(⌧0, f) would be nearly unnoticeable.
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Figure 7. Remaining parameter space region probe-able by LISA after removing the part that is
incompatible with the upper bounds on GW stochastic backgrounds. In the left panel we show fixed-
Hinf slices of the parameter space compatible with the BBN constraint Eq. (4.5), whereas in the
right panel we show the analogous plot but imposing the more restrictive CMB constraint Eq. (4.10).
If we vary Hinf continuously, instead of discretely as done here, the spiky feature of the remaining
parameter space region would become infinitely dense, and the resulting figures on the left and right
panels would have clean, horizontal cuts at ws ⇡ 0.56 and ws ⇡ 0.53 respectively, both which are
shown above in dashed lines.

as all other components in the Universe. In the second case, labeled as the homogeneous
initial condition, the GW background is not perturbed and the curvature perturbation is
the one of the standard adiabatic case. We view this second option for initial conditions
as more justified, since it applies to most of the known cosmological GW backgrounds, and
certainly to the background studied in this paper. The most recent analysis on this [49]
only analyzes the case of adiabatic initial conditions. Extrapolating this result to the case
of GWs with homogeneous initial conditions, Ref. [23] concludes that the constraint should
yield approximately a bound as

h2⌦GW(⌧0, f) . 2⇥ 10�7 , (4.10)

which is a factor ⇠ 5 more stringent than the BBN bound (4.5). In the right panel of
Figure 7, we show how the parameter space region probe-able by LISA would change if
we take into consideration the CMB upper bound (4.10) on the amount of GWs. The CMB
bound (4.10) suggests that there must be less GWs in the Universe (in the form of a stochastic
background that permeates all space) than suggested by the BBN bound (4.6). Consequently,
the parameter space compatible with a detection by LISA and satisfying at the same time
Eq. (4.10) is smaller than the parameter space compatible with a detection by LISA while
satisfying Eq. (4.5) [compare the size of the areas of the parameter regions in the right panel
of Figure 7 with respect to those in the left panel]. Identical reasoning as before explains as
well the straight line cut in the right panel in Figure 7 which rules out the region ws & 0.53,
independently of Hinf and fRD. The CMB bound is however not as robust as the BBN
bound, because Eq. (4.10) is based on a extrapolation of the actual CMB constraint, based
on an adiabatic initial condition for the GW background. We therefore prefer to stick only
the BBN bound (4.6) in what follows.

From the left panel of Figure 7 it becomes clear that the initially large regions of
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Axion-Inflation
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INFLATIONARY MODELS

We leave the potential V (ϕ) arbitrary, except to assume that it is sufficiently flat to sup-

port the required amount of inflation (Ne
>∼ 60). We assume a spatially flat Friedmann-

Robertson-Walker (FRW) space-time with metric

ds2 ≡ gµνdx
µdxν = −dt2 + a2(t) dx · dx (2.3)

= a2(τ)
[

−dτ2 + dx · dx
]

(2.4)

where on the second line we have introduced conformal time, τ , related to cosmic time as

adτ = dt. Derivatives with respect to cosmic time are denoted as ∂tf ≡ ḟ and with respect

to conformal time as ∂τf ≡ f ′. The Hubble rate H ≡ ȧ/a has conformal time analogue

H ≡ a′/a.

We are first interested in the gauge quanta which are produced by the homogeneous

rolling inflaton φ(τ). To this end, we can ignore the inflaton and metric perturbations

in the equations of motion of the gauge field (see section 5 for the complete treatment).

Extremizing the action with respect to A0, and choosing the Coulomb gauge A0 = 0, then

gives
(

∇⃗ · A⃗
)′

= 0, from which we set ∇⃗ · A⃗ = 0. The equations of motion for A⃗ then read

A⃗′′ −∇2A⃗− α

f
φ′ ∇⃗ × A⃗ = 0 (2.5)

As we discuss in subsection 2.1, this equation describes the production of the quanta of

the gauge fields that results from the motion of the inflaton.

The produced gauge quanta have two key effects: they backreact on the homogeneous

background dynamics (see subsection 2.2) and also source inflaton perturbations (see sub-

section 2.3). Both effects are governed by the equation of motion of the inflaton, and the

00 Einstein equation, which read, respectively

ϕ′′ + 2Hϕ′ −∇2ϕ+ a2
dV

dϕ
= a2

α

f
E⃗ · B⃗

H2 =
1

3M2
p

[
1

2
ϕ′2 +

1

2

(

∇⃗ϕ
)2

+ a2 V +
a2

2

(

E⃗2 + B⃗2
)
]

(2.6)

In these equations we have retained the spatial dependence of ϕ (due to the inflaton

perturbations), and we have introduced the physical “electric” and “magnetic” fields2

B⃗ =
1

a2
∇⃗ × A⃗, E⃗ = − 1

a2
A⃗′ (2.7)

2.1 Production of Gauge Field Fluctuations

During inflation, the motion of the inflaton leads to an instability for the fluctuations

of the gauge field. To see this effect, we start from the equation of motion for Aµ in

the background of the homogeneous inflaton φ(t), eq. (2.5) above. We decompose the

q-number field A⃗(τ,x) as

A⃗(τ,x) =
∑

λ=±

∫
d3k

(2π)3/2

[

ϵ⃗λ(k)aλ(k)Aλ(τ,k)e
ik·x + h.c.

]

(2.8)

2We do not assume that Aµ necessarily corresponds to the Standard Model electro-magnetic gauge

potential.
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Photon: 2 helicities where “h.c.” denotes the Hermitian conjugate of the preceding term, the annihilation/creation

operators obey [

aλ(k), a
†
λ′(k′)

]

= δλλ′δ(3)(k− k′) (2.9)

Here ϵ⃗λ are circular polarization vectors satisfying k⃗ · ϵ⃗±
(

k⃗
)

= 0, k⃗× ϵ⃗±
(

k⃗
)

= ∓ikϵ⃗±
(

k⃗
)

,

ϵ⃗±
(

−⃗k
)

= ϵ⃗±
(

k⃗
)∗

, and normalized according to ϵ⃗λ
(

k⃗
)∗

· ϵ⃗λ′

(

k⃗
)

= δλλ′ .

Inserting the decomposition (2.8) into eq. (2.5) results in the equation of motion

[
∂2

∂τ2
+ k2 ± 2kξ

τ

]

A±(τ, k) = 0, ξ ≡ αφ̇

2fH
(2.10)

for the c-number mode functions A±. During inflation the parameter ξ may be treated as

constant, as its time variation is subleading in a slow roll expansion.

From equation (2.10) we see that one of the polarizations of A⃗λ experiences a tachyonic

instability for k/(aH) <∼ 2ξ. Without loss of generality, we assume that φ̇ > 0 during

inflation, so that the mode exhibiting the instability is A+. In appendix A we review the

solutions of (2.10) and show that the growth of fluctuations is well described by [15]

A+(τ, k) ∼=
1√
2k

(
k

2ξaH

)1/4

eπξ−2
√

2ξk/(aH) (2.11)

in the interval (8ξ)−1 <∼ k/(aH) <∼ 2ξ [18] of phase space that accounts for most of the

power in the produced gauge fluctuations. The phase space of growing modes is non-

vanishing for ξ >∼ O(1), which we assume throughout. Notice the exponential enhancement

eπξ in the solution (2.11), which arises due to tachyonic instability, and reflects significant

nonperturbative gauge particle production in the regime ξ >∼ 1. On the other hand, the

production of gauge field fluctuations is uninterestingly small for ξ < 1. Note also that the

other polarization state, A−(τ, k), is not produced and can therefore be ignored.

We have thus seen that the motion of the homogeneous inflaton φ(t) leads to produc-

tion of gauge field quanta δAµ. There are two key physical effects associated with the

interactions of these produced quanta with the inflaton. The first effect is the backreaction

of the produced quanta on the homogeneous dynamics of φ(t), a(t). In the next subsec-

tion we study the conditions under which backreaction effects are negligible. The second

key physical effect is the production of inflaton fluctuations via inverse decay ; this is the

subject of subsection 2.3.

2.2 Backreaction Effects

Backreaction effects can be accounted for using the mean of the field equations (2.6):

φ̈+ 3Hφ̇+ V ′(φ) =
α

f
⟨E⃗ · B⃗⟩ (2.12)

3H2 =
1

M2
p

[
1

2
φ̇2 + V (φ) +

1

2
⟨E⃗2 + B⃗2⟩

]

(2.13)

where we have switched to physical time. The expectation values appearing in (2.12,2.13)

encode the backreaction of the produced gauge quanta on the homogeneous dynamics of
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INFLATIONARY MODELS

We leave the potential V (ϕ) arbitrary, except to assume that it is sufficiently flat to sup-

port the required amount of inflation (Ne
>∼ 60). We assume a spatially flat Friedmann-

Robertson-Walker (FRW) space-time with metric

ds2 ≡ gµνdx
µdxν = −dt2 + a2(t) dx · dx (2.3)

= a2(τ)
[

−dτ2 + dx · dx
]

(2.4)

where on the second line we have introduced conformal time, τ , related to cosmic time as

adτ = dt. Derivatives with respect to cosmic time are denoted as ∂tf ≡ ḟ and with respect

to conformal time as ∂τf ≡ f ′. The Hubble rate H ≡ ȧ/a has conformal time analogue

H ≡ a′/a.

We are first interested in the gauge quanta which are produced by the homogeneous

rolling inflaton φ(τ). To this end, we can ignore the inflaton and metric perturbations

in the equations of motion of the gauge field (see section 5 for the complete treatment).

Extremizing the action with respect to A0, and choosing the Coulomb gauge A0 = 0, then

gives
(

∇⃗ · A⃗
)′

= 0, from which we set ∇⃗ · A⃗ = 0. The equations of motion for A⃗ then read

A⃗′′ −∇2A⃗− α

f
φ′ ∇⃗ × A⃗ = 0 (2.5)

As we discuss in subsection 2.1, this equation describes the production of the quanta of

the gauge fields that results from the motion of the inflaton.

The produced gauge quanta have two key effects: they backreact on the homogeneous

background dynamics (see subsection 2.2) and also source inflaton perturbations (see sub-

section 2.3). Both effects are governed by the equation of motion of the inflaton, and the

00 Einstein equation, which read, respectively

ϕ′′ + 2Hϕ′ −∇2ϕ+ a2
dV

dϕ
= a2

α

f
E⃗ · B⃗

H2 =
1

3M2
p

[
1

2
ϕ′2 +

1

2

(

∇⃗ϕ
)2

+ a2 V +
a2

2

(

E⃗2 + B⃗2
)
]

(2.6)

In these equations we have retained the spatial dependence of ϕ (due to the inflaton

perturbations), and we have introduced the physical “electric” and “magnetic” fields2

B⃗ =
1

a2
∇⃗ × A⃗, E⃗ = − 1

a2
A⃗′ (2.7)

2.1 Production of Gauge Field Fluctuations

During inflation, the motion of the inflaton leads to an instability for the fluctuations

of the gauge field. To see this effect, we start from the equation of motion for Aµ in

the background of the homogeneous inflaton φ(t), eq. (2.5) above. We decompose the

q-number field A⃗(τ,x) as

A⃗(τ,x) =
∑

λ=±

∫
d3k

(2π)3/2

[

ϵ⃗λ(k)aλ(k)Aλ(τ,k)e
ik·x + h.c.

]

(2.8)

2We do not assume that Aµ necessarily corresponds to the Standard Model electro-magnetic gauge

potential.
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where “h.c.” denotes the Hermitian conjugate of the preceding term, the annihilation/creation

operators obey [

aλ(k), a
†
λ′(k′)

]

= δλλ′δ(3)(k− k′) (2.9)

Here ϵ⃗λ are circular polarization vectors satisfying k⃗ · ϵ⃗±
(

k⃗
)

= 0, k⃗× ϵ⃗±
(

k⃗
)

= ∓ikϵ⃗±
(

k⃗
)

,

ϵ⃗±
(

−⃗k
)

= ϵ⃗±
(

k⃗
)∗

, and normalized according to ϵ⃗λ
(

k⃗
)∗

· ϵ⃗λ′

(

k⃗
)

= δλλ′ .

Inserting the decomposition (2.8) into eq. (2.5) results in the equation of motion

[
∂2

∂τ2
+ k2 ± 2kξ

τ

]

A±(τ, k) = 0, ξ ≡ αφ̇

2fH
(2.10)

for the c-number mode functions A±. During inflation the parameter ξ may be treated as

constant, as its time variation is subleading in a slow roll expansion.

From equation (2.10) we see that one of the polarizations of A⃗λ experiences a tachyonic

instability for k/(aH) <∼ 2ξ. Without loss of generality, we assume that φ̇ > 0 during

inflation, so that the mode exhibiting the instability is A+. In appendix A we review the

solutions of (2.10) and show that the growth of fluctuations is well described by [15]

A+(τ, k) ∼=
1√
2k

(
k

2ξaH

)1/4

eπξ−2
√

2ξk/(aH) (2.11)

in the interval (8ξ)−1 <∼ k/(aH) <∼ 2ξ [18] of phase space that accounts for most of the

power in the produced gauge fluctuations. The phase space of growing modes is non-

vanishing for ξ >∼ O(1), which we assume throughout. Notice the exponential enhancement

eπξ in the solution (2.11), which arises due to tachyonic instability, and reflects significant

nonperturbative gauge particle production in the regime ξ >∼ 1. On the other hand, the

production of gauge field fluctuations is uninterestingly small for ξ < 1. Note also that the

other polarization state, A−(τ, k), is not produced and can therefore be ignored.

We have thus seen that the motion of the homogeneous inflaton φ(t) leads to produc-

tion of gauge field quanta δAµ. There are two key physical effects associated with the

interactions of these produced quanta with the inflaton. The first effect is the backreaction

of the produced quanta on the homogeneous dynamics of φ(t), a(t). In the next subsec-

tion we study the conditions under which backreaction effects are negligible. The second

key physical effect is the production of inflaton fluctuations via inverse decay ; this is the

subject of subsection 2.3.

2.2 Backreaction Effects

Backreaction effects can be accounted for using the mean of the field equations (2.6):

φ̈+ 3Hφ̇+ V ′(φ) =
α

f
⟨E⃗ · B⃗⟩ (2.12)

3H2 =
1

M2
p

[
1

2
φ̇2 + V (φ) +

1

2
⟨E⃗2 + B⃗2⟩

]

(2.13)

where we have switched to physical time. The expectation values appearing in (2.12,2.13)

encode the backreaction of the produced gauge quanta on the homogeneous dynamics of
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Axion-Inflation

We leave the potential V (ϕ) arbitrary, except to assume that it is sufficiently flat to sup-

port the required amount of inflation (Ne
>∼ 60). We assume a spatially flat Friedmann-

Robertson-Walker (FRW) space-time with metric

ds2 ≡ gµνdx
µdxν = −dt2 + a2(t) dx · dx (2.3)

= a2(τ)
[

−dτ2 + dx · dx
]

(2.4)

where on the second line we have introduced conformal time, τ , related to cosmic time as

adτ = dt. Derivatives with respect to cosmic time are denoted as ∂tf ≡ ḟ and with respect

to conformal time as ∂τf ≡ f ′. The Hubble rate H ≡ ȧ/a has conformal time analogue

H ≡ a′/a.

We are first interested in the gauge quanta which are produced by the homogeneous

rolling inflaton φ(τ). To this end, we can ignore the inflaton and metric perturbations

in the equations of motion of the gauge field (see section 5 for the complete treatment).

Extremizing the action with respect to A0, and choosing the Coulomb gauge A0 = 0, then

gives
(

∇⃗ · A⃗
)′

= 0, from which we set ∇⃗ · A⃗ = 0. The equations of motion for A⃗ then read

A⃗′′ −∇2A⃗− α

f
φ′ ∇⃗ × A⃗ = 0 (2.5)

As we discuss in subsection 2.1, this equation describes the production of the quanta of

the gauge fields that results from the motion of the inflaton.

The produced gauge quanta have two key effects: they backreact on the homogeneous

background dynamics (see subsection 2.2) and also source inflaton perturbations (see sub-

section 2.3). Both effects are governed by the equation of motion of the inflaton, and the

00 Einstein equation, which read, respectively

ϕ′′ + 2Hϕ′ −∇2ϕ+ a2
dV

dϕ
= a2

α

f
E⃗ · B⃗

H2 =
1

3M2
p

[
1

2
ϕ′2 +

1

2

(

∇⃗ϕ
)2

+ a2 V +
a2

2

(

E⃗2 + B⃗2
)
]

(2.6)

In these equations we have retained the spatial dependence of ϕ (due to the inflaton

perturbations), and we have introduced the physical “electric” and “magnetic” fields2

B⃗ =
1

a2
∇⃗ × A⃗, E⃗ = − 1

a2
A⃗′ (2.7)

2.1 Production of Gauge Field Fluctuations

During inflation, the motion of the inflaton leads to an instability for the fluctuations

of the gauge field. To see this effect, we start from the equation of motion for Aµ in

the background of the homogeneous inflaton φ(t), eq. (2.5) above. We decompose the

q-number field A⃗(τ,x) as

A⃗(τ,x) =
∑

λ=±

∫
d3k

(2π)3/2

[

ϵ⃗λ(k)aλ(k)Aλ(τ,k)e
ik·x + h.c.

]

(2.8)

2We do not assume that Aµ necessarily corresponds to the Standard Model electro-magnetic gauge

potential.
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where “h.c.” denotes the Hermitian conjugate of the preceding term, the annihilation/creation

operators obey [

aλ(k), a
†
λ′(k′)

]

= δλλ′δ(3)(k− k′) (2.9)

Here ϵ⃗λ are circular polarization vectors satisfying k⃗ · ϵ⃗±
(

k⃗
)

= 0, k⃗× ϵ⃗±
(

k⃗
)

= ∓ikϵ⃗±
(

k⃗
)

,

ϵ⃗±
(

−⃗k
)

= ϵ⃗±
(

k⃗
)∗

, and normalized according to ϵ⃗λ
(

k⃗
)∗

· ϵ⃗λ′

(

k⃗
)

= δλλ′ .

Inserting the decomposition (2.8) into eq. (2.5) results in the equation of motion

[
∂2

∂τ2
+ k2 ± 2kξ

τ

]

A±(τ, k) = 0, ξ ≡ αφ̇

2fH
(2.10)

for the c-number mode functions A±. During inflation the parameter ξ may be treated as

constant, as its time variation is subleading in a slow roll expansion.

From equation (2.10) we see that one of the polarizations of A⃗λ experiences a tachyonic

instability for k/(aH) <∼ 2ξ. Without loss of generality, we assume that φ̇ > 0 during

inflation, so that the mode exhibiting the instability is A+. In appendix A we review the

solutions of (2.10) and show that the growth of fluctuations is well described by [15]

A+(τ, k) ∼=
1√
2k

(
k

2ξaH

)1/4

eπξ−2
√

2ξk/(aH) (2.11)

in the interval (8ξ)−1 <∼ k/(aH) <∼ 2ξ [18] of phase space that accounts for most of the

power in the produced gauge fluctuations. The phase space of growing modes is non-

vanishing for ξ >∼ O(1), which we assume throughout. Notice the exponential enhancement

eπξ in the solution (2.11), which arises due to tachyonic instability, and reflects significant

nonperturbative gauge particle production in the regime ξ >∼ 1. On the other hand, the

production of gauge field fluctuations is uninterestingly small for ξ < 1. Note also that the

other polarization state, A−(τ, k), is not produced and can therefore be ignored.

We have thus seen that the motion of the homogeneous inflaton φ(t) leads to produc-

tion of gauge field quanta δAµ. There are two key physical effects associated with the

interactions of these produced quanta with the inflaton. The first effect is the backreaction

of the produced quanta on the homogeneous dynamics of φ(t), a(t). In the next subsec-

tion we study the conditions under which backreaction effects are negligible. The second

key physical effect is the production of inflaton fluctuations via inverse decay ; this is the

subject of subsection 2.3.

2.2 Backreaction Effects

Backreaction effects can be accounted for using the mean of the field equations (2.6):

φ̈+ 3Hφ̇+ V ′(φ) =
α

f
⟨E⃗ · B⃗⟩ (2.12)

3H2 =
1

M2
p

[
1

2
φ̇2 + V (φ) +

1

2
⟨E⃗2 + B⃗2⟩

]

(2.13)

where we have switched to physical time. The expectation values appearing in (2.12,2.13)

encode the backreaction of the produced gauge quanta on the homogeneous dynamics of
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2.2 Backreaction Effects

Backreaction effects can be accounted for using the mean of the field equations (2.6):

φ̈+ 3Hφ̇+ V ′(φ) =
α

f
⟨E⃗ · B⃗⟩ (2.12)

3H2 =
1

M2
p

[
1

2
φ̇2 + V (φ) +

1

2
⟨E⃗2 + B⃗2⟩

]

(2.13)

where we have switched to physical time. The expectation values appearing in (2.12,2.13)
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INFLATIONARY MODELS

Gauge field excitation creates chiral GWs !

1. Gravitational Waves (GWs) [Basics]

• GW: ds2 = a
2(�d⌘

2 + (�ij + hij)dxi
dx

j), TT :

⇢
hii = 0
hij ,j = 0

Eom: h00
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0
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hij = 16⇡G⇧TT
ij , ⇧ij = Tij � hTiji

FRW

Transverse-Traceless (TT) dof carry energy out of the source!!!

• GW Source(s): ( SCALARS , VECTOR , FERMIONS )
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INFLATIONARY MODELS

Gauge field excitation creates chiral GWs !
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Figure 4. Spectrum of GWs today h
2⌦GW obtained from a numerical integration of the dynamical

equations of motion (for a model of quadratic inflaton potential, with inflaton - gauge field coupling
f = MPl/35), versus the local parametrization h

2⌦GW / (f/f⇤)nT , evaluated at various pivot fre-
quencies f⇤ and with the spectral tilt nT obtained from successive approximations to the analytic
expression (3.13).

In figure 4, we compare the analytic expression (3.13) for the spectral tilt nT against the
result of a numerical evolution of ⌦GWh

2. For definiteness, we choose a quadratic inflaton
potential, and we fix the coupling between the gauge field and the inflaton to f = MPl/35.
This gives ⇠N=60 ' 2.46 at the CMB scales. We observe from the figure that the final
expression for the tilt in (3.13) provides a very good approximation (red segments in the
figure) to the slope of the numerical result (blue solid line in the figure). The term (1� ✏) in
the denominator of (3.13), due to the fractional change of the Hubble rate Ḣ/H

2, contributes
to nT only to second order in slow-roll parameters, and hence we disregard it. The expression
nT ' �4✏+ (4⇡⇠ � 6)(✏� ⌘) predicts correctly the slope of the numerical signal, within the
LISA frequency range, to better than ⇠ 4%. In the figure, the di↵erence between the red
segments and the true numerical signal cannot be distinguished by eye.

Let us note that for the range of ⇠ that LISA can probe [⇠ & 3.5, see figure (5)], the
term �4✏ in the final expression of (3.13) is actually negligible compared to the other terms.
We can thus further approximate the expression for the tilt as nT ' (4⇡⇠ � 6) (✏� ⌘), which
still predicts correctly the slope of the numerical signal within the LISA frequency range,
for instance in the fiducial chaotic quadratic model to better than ⇠ 10%. The advantage
of using this simplified expression for the tilt is that it allows us to reduce the number of
independent variables that the GW signal depends on, from {HN , ⇠, ✏, ⌘} to {HN , ⇠, (✏� ⌘)}.
This simplifies our next goal, which is to obtain a model-independent parameter estimation
based on the LISA sensitivity curves.

In figure 5 we plot the region in the parameter space (⇠, ✏ � ⌘) that LISA is capa-
ble of probing, with the left and right panels depicting, LISA’s best (A5M5) and worst
(A1M2) configurations, respectively. In both panels we take as a pivot scale f⇤ the frequency

of the minimum of each LISA sensitivity curve h
2⌦(AiMj)

GW (f), with f⇤|A5M5 ' 0.00346 Hz
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where “h.c.” denotes the Hermitian conjugate of the preceding term, the annihilation/creation

operators obey [

aλ(k), a
†
λ′(k′)

]

= δλλ′δ(3)(k− k′) (2.9)

Here ϵ⃗λ are circular polarization vectors satisfying k⃗ · ϵ⃗±
(

k⃗
)

= 0, k⃗× ϵ⃗±
(

k⃗
)

= ∓ikϵ⃗±
(

k⃗
)

,

ϵ⃗±
(

−⃗k
)

= ϵ⃗±
(

k⃗
)∗

, and normalized according to ϵ⃗λ
(

k⃗
)∗

· ϵ⃗λ′

(

k⃗
)

= δλλ′ .

Inserting the decomposition (2.8) into eq. (2.5) results in the equation of motion

[
∂2

∂τ2
+ k2 ± 2kξ

τ

]

A±(τ, k) = 0, ξ ≡ αφ̇

2fH
(2.10)

for the c-number mode functions A±. During inflation the parameter ξ may be treated as

constant, as its time variation is subleading in a slow roll expansion.

From equation (2.10) we see that one of the polarizations of A⃗λ experiences a tachyonic

instability for k/(aH) <∼ 2ξ. Without loss of generality, we assume that φ̇ > 0 during

inflation, so that the mode exhibiting the instability is A+. In appendix A we review the

solutions of (2.10) and show that the growth of fluctuations is well described by [15]

A+(τ, k) ∼=
1√
2k

(
k

2ξaH

)1/4

eπξ−2
√

2ξk/(aH) (2.11)

in the interval (8ξ)−1 <∼ k/(aH) <∼ 2ξ [18] of phase space that accounts for most of the

power in the produced gauge fluctuations. The phase space of growing modes is non-

vanishing for ξ >∼ O(1), which we assume throughout. Notice the exponential enhancement

eπξ in the solution (2.11), which arises due to tachyonic instability, and reflects significant

nonperturbative gauge particle production in the regime ξ >∼ 1. On the other hand, the

production of gauge field fluctuations is uninterestingly small for ξ < 1. Note also that the

other polarization state, A−(τ, k), is not produced and can therefore be ignored.

We have thus seen that the motion of the homogeneous inflaton φ(t) leads to produc-

tion of gauge field quanta δAµ. There are two key physical effects associated with the

interactions of these produced quanta with the inflaton. The first effect is the backreaction

of the produced quanta on the homogeneous dynamics of φ(t), a(t). In the next subsec-

tion we study the conditions under which backreaction effects are negligible. The second

key physical effect is the production of inflaton fluctuations via inverse decay ; this is the

subject of subsection 2.3.

2.2 Backreaction Effects

Backreaction effects can be accounted for using the mean of the field equations (2.6):

φ̈+ 3Hφ̇+ V ′(φ) =
α

f
⟨E⃗ · B⃗⟩ (2.12)

3H2 =
1

M2
p

[
1

2
φ̇2 + V (φ) +

1

2
⟨E⃗2 + B⃗2⟩

]

(2.13)

where we have switched to physical time. The expectation values appearing in (2.12,2.13)

encode the backreaction of the produced gauge quanta on the homogeneous dynamics of
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vanishing for ξ >∼ O(1), which we assume throughout. Notice the exponential enhancement
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nonperturbative gauge particle production in the regime ξ >∼ 1. On the other hand, the

production of gauge field fluctuations is uninterestingly small for ξ < 1. Note also that the

other polarization state, A−(τ, k), is not produced and can therefore be ignored.

We have thus seen that the motion of the homogeneous inflaton φ(t) leads to produc-
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tion we study the conditions under which backreaction effects are negligible. The second
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the circumstances i), ii) or iii) are met during inflation, can significantly overtake

the irreducible GW signal due to quantum fluctuations. However, as the features of

the inflationary quantum vacuum fluctuations reflect the underlying gravity theory,

circumstance iv) may also a↵ect significantly the form of the irreducible background.

We discuss case i) in Section 5.1, case ii) in Section 5.2.1, case iii) in Section 5.2.2,

and finally case iv) in Section 5.4. In all these circumstances, the spectrum of GWs

can be rather large and blue-tilted, or exhibit a large-amplitude bump at specific scales.

Therefore, the perspective of detecting these inflation-related backgrounds with GW

interferometers, is very compelling. These scenarios represent a new source of GWs,

providing an attractive target for the upcoming GW detectors like e.g. LISA, which

will have the ability to probe a significant fraction of the parameter space of these

scenarios [151].

Let us note that other considerations not encompassed by circumstances i)-iv),

may also lead to large backgrounds of GWs, still related to inflation. In particular,

in Section 5.3.2, we will consider the case of an inflationary potential leading to the

formation of large peaks in the scalar spectrum at small scales. These peaks may

eventually collapse into primordial black holes after horizon re-entry and, upon later

merging, lead to a large background of GWs. For completeness, we also consider in

Section 5.5 the GW background produced from alternative theories to inflation, namely

bounce and string gas cosmologies.

5.1. Particle Production during Inflation

Gravitational waves can be emitted classically during inflation if an anisotropic stress

is present during the inflationary stage. If such is the case, GWs produced inside the

horizon during inflation are diluted by the exponential expansion of the background.

Only once a given wavelength crosses outside the Hubble radius, does the GW amplitude

remains constant. Therefore, in order to minimize the amount of dilution, in order

to provide a non-negligible GW signal, mechanisms of GW generation by a non-zero

anisotropic stress during inflation, must operate su�ciently close to the Hubble scale.

The emission of GWs by particle production during inflation pertains to this

category of GW generation. Several models of particle production have been discussed

in the literature. In general, particle production during inflation is possible because,

as the inflaton rolls down its potential, it provides a time-dependent background that

carries the energy necessary for the production of su�ciently light species [152]. The

energy momentum tensor of the produced species represents an anisotropic stress over

the background energy-momentum tensor, hence sourcing GWs. In the following we

consider two cases, di↵erentiated by the transient and sustainable nature of the particle

production mechanism.

5.1.1. Transient particle production Let us consider either a scalar field � or some

fermion species  , coupled to the inflaton � with Lagrangian �L� = (@�)2/2 +

Stochastic gravitational wave backgrounds and early universe cosmology. 53

g
2(� � �0)2�2

/2, and �L =  ̄�
µ
@µ + g(� � �0) ̄ , respectively. Alternatively,
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is the field strength, and � = �e
i✓ is a complex field. In this latter case, we do not

identify � with the inflaton⇤. We assume however that � evolves during inflation in

such a way that its amplitude vanishes at some point �(t0) ⌘ �0 = 0. In either of the

three scenarios, when � crosses around �0 (�0 6= 0 if � is the inflaton, �0 = 0 otherwise),

the mass m = g(�(t) � �0) vanishes exactly at t = t0 when �(t0) = �0. For a short

period of time �tna around t0,

�tna ⇠ 1/µ , µ
2 ⌘ g�̇0 , (138)

the mass changes non-adiabatically as ṁ � m
2, leading to an explosive production of

particles† [155]. The occupation number of the quanta created is actually independent

of the spin of excited species (given the interactions considered), and it reads nk =

Exp{�⇡(k/µ)2} [156]. This shows clearly that only long wave modes k ⌧ µ modes are

excited, as short modes evolve adiabatically around t0.

In all three cases (scalars, fermions, and vectors), GWs are generated by the

anisotropic distribution of the created species. Since particle production happens around

the precise time t0 when �(t0) = �0, the spectrum of GWs shows a feature at the

frequency today corresponding to that moment. This feature represents an additional

contribution on top of the standard irreducible vacuum tensor spectrum.

Notably, even though the field structure of the energy-momentum tensor sourcing

the GWs depends on the spin of the excited species, Barnaby et al [156] has shown

that, due to some cancellations, the GW produced by the created particles is essentially

independent of their spin, modulo normalization factors of order O(1). To see this,

let us write the total power spectrum as P (tot)

h
(k) = P (vac)

h
(k) + P (pp)

h
(k), with

P (vac)

h
(k) ⌘ (2/⇡2)(H/mpl)2 the vacuum contribution given by Eq. (130). Detailed

calculations [154, 157, 156] show that the contribution P (pp)

h
(k) from the newly created

particles, distorts the total tensor power spectrum like
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(139)

with W (x) ⌘ (sin(x)�x cos(x))
2

x3 , and where the exact amplitude depends on the spin. This

corresponds to a scale-dependent distortion which reaches its biggest amplitude around

the horizon scale x0 = k⌧0 ' 1, with W (x0) ' 0.5. The maximum distortion of the

vacuum tensor spectrum peaks therefore around the horizon scale at the moment of

particle production ⌧0. When the excited species are either a scalar or a fermion field,

⇤To simplify the discussion on the particle production of the three cases (scalar �, fermion  

and vector Aµ fields), we maintain the same notation � for the field causing the particle production,
independently of the nature of the field causing the particle excitation.

†�tna must be shorter than a Hubble time in order for the particle production to be e�cient,
i.e. �tna ⌧ 1/H. This implies a coupling range g

2 � H
2
/|�̇|.
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x3 , and where the exact amplitude depends on the spin. This
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vacuum tensor spectrum peaks therefore around the horizon scale at the moment of

particle production ⌧0. When the excited species are either a scalar or a fermion field,

⇤To simplify the discussion on the particle production of the three cases (scalar �, fermion  

and vector Aµ fields), we maintain the same notation � for the field causing the particle production,
independently of the nature of the field causing the particle excitation.

†�tna must be shorter than a Hubble time in order for the particle production to be e�cient,
i.e. �tna ⌧ 1/H. This implies a coupling range g

2 � H
2
/|�̇|.
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2, leading to an explosive production of

particles† [155]. The occupation number of the quanta created is actually independent

of the spin of excited species (given the interactions considered), and it reads nk =

Exp{�⇡(k/µ)2} [156]. This shows clearly that only long wave modes k ⌧ µ modes are

excited, as short modes evolve adiabatically around t0.

In all three cases (scalars, fermions, and vectors), GWs are generated by the

anisotropic distribution of the created species. Since particle production happens around

the precise time t0 when �(t0) = �0, the spectrum of GWs shows a feature at the

frequency today corresponding to that moment. This feature represents an additional

contribution on top of the standard irreducible vacuum tensor spectrum.

Notably, even though the field structure of the energy-momentum tensor sourcing

the GWs depends on the spin of the excited species, Barnaby et al [156] has shown

that, due to some cancellations, the GW produced by the created particles is essentially

independent of their spin, modulo normalization factors of order O(1). To see this,

let us write the total power spectrum as P (tot)

h
(k) = P (vac)

h
(k) + P (pp)

h
(k), with

P (vac)

h
(k) ⌘ (2/⇡2)(H/mpl)2 the vacuum contribution given by Eq. (130). Detailed

calculations [154, 157, 156] show that the contribution P (pp)

h
(k) from the newly created

particles, distorts the total tensor power spectrum like

�Ph

Ph

⌘ P (tot)

h
� P (vac)

h

P (vac)

h

⌘ P (pp)

h

P (vac)

h

⇠ few ⇥ O(10�4)
H

2

m
2

pl

W (k⌧0)
⇣
µ

H

⌘3

ln2(µ/H) ,

(139)

with W (x) ⌘ (sin(x)�x cos(x))
2

x3 , and where the exact amplitude depends on the spin. This

corresponds to a scale-dependent distortion which reaches its biggest amplitude around

the horizon scale x0 = k⌧0 ' 1, with W (x0) ' 0.5. The maximum distortion of the

vacuum tensor spectrum peaks therefore around the horizon scale at the moment of

particle production ⌧0. When the excited species are either a scalar or a fermion field,

⇤To simplify the discussion on the particle production of the three cases (scalar �, fermion  

and vector Aµ fields), we maintain the same notation � for the field causing the particle production,
independently of the nature of the field causing the particle excitation.

†�tna must be shorter than a Hubble time in order for the particle production to be e�cient,
i.e. �tna ⌧ 1/H. This implies a coupling range g

2 � H
2
/|�̇|.

Scalar Fld

Fermion Fld

Gauge Fld

Stochastic gravitational wave backgrounds and early universe cosmology. 53

g
2(� � �0)2�2

/2, and �L =  ̄�
µ
@µ + g(� � �0) ̄ , respectively. Alternatively,

we can also consider the dynamics of a gauge field Aµ following the Lagrangian

L = �1

4
Fµ⌫F

µ⌫ � |(@µ � gAµ)�)|2 � V (�†�) [153, 154], where Fµ⌫ = @µA⌫ � @⌫Aµ

is the field strength, and � = �e
i✓ is a complex field. In this latter case, we do not

identify � with the inflaton⇤. We assume however that � evolves during inflation in

such a way that its amplitude vanishes at some point �(t0) ⌘ �0 = 0. In either of the

three scenarios, when � crosses around �0 (�0 6= 0 if � is the inflaton, �0 = 0 otherwise),

the mass m = g(�(t) � �0) vanishes exactly at t = t0 when �(t0) = �0. For a short

period of time �tna around t0,

�tna ⇠ 1/µ , µ
2 ⌘ g�̇0 , (138)

the mass changes non-adiabatically as ṁ � m
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independently of the nature of the field causing the particle excitation.

†�tna must be shorter than a Hubble time in order for the particle production to be e�cient,
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GW generation !?
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Non-adiabatic field excitation (particle creation !)

large excitation  
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(spin-independent)
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(Only                 long-wave modes excited)



INFLATIONARY MODELS

fields coupled to the inflaton ?
(i.e. no need of extra symmetry) GW generation !?
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GWs power spectrum: from particle
production
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excited, as short modes evolve adiabatically around t0.
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anisotropic distribution of the created species. Since particle production happens around

the precise time t0 when �(t0) = �0, the spectrum of GWs shows a feature at the

frequency today corresponding to that moment. This feature represents an additional
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Notably, even though the field structure of the energy-momentum tensor sourcing
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with W (x) ⌘ (sin(x)�x cos(x))
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x3 , and where the exact amplitude depends on the spin. This

corresponds to a scale-dependent distortion which reaches its biggest amplitude around

the horizon scale x0 = k⌧0 ' 1, with W (x0) ' 0.5. The maximum distortion of the

vacuum tensor spectrum peaks therefore around the horizon scale at the moment of

particle production ⌧0. When the excited species are either a scalar or a fermion field,

⇤To simplify the discussion on the particle production of the three cases (scalar �, fermion  

and vector Aµ fields), we maintain the same notation � for the field causing the particle production,
independently of the nature of the field causing the particle excitation.

†�tna must be shorter than a Hubble time in order for the particle production to be e�cient,
i.e. �tna ⌧ 1/H. This implies a coupling range g
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Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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with W (x) ⌘ (sin(x)�x cos(x))
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x3 , and where the exact amplitude depends on the spin. This

corresponds to a scale-dependent distortion which reaches its biggest amplitude around

the horizon scale x0 = k⌧0 ' 1, with W (x0) ' 0.5. The maximum distortion of the

vacuum tensor spectrum peaks therefore around the horizon scale at the moment of

particle production ⌧0. When the excited species are either a scalar or a fermion field,

⇤To simplify the discussion on the particle production of the three cases (scalar �, fermion  

and vector Aµ fields), we maintain the same notation � for the field causing the particle production,
independently of the nature of the field causing the particle excitation.

†�tna must be shorter than a Hubble time in order for the particle production to be e�cient,
i.e. �tna ⌧ 1/H. This implies a coupling range g
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Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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Figure 1. Single field potential V (�) (in arbitrary units) with an inflection point (vertical line) and
an asymptotically flat plateau. The parameters chosen are a = 3/2 and b = 1, which give an inflection
point at � = v.

under a redefinition of parameters, x = �/v,m2 = � v
2, a = ↵/� and b = ⇠ v

2. Although there
are four independent parameters (m, ↵, �, ⇠), we can see that only two of them are relevant
for the evolution during inflation near the inflection point, i.e. (a, b). We have plotted in
Fig. 1 the potential, for specific values of the parameters, which shows an inflection point at
small values of the field.

This potential has an inflection point, V 0(�) = 0, for certain values of the parameters
(a, b) which can be obtained by solving the third order equation

1� a x+ (1� b)x2 +
ab

3
x
3 = 0 , (2.3)
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For our choice of values of the model parameters, a = 3/2, b = 1, �N = 35 and � =
4 ⇥ 10�5, we find ns = 0.9489, dns/d ln k = �0.0019, r = 0.018, which are in agreement
with CMB constraints. The CMB amplitude (3.7) determines � = 1.21⇥ 10�7 via Eq. (3.2).
Furthermore, with these parameters, the whole power spectrum satisfy the observational
constraints in the whole range of scales, from both CMB and LSS, as can be seen in Fig. 5.
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= 0.011± 0.028 (95% c.l.) , (3.9)

r < 0.09 (95% c.l.) . (3.10)

For our choice of values of the model parameters, a = 3/2, b = 1, �N = 35 and � =
4 ⇥ 10�5, we find ns = 0.9489, dns/d ln k = �0.0019, r = 0.018, which are in agreement
with CMB constraints. The CMB amplitude (3.7) determines � = 1.21⇥ 10�7 via Eq. (3.2).
Furthermore, with these parameters, the whole power spectrum satisfy the observational
constraints in the whole range of scales, from both CMB and LSS, as can be seen in Fig. 5.
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and Yokoyama [34] have recently pointed out that current gravitational wave bounds are sufficient to rule out PBHs
as possible candidates for intermediate mass black holes.
If we could determine the amplitude and frequency of these induced gravitational waves then we would be able

to determine the primordial density perturbation when the corresponding scales crossed the Hubble scale during the
early hot big bang. Throughout this paper we will use the following formula to relate the frequency of gravitational
waves at the present time to the temperature at Hubble-crossing in the early radiation-dominated era [33]:

ν =
c

λ0
≈ 1.2× 10−8 g1/6∗

(

T

GeV

)

Hz , (3)

where g∗ is the effective number of degrees of freedom. We are able to place upper bounds on the primordial density
perturbation from BBN and cosmic microwave background (CMB) constraints and as well as current LIGO, VIRGO
and pulsar timing data. If we do not detect gravitational waves with future pulsar timing [35, 36] and future detectors
like Advanced LIGO [37], Advanced VIRGO [38], LISA [40], BBO [42] and DECIGO [43], the upper bounds on the
primordial density perturbation will become significantly tighter.
We emphasize that our bounds come from adopting the standard, minimal cosmological model of adiabatic density

perturbations, in their growing mode, in a radiation-dominated early universe from ultra-high energies (∼ 1016 GeV)
until matter-domination when T < eV. The quantitative constraints will be altered if one adopts non-standard
cosmological evolution [44, 45] such as an early matter-era (e.g., temporary domination of the energy density by
massive, non-relativistic particles) or a stiff-fluid-dominated era (e.g., domination by the kinetic energy of a coherent,
fast-rolling scalar field). On general grounds one expects an early era dominated by fluid ”softer” than radiation,
P/ρ < 1/3, to dilute the fractional density of gravitational waves whose wavelength is smaller than the comoving
Hubble scale (and thus behave like radiation), while the fractional density of sub-horizon gravitational waves grows
relative to matter which is stiffer than radiation [47]. On the other hand the evolution of density perturbations
which give rise to gravitational waves is also altered, see for example Ref. [33]. Non-adiabatic modes in a multi-
component system can lead to large-scale adiabatic density perturbations by the time of last-scattering but arise
from initial isocurvature perturbations, so are not necessarily constrained by our analysis. One such example is the
curvaton scenario, where the gravitational waves may be enhanced with respect to the adiabatic case if the curvaton
is subdominant when it decays [48]. Such models need to be considered on a case by case basis.
This paper is organized as follows: in section 2 we introduce the basic equations used to determine the induced

gravitational wave background and define the effective energy density of second-order gravitational waves. In section 3
we quantify the constraints placed on the primordial density perturbation by a variety of experiments. We present
our conclusions in section 4.

II. SECOND-ORDER GRAVITATIONAL WAVES

In this section we will briefly review the generation of induced gravitational waves. Details of the calculations have
been described previously [30, 31].
The perturbed metric in the longitudinal gauge is

ds2 = a2(η)[−(1 + 2Φ)dη2 + [(1 − 2Ψ)δij + 2F(i,j) + hij ]dx
idxj ] (4)

where Φ and Ψ are scalar metric perturbation, Fi is a transverse vector perturbation and hij is a transverse and
trace-free tensor perturbation. The scalar metric perturbations, Φ and Ψ, are supported by density perturbations,
and in the absence of anisotropic stress we require Φ = Ψ [49]. We will find it convenient to use the Fourier transform

Φ(x) =
1

(2π)
3

2

∫

d3kΦk e
ik.x , (5)

where, for an isotropic distribution, the power spectrum is given by

⟨ΦkΦk′⟩ =
2π2

k3
δ3(k + k

′)P(k) (6)

On large scales (much larger than the Hubble scale) the power spectrum of the primordial scalar perturbation is
commonly approximated by a power law

P(k) =
4

9
△2

R

(

k

k∗

)ns−1

(7)



INFLATIONARY MODELS

INFLATION 
non-monotonic

IF{multi-field

{

�2
R

possible to 
enhance      

(at small scales)

Let us suppose      �2
R � �2

R
��
CMB

⇠ 3 · 10�9 ,@ small scales

2

and Yokoyama [34] have recently pointed out that current gravitational wave bounds are sufficient to rule out PBHs
as possible candidates for intermediate mass black holes.
If we could determine the amplitude and frequency of these induced gravitational waves then we would be able

to determine the primordial density perturbation when the corresponding scales crossed the Hubble scale during the
early hot big bang. Throughout this paper we will use the following formula to relate the frequency of gravitational
waves at the present time to the temperature at Hubble-crossing in the early radiation-dominated era [33]:
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where g∗ is the effective number of degrees of freedom. We are able to place upper bounds on the primordial density
perturbation from BBN and cosmic microwave background (CMB) constraints and as well as current LIGO, VIRGO
and pulsar timing data. If we do not detect gravitational waves with future pulsar timing [35, 36] and future detectors
like Advanced LIGO [37], Advanced VIRGO [38], LISA [40], BBO [42] and DECIGO [43], the upper bounds on the
primordial density perturbation will become significantly tighter.
We emphasize that our bounds come from adopting the standard, minimal cosmological model of adiabatic density

perturbations, in their growing mode, in a radiation-dominated early universe from ultra-high energies (∼ 1016 GeV)
until matter-domination when T < eV. The quantitative constraints will be altered if one adopts non-standard
cosmological evolution [44, 45] such as an early matter-era (e.g., temporary domination of the energy density by
massive, non-relativistic particles) or a stiff-fluid-dominated era (e.g., domination by the kinetic energy of a coherent,
fast-rolling scalar field). On general grounds one expects an early era dominated by fluid ”softer” than radiation,
P/ρ < 1/3, to dilute the fractional density of gravitational waves whose wavelength is smaller than the comoving
Hubble scale (and thus behave like radiation), while the fractional density of sub-horizon gravitational waves grows
relative to matter which is stiffer than radiation [47]. On the other hand the evolution of density perturbations
which give rise to gravitational waves is also altered, see for example Ref. [33]. Non-adiabatic modes in a multi-
component system can lead to large-scale adiabatic density perturbations by the time of last-scattering but arise
from initial isocurvature perturbations, so are not necessarily constrained by our analysis. One such example is the
curvaton scenario, where the gravitational waves may be enhanced with respect to the adiabatic case if the curvaton
is subdominant when it decays [48]. Such models need to be considered on a case by case basis.
This paper is organized as follows: in section 2 we introduce the basic equations used to determine the induced

gravitational wave background and define the effective energy density of second-order gravitational waves. In section 3
we quantify the constraints placed on the primordial density perturbation by a variety of experiments. We present
our conclusions in section 4.
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been described previously [30, 31].
The perturbed metric in the longitudinal gauge is

ds2 = a2(η)[−(1 + 2Φ)dη2 + [(1 − 2Ψ)δij + 2F(i,j) + hij ]dx
idxj ] (4)

where Φ and Ψ are scalar metric perturbation, Fi is a transverse vector perturbation and hij is a transverse and
trace-free tensor perturbation. The scalar metric perturbations, Φ and Ψ, are supported by density perturbations,
and in the absence of anisotropic stress we require Φ = Ψ [49]. We will find it convenient to use the Fourier transform

Φ(x) =
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3
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where, for an isotropic distribution, the power spectrum is given by
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where the numerical factor 4/9 comes from the relation between scalar metric perturbation in the longitudinal and
comoving gauges on large scales in a radiation-dominated era [49].
In the second-order perturbed Einstein field equations we see the effect of first-order perturbations as a source term

(Sij) for second-order tensor perturbations. After putting all first-order perturbation terms to the right-hand side of
the Einstein field equation, we have

h′′
ij + 2Hh′

ij + k2hij = STT
ij , (8)

where STT
ij indicates the transverse-tracefree part of the source term. If we neglect first order tensor and vector

perturbations in comparison with first order density perturbations, the right hand side of this equation is the trans-
verse and trace-free part quadratic in first-order scalar perturbations. This behaves like a source term for induced
gravitational waves [30, 31]

Sij = 2Φ∂i∂jΦ− 2Ψ∂i∂jΦ+ 4Ψ∂i∂jΨ+ ∂iΦ∂jΦ− ∂iΦ∂jΨ− ∂iΨ∂jΦ+ 3∂iΨ∂jΨ

−
4

3(1 + w)H2
∂i(Ψ

′ +HΦ)∂j(Ψ
′ +HΦ)

−
2c2s
3wH

[3H(HΦ−Ψ′) +∇2Ψ] ∂i∂j(Φ−Ψ) (9)

where w = P/ρ is the equation of state and c2s = P ′/ρ′ is the adiabatic sound speed.
These equations are written in the real space but in order to derive the power spectrum of gravitational waves we

need to transform to Fourier space [30]

hij(x, η) =

∫

d3k

(2π)
3

2

eik.x[hk(η)eij(k) + h̄kēij(k)] , (10)

where eij(k) and ēij(k) are the polarization tensors. The two polarization tensors eij(k) and ēij(k) can be given in
terms of the orthonormal basis

eij(k) =
1√
2
[ei(k)ej(k) − ēi(k)ēj(k)]

ēij(k) =
1√
2
[ei(k)ēj(k) + ēi(k)ej(k)] , (11)

where e and ē are unit vectors orthogonal to one another and k:

eik
i = ēik

i = eiē
i = 0 (12)

The gravitational waves have a power spectrum in Fourier space

⟨hk(η)hk′(η)⟩ =
1

2

2π2

k3
δ3(k+ k

′)Ph(k, η) , (13)

The effective density of a stochastic background of gravitational waves, on scales much smaller than the Hubble scale,
is given by [21]

ρGW =
1

32πG
⟨ḣij ḣ

ij⟩ =
k2

32πGa2

∫

d(ln k) Ph(k, η) . (14)

The fraction of the critical energy density in gravitational waves per logarithmic range of wavenumber k in the
radiation era is thus

ΩGW (k, η) =
1

12

(

k

H

)2

Ph(k, η) . (15)

After the radiation-dominated era, the density of gravitational waves on sub-Hubble scales then redshifts exactly as
any non-interacting relativistic particle species and in the present day we have

ΩGW,0(k) =
Ωγ,0

12

(

k

H

)2

Ph(k, η) , (16)

where we neglect additional numerical factors due to the detailed thermal history, such as the heating of photons by
the annihilation of other relativistic particle species [45, 50]. The present density of photons is Ωγ,0 ≃ 4.8 × 10−5

where here, and throughout this paper, we take H0 ≃ 72 km s−1Mpc−1 for the present value of the Hubble rate.
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ij⟩ =
k2

32πGa2

∫

d(ln k) Ph(k, η) . (14)

The fraction of the critical energy density in gravitational waves per logarithmic range of wavenumber k in the
radiation era is thus

ΩGW (k, η) =
1

12

(

k

H

)2

Ph(k, η) . (15)

After the radiation-dominated era, the density of gravitational waves on sub-Hubble scales then redshifts exactly as
any non-interacting relativistic particle species and in the present day we have

ΩGW,0(k) =
Ωγ,0

12

(

k

H

)2

Ph(k, η) , (16)

where we neglect additional numerical factors due to the detailed thermal history, such as the heating of photons by
the annihilation of other relativistic particle species [45, 50]. The present density of photons is Ωγ,0 ≃ 4.8 × 10−5

where here, and throughout this paper, we take H0 ≃ 72 km s−1Mpc−1 for the present value of the Hubble rate.

D. Wands et al, 2006-2010
Baumann et al, 2007

Peloso et al, 2018

(2nd Order Pert.)⇠ � ⇤ �



INFLATIONARY MODELS

INFLATION 
non-monotonic

IF{multi-field

{

�2
R

possible to 
enhance      

(at small scales)

Let us suppose      �2
R � �2

R
��
CMB

⇠ 3 · 10�9 ,@ small scales

2

and Yokoyama [34] have recently pointed out that current gravitational wave bounds are sufficient to rule out PBHs
as possible candidates for intermediate mass black holes.
If we could determine the amplitude and frequency of these induced gravitational waves then we would be able

to determine the primordial density perturbation when the corresponding scales crossed the Hubble scale during the
early hot big bang. Throughout this paper we will use the following formula to relate the frequency of gravitational
waves at the present time to the temperature at Hubble-crossing in the early radiation-dominated era [33]:

ν =
c

λ0
≈ 1.2× 10−8 g1/6∗

(

T

GeV

)

Hz , (3)

where g∗ is the effective number of degrees of freedom. We are able to place upper bounds on the primordial density
perturbation from BBN and cosmic microwave background (CMB) constraints and as well as current LIGO, VIRGO
and pulsar timing data. If we do not detect gravitational waves with future pulsar timing [35, 36] and future detectors
like Advanced LIGO [37], Advanced VIRGO [38], LISA [40], BBO [42] and DECIGO [43], the upper bounds on the
primordial density perturbation will become significantly tighter.
We emphasize that our bounds come from adopting the standard, minimal cosmological model of adiabatic density

perturbations, in their growing mode, in a radiation-dominated early universe from ultra-high energies (∼ 1016 GeV)
until matter-domination when T < eV. The quantitative constraints will be altered if one adopts non-standard
cosmological evolution [44, 45] such as an early matter-era (e.g., temporary domination of the energy density by
massive, non-relativistic particles) or a stiff-fluid-dominated era (e.g., domination by the kinetic energy of a coherent,
fast-rolling scalar field). On general grounds one expects an early era dominated by fluid ”softer” than radiation,
P/ρ < 1/3, to dilute the fractional density of gravitational waves whose wavelength is smaller than the comoving
Hubble scale (and thus behave like radiation), while the fractional density of sub-horizon gravitational waves grows
relative to matter which is stiffer than radiation [47]. On the other hand the evolution of density perturbations
which give rise to gravitational waves is also altered, see for example Ref. [33]. Non-adiabatic modes in a multi-
component system can lead to large-scale adiabatic density perturbations by the time of last-scattering but arise
from initial isocurvature perturbations, so are not necessarily constrained by our analysis. One such example is the
curvaton scenario, where the gravitational waves may be enhanced with respect to the adiabatic case if the curvaton
is subdominant when it decays [48]. Such models need to be considered on a case by case basis.
This paper is organized as follows: in section 2 we introduce the basic equations used to determine the induced

gravitational wave background and define the effective energy density of second-order gravitational waves. In section 3
we quantify the constraints placed on the primordial density perturbation by a variety of experiments. We present
our conclusions in section 4.

II. SECOND-ORDER GRAVITATIONAL WAVES

In this section we will briefly review the generation of induced gravitational waves. Details of the calculations have
been described previously [30, 31].
The perturbed metric in the longitudinal gauge is

ds2 = a2(η)[−(1 + 2Φ)dη2 + [(1 − 2Ψ)δij + 2F(i,j) + hij ]dx
idxj ] (4)

where Φ and Ψ are scalar metric perturbation, Fi is a transverse vector perturbation and hij is a transverse and
trace-free tensor perturbation. The scalar metric perturbations, Φ and Ψ, are supported by density perturbations,
and in the absence of anisotropic stress we require Φ = Ψ [49]. We will find it convenient to use the Fourier transform
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where the numerical factor 4/9 comes from the relation between scalar metric perturbation in the longitudinal and
comoving gauges on large scales in a radiation-dominated era [49].
In the second-order perturbed Einstein field equations we see the effect of first-order perturbations as a source term

(Sij) for second-order tensor perturbations. After putting all first-order perturbation terms to the right-hand side of
the Einstein field equation, we have

h′′
ij + 2Hh′

ij + k2hij = STT
ij , (8)

where STT
ij indicates the transverse-tracefree part of the source term. If we neglect first order tensor and vector

perturbations in comparison with first order density perturbations, the right hand side of this equation is the trans-
verse and trace-free part quadratic in first-order scalar perturbations. This behaves like a source term for induced
gravitational waves [30, 31]
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−
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where w = P/ρ is the equation of state and c2s = P ′/ρ′ is the adiabatic sound speed.
These equations are written in the real space but in order to derive the power spectrum of gravitational waves we

need to transform to Fourier space [30]
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The effective density of a stochastic background of gravitational waves, on scales much smaller than the Hubble scale,
is given by [21]

ρGW =
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⟨ḣij ḣ

ij⟩ =
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The fraction of the critical energy density in gravitational waves per logarithmic range of wavenumber k in the
radiation era is thus
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After the radiation-dominated era, the density of gravitational waves on sub-Hubble scales then redshifts exactly as
any non-interacting relativistic particle species and in the present day we have

ΩGW,0(k) =
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where we neglect additional numerical factors due to the detailed thermal history, such as the heating of photons by
the annihilation of other relativistic particle species [45, 50]. The present density of photons is Ωγ,0 ≃ 4.8 × 10−5

where here, and throughout this paper, we take H0 ≃ 72 km s−1Mpc−1 for the present value of the Hubble rate.
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and Yokoyama [34] have recently pointed out that current gravitational wave bounds are sufficient to rule out PBHs
as possible candidates for intermediate mass black holes.
If we could determine the amplitude and frequency of these induced gravitational waves then we would be able

to determine the primordial density perturbation when the corresponding scales crossed the Hubble scale during the
early hot big bang. Throughout this paper we will use the following formula to relate the frequency of gravitational
waves at the present time to the temperature at Hubble-crossing in the early radiation-dominated era [33]:

ν =
c

λ0
≈ 1.2× 10−8 g1/6∗

(

T

GeV

)

Hz , (3)

where g∗ is the effective number of degrees of freedom. We are able to place upper bounds on the primordial density
perturbation from BBN and cosmic microwave background (CMB) constraints and as well as current LIGO, VIRGO
and pulsar timing data. If we do not detect gravitational waves with future pulsar timing [35, 36] and future detectors
like Advanced LIGO [37], Advanced VIRGO [38], LISA [40], BBO [42] and DECIGO [43], the upper bounds on the
primordial density perturbation will become significantly tighter.
We emphasize that our bounds come from adopting the standard, minimal cosmological model of adiabatic density

perturbations, in their growing mode, in a radiation-dominated early universe from ultra-high energies (∼ 1016 GeV)
until matter-domination when T < eV. The quantitative constraints will be altered if one adopts non-standard
cosmological evolution [44, 45] such as an early matter-era (e.g., temporary domination of the energy density by
massive, non-relativistic particles) or a stiff-fluid-dominated era (e.g., domination by the kinetic energy of a coherent,
fast-rolling scalar field). On general grounds one expects an early era dominated by fluid ”softer” than radiation,
P/ρ < 1/3, to dilute the fractional density of gravitational waves whose wavelength is smaller than the comoving
Hubble scale (and thus behave like radiation), while the fractional density of sub-horizon gravitational waves grows
relative to matter which is stiffer than radiation [47]. On the other hand the evolution of density perturbations
which give rise to gravitational waves is also altered, see for example Ref. [33]. Non-adiabatic modes in a multi-
component system can lead to large-scale adiabatic density perturbations by the time of last-scattering but arise
from initial isocurvature perturbations, so are not necessarily constrained by our analysis. One such example is the
curvaton scenario, where the gravitational waves may be enhanced with respect to the adiabatic case if the curvaton
is subdominant when it decays [48]. Such models need to be considered on a case by case basis.
This paper is organized as follows: in section 2 we introduce the basic equations used to determine the induced

gravitational wave background and define the effective energy density of second-order gravitational waves. In section 3
we quantify the constraints placed on the primordial density perturbation by a variety of experiments. We present
our conclusions in section 4.

II. SECOND-ORDER GRAVITATIONAL WAVES

In this section we will briefly review the generation of induced gravitational waves. Details of the calculations have
been described previously [30, 31].
The perturbed metric in the longitudinal gauge is

ds2 = a2(η)[−(1 + 2Φ)dη2 + [(1 − 2Ψ)δij + 2F(i,j) + hij ]dx
idxj ] (4)

where Φ and Ψ are scalar metric perturbation, Fi is a transverse vector perturbation and hij is a transverse and
trace-free tensor perturbation. The scalar metric perturbations, Φ and Ψ, are supported by density perturbations,
and in the absence of anisotropic stress we require Φ = Ψ [49]. We will find it convenient to use the Fourier transform

Φ(x) =
1

(2π)
3

2

∫

d3kΦk e
ik.x , (5)

where, for an isotropic distribution, the power spectrum is given by

⟨ΦkΦk′⟩ =
2π2

k3
δ3(k + k

′)P(k) (6)

On large scales (much larger than the Hubble scale) the power spectrum of the primordial scalar perturbation is
commonly approximated by a power law

P(k) =
4

9
△2

R

(

k

k∗

)ns−1

(7)

3

where the numerical factor 4/9 comes from the relation between scalar metric perturbation in the longitudinal and
comoving gauges on large scales in a radiation-dominated era [49].
In the second-order perturbed Einstein field equations we see the effect of first-order perturbations as a source term

(Sij) for second-order tensor perturbations. After putting all first-order perturbation terms to the right-hand side of
the Einstein field equation, we have

h′′
ij + 2Hh′

ij + k2hij = STT
ij , (8)

where STT
ij indicates the transverse-tracefree part of the source term. If we neglect first order tensor and vector

perturbations in comparison with first order density perturbations, the right hand side of this equation is the trans-
verse and trace-free part quadratic in first-order scalar perturbations. This behaves like a source term for induced
gravitational waves [30, 31]

Sij = 2Φ∂i∂jΦ− 2Ψ∂i∂jΦ+ 4Ψ∂i∂jΨ+ ∂iΦ∂jΦ− ∂iΦ∂jΨ− ∂iΨ∂jΦ+ 3∂iΨ∂jΨ

−
4

3(1 + w)H2
∂i(Ψ

′ +HΦ)∂j(Ψ
′ +HΦ)

−
2c2s
3wH

[3H(HΦ−Ψ′) +∇2Ψ] ∂i∂j(Φ−Ψ) (9)

where w = P/ρ is the equation of state and c2s = P ′/ρ′ is the adiabatic sound speed.
These equations are written in the real space but in order to derive the power spectrum of gravitational waves we

need to transform to Fourier space [30]

hij(x, η) =

∫

d3k

(2π)
3

2

eik.x[hk(η)eij(k) + h̄kēij(k)] , (10)

where eij(k) and ēij(k) are the polarization tensors. The two polarization tensors eij(k) and ēij(k) can be given in
terms of the orthonormal basis

eij(k) =
1√
2
[ei(k)ej(k) − ēi(k)ēj(k)]

ēij(k) =
1√
2
[ei(k)ēj(k) + ēi(k)ej(k)] , (11)

where e and ē are unit vectors orthogonal to one another and k:

eik
i = ēik

i = eiē
i = 0 (12)

The gravitational waves have a power spectrum in Fourier space

⟨hk(η)hk′(η)⟩ =
1

2

2π2

k3
δ3(k+ k

′)Ph(k, η) , (13)

The effective density of a stochastic background of gravitational waves, on scales much smaller than the Hubble scale,
is given by [21]

ρGW =
1

32πG
⟨ḣij ḣ

ij⟩ =
k2

32πGa2

∫

d(ln k) Ph(k, η) . (14)

The fraction of the critical energy density in gravitational waves per logarithmic range of wavenumber k in the
radiation era is thus

ΩGW (k, η) =
1

12

(

k

H

)2

Ph(k, η) . (15)

After the radiation-dominated era, the density of gravitational waves on sub-Hubble scales then redshifts exactly as
any non-interacting relativistic particle species and in the present day we have

ΩGW,0(k) =
Ωγ,0

12

(

k

H

)2

Ph(k, η) , (16)

where we neglect additional numerical factors due to the detailed thermal history, such as the heating of photons by
the annihilation of other relativistic particle species [45, 50]. The present density of photons is Ωγ,0 ≃ 4.8 × 10−5

where here, and throughout this paper, we take H0 ≃ 72 km s−1Mpc−1 for the present value of the Hubble rate.
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and Yokoyama [34] have recently pointed out that current gravitational wave bounds are sufficient to rule out PBHs
as possible candidates for intermediate mass black holes.
If we could determine the amplitude and frequency of these induced gravitational waves then we would be able

to determine the primordial density perturbation when the corresponding scales crossed the Hubble scale during the
early hot big bang. Throughout this paper we will use the following formula to relate the frequency of gravitational
waves at the present time to the temperature at Hubble-crossing in the early radiation-dominated era [33]:

ν =
c

λ0
≈ 1.2× 10−8 g1/6∗

(

T

GeV

)

Hz , (3)

where g∗ is the effective number of degrees of freedom. We are able to place upper bounds on the primordial density
perturbation from BBN and cosmic microwave background (CMB) constraints and as well as current LIGO, VIRGO
and pulsar timing data. If we do not detect gravitational waves with future pulsar timing [35, 36] and future detectors
like Advanced LIGO [37], Advanced VIRGO [38], LISA [40], BBO [42] and DECIGO [43], the upper bounds on the
primordial density perturbation will become significantly tighter.
We emphasize that our bounds come from adopting the standard, minimal cosmological model of adiabatic density

perturbations, in their growing mode, in a radiation-dominated early universe from ultra-high energies (∼ 1016 GeV)
until matter-domination when T < eV. The quantitative constraints will be altered if one adopts non-standard
cosmological evolution [44, 45] such as an early matter-era (e.g., temporary domination of the energy density by
massive, non-relativistic particles) or a stiff-fluid-dominated era (e.g., domination by the kinetic energy of a coherent,
fast-rolling scalar field). On general grounds one expects an early era dominated by fluid ”softer” than radiation,
P/ρ < 1/3, to dilute the fractional density of gravitational waves whose wavelength is smaller than the comoving
Hubble scale (and thus behave like radiation), while the fractional density of sub-horizon gravitational waves grows
relative to matter which is stiffer than radiation [47]. On the other hand the evolution of density perturbations
which give rise to gravitational waves is also altered, see for example Ref. [33]. Non-adiabatic modes in a multi-
component system can lead to large-scale adiabatic density perturbations by the time of last-scattering but arise
from initial isocurvature perturbations, so are not necessarily constrained by our analysis. One such example is the
curvaton scenario, where the gravitational waves may be enhanced with respect to the adiabatic case if the curvaton
is subdominant when it decays [48]. Such models need to be considered on a case by case basis.
This paper is organized as follows: in section 2 we introduce the basic equations used to determine the induced

gravitational wave background and define the effective energy density of second-order gravitational waves. In section 3
we quantify the constraints placed on the primordial density perturbation by a variety of experiments. We present
our conclusions in section 4.

II. SECOND-ORDER GRAVITATIONAL WAVES

In this section we will briefly review the generation of induced gravitational waves. Details of the calculations have
been described previously [30, 31].
The perturbed metric in the longitudinal gauge is

ds2 = a2(η)[−(1 + 2Φ)dη2 + [(1 − 2Ψ)δij + 2F(i,j) + hij ]dx
idxj ] (4)

where Φ and Ψ are scalar metric perturbation, Fi is a transverse vector perturbation and hij is a transverse and
trace-free tensor perturbation. The scalar metric perturbations, Φ and Ψ, are supported by density perturbations,
and in the absence of anisotropic stress we require Φ = Ψ [49]. We will find it convenient to use the Fourier transform

Φ(x) =
1

(2π)
3

2

∫

d3kΦk e
ik.x , (5)

where, for an isotropic distribution, the power spectrum is given by

⟨ΦkΦk′⟩ =
2π2

k3
δ3(k + k

′)P(k) (6)

On large scales (much larger than the Hubble scale) the power spectrum of the primordial scalar perturbation is
commonly approximated by a power law

P(k) =
4

9
△2

R

(

k

k∗

)ns−1

(7)
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where the numerical factor 4/9 comes from the relation between scalar metric perturbation in the longitudinal and
comoving gauges on large scales in a radiation-dominated era [49].
In the second-order perturbed Einstein field equations we see the effect of first-order perturbations as a source term

(Sij) for second-order tensor perturbations. After putting all first-order perturbation terms to the right-hand side of
the Einstein field equation, we have

h′′
ij + 2Hh′

ij + k2hij = STT
ij , (8)

where STT
ij indicates the transverse-tracefree part of the source term. If we neglect first order tensor and vector

perturbations in comparison with first order density perturbations, the right hand side of this equation is the trans-
verse and trace-free part quadratic in first-order scalar perturbations. This behaves like a source term for induced
gravitational waves [30, 31]

Sij = 2Φ∂i∂jΦ− 2Ψ∂i∂jΦ+ 4Ψ∂i∂jΨ+ ∂iΦ∂jΦ− ∂iΦ∂jΨ− ∂iΨ∂jΦ+ 3∂iΨ∂jΨ

−
4

3(1 + w)H2
∂i(Ψ

′ +HΦ)∂j(Ψ
′ +HΦ)

−
2c2s
3wH

[3H(HΦ−Ψ′) +∇2Ψ] ∂i∂j(Φ−Ψ) (9)

where w = P/ρ is the equation of state and c2s = P ′/ρ′ is the adiabatic sound speed.
These equations are written in the real space but in order to derive the power spectrum of gravitational waves we

need to transform to Fourier space [30]

hij(x, η) =

∫

d3k

(2π)
3

2

eik.x[hk(η)eij(k) + h̄kēij(k)] , (10)

where eij(k) and ēij(k) are the polarization tensors. The two polarization tensors eij(k) and ēij(k) can be given in
terms of the orthonormal basis

eij(k) =
1√
2
[ei(k)ej(k) − ēi(k)ēj(k)]

ēij(k) =
1√
2
[ei(k)ēj(k) + ēi(k)ej(k)] , (11)

where e and ē are unit vectors orthogonal to one another and k:

eik
i = ēik

i = eiē
i = 0 (12)

The gravitational waves have a power spectrum in Fourier space

⟨hk(η)hk′(η)⟩ =
1

2

2π2

k3
δ3(k+ k

′)Ph(k, η) , (13)

The effective density of a stochastic background of gravitational waves, on scales much smaller than the Hubble scale,
is given by [21]

ρGW =
1

32πG
⟨ḣij ḣ

ij⟩ =
k2

32πGa2

∫

d(ln k) Ph(k, η) . (14)

The fraction of the critical energy density in gravitational waves per logarithmic range of wavenumber k in the
radiation era is thus

ΩGW (k, η) =
1

12

(

k

H

)2

Ph(k, η) . (15)

After the radiation-dominated era, the density of gravitational waves on sub-Hubble scales then redshifts exactly as
any non-interacting relativistic particle species and in the present day we have

ΩGW,0(k) =
Ωγ,0

12

(

k

H

)2

Ph(k, η) , (16)

where we neglect additional numerical factors due to the detailed thermal history, such as the heating of photons by
the annihilation of other relativistic particle species [45, 50]. The present density of photons is Ωγ,0 ≃ 4.8 × 10−5

where here, and throughout this paper, we take H0 ≃ 72 km s−1Mpc−1 for the present value of the Hubble rate.
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III. CONSTRAINTS ON PRIMORDIAL DENSITY PERTURBATIONS

In the standard cosmological scenario, second-order gravitational waves are generated during the radiation-
dominated era after inflation. Non-linear interactions can in principle lead to density perturbations integrated over
a range of scales contributing to the gravitational wave amplitude on a given wavenumber, k, but in practice the
second-order gravitational waves are primarily produced when first-order density perturbations on the similar on
same scale, ∼ k, come inside the Hubble scale during the radiation era [30].
Assuming a power-law spectrum for the primordial density perturbation, Eq. (7), the energy density of second-order

gravitational waves, relative to the critical density at the present time, which were produced during the radiation-
dominated era (ν > 10−15 Hz), can be written as

Ωgw,0(k) = Frad Ωγ,0△4
R(k) . (17)

where, for modes which are well inside the horizon at the end of the radiation-dominated era (kηeq ≫ 1), we have [30]

Frad =
8

3

(

2162

π3

)

8.3× 10−3fns (18)

and fns is weakly-dependent on the spectral tilt. fns ≈ 1 if the density perturbation is scale-invariant [30], but
becomes slightly smaller than one for a red spectrum (e.g, fns ≈ 0.97 for ns = 0.9) and bigger than one for a blue
spectrum (e.g, fns ≈ 1.05 for ns = 1.1).
It is also possible to consider the spectrum of gravitational waves generated by density perturbations with a sharply

peaked power spectrum [30, 34]. Considering a delta-function power spectrum, P (k) = (4/9)∆2
R(kp)δ(ln(k/kp)), the

resulting gravitational wave spectrum is described by a sharply rising spectrum for k < kp [34]

Ωgw,0(k) = 29Ωγ,0△4
R(kp)

(

k

kp

)2

, (19)

with an abrupt cut-off for k > 2kp.
In the following numerical estimates we take Frad ≈ 30 in Eq. (17) corresponding to an approximately scale-

invariant spectrum of scalar perturbations, ns ≈ 1. This is expected to be a conservative lower bound on Frad for
the blue spectra with ns > 1 required to produce a detectable background of gravitational waves on scales much
smaller than the CMB scale. In the rest of this section we show, how Eq. (17) enables us to use constraints on the
stochastic background of gravitational waves generated during the radiation era, Ωgw,0(k), to place upper bounds
on the primordial density perturbation on the corresponding scales, ∆2

R(k). In addition Eq. (19) indicates how
observational constraints on Ωgw,0(k) at a given wavenumber k also places a weaker bound on the primordial density
perturbation, ∆2

R(kp) ∝ (kp/k), at higher wavenumbers, kp > k. Our results are presented graphically in Figure .

A. Cosmological density constraints

1. Constraint from BBN

If the energy density carried by gravitational waves at the time of primordial big bang nucleosynthesis (BBN) were
large, the abundances of the light nuclei produced would be altered with respect to the predictions of standard BBN.
Hence, BBN can be used to constrain the total energy carried by gravitational waves at the time of nucleosynthesis
(T ≃ 1 MeV) [51].
Primordial abundances of the light elements, usually quoted as a bound on the effective number of relativistic

species at the time of BBN, gives the 95% c.l. upper bound on a primordial gravitational wave background [37]

Ωgw,0 < 1.5× 10−5 (20)

Substituting this bound into Eq. (17) gives

△2
R < 0.1

(

Frad

30

)− 1

2

. (21)

This denotes the upper bound on the primordial density perturbation on the Hubble scale at the time when the
gravitational waves are generated.
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Hence, BBN can be used to constrain the total energy carried by gravitational waves at the time of nucleosynthesis
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2. Constraint from CMB

A very similar bound on the effective energy density of primordial gravitational waves can be obtained around
the time of last scattering of the cosmic microwave background. Again a limit on the number of massless neutrino
species [52] can be translated into a bound on the gravitational wave background [53]. Unlike the BBN constraint,
however, the CMB constraint depends upon the nature of inhomogeneous perturbations about the average density.
For a gravitational wave background produced from a Gaussian random field of primordial density perturbations on
small scales, we expect the effective energy density on long wavelengths (on scales of order 100 Mpc) to be independent
of the density perturbations on this scale. Thus long wavelength perturbations of the gravitational wave background
are non-adiabatic and Smith et al [53] give a 95% c.l. bound

Ωgw,0 < 1.3× 10−5 , (25)

for a “homogeneous” gravitational wave background. This is marginally stronger than the BBN constraint (20). It
gives effectively the same constraint on the primordial density perturbation (21), and the effective spectral index
(24), but extends to longer wavelengths ∼ 10−15 Hz, corresponding to scales inside the Hubble scale at the time of
last-scattering.
Future data from CMB experiments such as Planck and the proposed CMBPol mission are expected to improve

the CMB bound. For Planck the expected bound corresponds to Ωgw,0 < 2.7× 10−6 [53] which would bound

△2
R < 0.04

(

Frad

30

)− 1

2

. (26)

B. Constraints from ground-based detectors

1. Current LIGO/VIRGO

We can obtain a tighter constraint on the primordial density perturbation on scales probed by direct detectors,
such as the Laser Interferometer Gravitational Wave Observatory (LIGO) [37] and gravitational wave detector at the
European gravitational observatory (VIRGO) [38]. LIGO’s maximum sensitivity is around a frequency, ν = 100 Hz.
The latest results from the LIGO S5 science run give a bound on the energy density of gravitational waves on this
scale [39]

Ωgw,0 < 6.9× 10−6 . (27)

Hence from Eq. (17) the constraint on the density perturbation on the LIGO/VIRGO scale is

△2
R < 0.07

(

Frad

30

)− 1

2

. (28)

This is a slightly tighter bound than that currently obtained from BBN and the CMB, Eq. (21), however unlike the
BBN and CMB bound it only applies to LIGO/VIRGO scales. The corresponding constraint on ns on this scale
comes from Eq. (23)

ns < 1.37−
1

40
log10

(

Frad

30

)

. (29)

2. Advanced LIGO/VIRGO

Advanced LIGO/VIRGO will give us an improved constraint on a stochastic background of gravitational waves
on the same scales [38, 54]. The smallest density of gravitational waves which could be detected by Advanced
LIGO/VIRGO is 103 times smaller than current LIGO/VIRGO bounds. Considering the smallest detectable energy
density Ωgw,0 < 10−9 in Eq. (17) returns

△2
R < 8× 10−4

(

Frad

30

)− 1

2

(30)
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. (29)

2. Advanced LIGO/VIRGO

Advanced LIGO/VIRGO will give us an improved constraint on a stochastic background of gravitational waves
on the same scales [38, 54]. The smallest density of gravitational waves which could be detected by Advanced
LIGO/VIRGO is 103 times smaller than current LIGO/VIRGO bounds. Considering the smallest detectable energy
density Ωgw,0 < 10−9 in Eq. (17) returns

△2
R < 8× 10−4

(

Frad

30

)− 1

2

(30)

⌦gw,0 < 10�13
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Equation (23) gives the expected constraint on ns from Advanced LIGO/VIRGO (taking ν = 100 Hz)

ns < 1.27−
1

40
log10

(

Frad

30

)

. (31)

C. Constraints from LISA

The Laser Interferometer Space Antenna (LISA) is the first gravitational wave detector planned in space and is
the most sensitive detector currently planned. Assuming LISA’s instrumental noise is well-behaved [55], it could
detect a stochastic background of gravitational waves at a level Ωgw,0 ∼ 10−11 at frequencies νLISA ∼ 10−3 Hz
[40, 41]. However the sensitivity of LISA leads to many potential overlapping sources and hence the problem of source
confusion. In particular the astrophysical background from unresolved extra-galactic white-dwarf binaries is expected
to limit LISA’s ability to distinguish a primordial gravitational wave background to [55, 56]

Ωgw,0 < 10−10 . (32)

The corresponding upper bound on the primordial density perturbation on LISA scales comes from (17):

△2
R < 3× 10−4

(

Frad

30

)− 1

2

(33)

The constraint on ns on LISA scales comes from Eq. (23)

ns < 1.34−
1

30
log10

(

Frad

30

)

. (34)

This is a slightly weaker bound on the effective spectral index compared with Advanced LIGO, as LISA is sensitive
on length scales much larger than LIGO scales.

D. Constraints from BBO/DECIGO

The Big Bang Observer (BBO) [42] and the DECi-hertz Interferometer Gravitational wave Observatory (DECIGO)
[43] are ambitious proposals for future space-based observatories to detect cosmological gravitational waves. They
should be able to detect a stochastic background of gravitational waves down to an effective energy density Ωgw,0 ≈
10−16 at νBBO ≈ 1 Hz. This waveband is chosen to avoid the confusion noise due to white dwarf binary mergers
which cuts off above 0.2 Hz. The designs of BBO and DECIGO are based on the requirement to identify and remove
the remaining foregrounds from neutron star and black hole binaries [57].
If induced gravitational waves during the radiation era are not detected with BBO/DECIGO, then we will be able

to place a tight constraint on the primordial density perturbation and hence ns on this scale (1 Hz). From (17) and
(23) we obtain

△2
R < 3× 10−7

(

Frad

30

)− 1

2

, (35)

and hence

ns < 1.11−
1

36
log10

(

Frad

30

)

. (36)

E. Constraints from pulsar timings

Analysis of pulse data from pulsars shows that they are very stable clocks. Measurement of timing residuals,
which is the difference between the observed time of arrival and predicted time of arrival, can in principle be used
to directly detect gravitational waves passing between the pulsar and the observer [35, 36]. The data from current
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E. Constraints from pulsar timings

Analysis of pulse data from pulsars shows that they are very stable clocks. Measurement of timing residuals,
which is the difference between the observed time of arrival and predicted time of arrival, can in principle be used
to directly detect gravitational waves passing between the pulsar and the observer [35, 36]. The data from current
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observations of an array of pulsars places an upper bound on the stochastic background of gravitational waves, with
periods comparable to the total observation time span. This is typically 1-10 years, and corresponds to 10−8-10−9

Hz. For ν = 10−8 Hz, the constraint on the present density of gravitational waves is [36]

Ωgw,0 < 4× 10−8 . (37)

Substituting (37) in (17), gives us the current constraints on the primordial density perturbation

△2
R < 5× 10−3

(

Frad

30

)− 1

2

. (38)

The constraint on ns comes from (17)

ns < 1.63−
1

20
log10

(

Frad

30

)

. (39)

Saito and Yokoyama [34] have recently used similar constraints, on the induced gravitational wave background
from pulsar timing arrays, to rule out the large amplitude of primordial density perturbations required to produce
any significant number of primordial black holes in the intermediate mass range, 4× 102M⊙ ≤ MPBH ≤ 5× 103M⊙,
corresponding to 8×1035 g ≤ MPBH ≤ 1037g, which from Eq. (2) would have formed at temperatures T ≈ 3−10 MeV.
Future pulsar timing will give a better constraint. If gravitational waves are not detected, the upper limit, based

on timing 20 pulsars over 5 years, would be Ωgw,0 < 10−10 [36]. From (17), the future constraint on the primordial
density perturbation in five years time for ν = 10−8 Hz would be

△2
R < 3× 10−4

(

Frad

30

)− 1

2

. (40)

The future constraint on ns would then be

ns < 1.50−
1

20
log10

(

Frad

30

)

. (41)

IV. CONCLUSION

Despite remarkable recent progress in astronomical observations mapping density perturbations on large scales (10-
1000 Mpc) in our Universe, we know little about the primordial distribution of matter on much smaller scales. This
is due to Silk damping and free-streaming of relativistic particles in the early universe, and subsequent non-linear
evolution of matter perturbations at much later times. The only constraints on these scales come from gravitational
relics of the very early universe. Previous work has focussed on the possible formation of primordial black holes from
large over-densities.
In this paper we have shown how limits on a stochastic background of gravitational waves can be used to place

limits on density perturbations in the early radiation-dominated era of the standard hot big bang cosmology.
BBN and CMB limits on a primordial gravitational wave background places only a weak constraint on the amplitude

of primordial density perturbations, △2
R < 0.1, but this applies across a wide range of frequencies, from 10−15 Hz

to frequencies as high as 108 Hz, depending on the maximum temperature at the start of the radiation-dominated
era. By contrast, gravitational wave detectors such as LIGO and VIRGO place slightly tighter bounds, currently
△2

R < 0.07, but only over a narrower range determined by the frequency response of the detector.
Future gravitational wave experiments offer the prospect of much tighter bounds on, or a detection of, a stochastic

gravitational wave background and hence the primordial density perturbation on small scales. A space-based experi-
ment such as LISA could detect gravitational waves produced by density perturbations △2

R ∼ 10−4, and future data
from pulsar timing arrays could have similar sensitivity. The most ambitious current proposed gravitational wave
observatories including BBO and DECIGO offer the prospect of detecting gravitational waves as small as △2

R ∼ 10−7.
If gravitational wave background is not detected by these experiments it would imply that the primordial power

spectrum remains close to scale-invariant, or decreases in power on small scales, ns < 1.29, which provides a valuable
new constraint on models for the origin of structure. Nonetheless it remains a challenge to design an experiment that
could detect gravitational waves produced by primordial density perturbations of the same power, △2

R ∼ 10−9, as
seen on the largest scales in the universe today.
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Future gravitational wave experiments offer the prospect of much tighter bounds on, or a detection of, a stochastic

gravitational wave background and hence the primordial density perturbation on small scales. A space-based experi-
ment such as LISA could detect gravitational waves produced by density perturbations △2

R ∼ 10−4, and future data
from pulsar timing arrays could have similar sensitivity. The most ambitious current proposed gravitational wave
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could detect gravitational waves produced by primordial density perturbations of the same power, △2
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III. CONSTRAINTS ON PRIMORDIAL DENSITY PERTURBATIONS

In the standard cosmological scenario, second-order gravitational waves are generated during the radiation-
dominated era after inflation. Non-linear interactions can in principle lead to density perturbations integrated over
a range of scales contributing to the gravitational wave amplitude on a given wavenumber, k, but in practice the
second-order gravitational waves are primarily produced when first-order density perturbations on the similar on
same scale, ∼ k, come inside the Hubble scale during the radiation era [30].
Assuming a power-law spectrum for the primordial density perturbation, Eq. (7), the energy density of second-order

gravitational waves, relative to the critical density at the present time, which were produced during the radiation-
dominated era (ν > 10−15 Hz), can be written as

Ωgw,0(k) = Frad Ωγ,0△4
R(k) . (17)

where, for modes which are well inside the horizon at the end of the radiation-dominated era (kηeq ≫ 1), we have [30]

Frad =
8

3

(

2162

π3

)

8.3× 10−3fns (18)

and fns is weakly-dependent on the spectral tilt. fns ≈ 1 if the density perturbation is scale-invariant [30], but
becomes slightly smaller than one for a red spectrum (e.g, fns ≈ 0.97 for ns = 0.9) and bigger than one for a blue
spectrum (e.g, fns ≈ 1.05 for ns = 1.1).
It is also possible to consider the spectrum of gravitational waves generated by density perturbations with a sharply

peaked power spectrum [30, 34]. Considering a delta-function power spectrum, P (k) = (4/9)∆2
R(kp)δ(ln(k/kp)), the

resulting gravitational wave spectrum is described by a sharply rising spectrum for k < kp [34]

Ωgw,0(k) = 29Ωγ,0△4
R(kp)

(

k

kp

)2

, (19)

with an abrupt cut-off for k > 2kp.
In the following numerical estimates we take Frad ≈ 30 in Eq. (17) corresponding to an approximately scale-

invariant spectrum of scalar perturbations, ns ≈ 1. This is expected to be a conservative lower bound on Frad for
the blue spectra with ns > 1 required to produce a detectable background of gravitational waves on scales much
smaller than the CMB scale. In the rest of this section we show, how Eq. (17) enables us to use constraints on the
stochastic background of gravitational waves generated during the radiation era, Ωgw,0(k), to place upper bounds
on the primordial density perturbation on the corresponding scales, ∆2

R(k). In addition Eq. (19) indicates how
observational constraints on Ωgw,0(k) at a given wavenumber k also places a weaker bound on the primordial density
perturbation, ∆2

R(kp) ∝ (kp/k), at higher wavenumbers, kp > k. Our results are presented graphically in Figure .

A. Cosmological density constraints

1. Constraint from BBN

If the energy density carried by gravitational waves at the time of primordial big bang nucleosynthesis (BBN) were
large, the abundances of the light nuclei produced would be altered with respect to the predictions of standard BBN.
Hence, BBN can be used to constrain the total energy carried by gravitational waves at the time of nucleosynthesis
(T ≃ 1 MeV) [51].
Primordial abundances of the light elements, usually quoted as a bound on the effective number of relativistic

species at the time of BBN, gives the 95% c.l. upper bound on a primordial gravitational wave background [37]

Ωgw,0 < 1.5× 10−5 (20)

Substituting this bound into Eq. (17) gives

△2
R < 0.1

(

Frad

30

)− 1

2

. (21)

This denotes the upper bound on the primordial density perturbation on the Hubble scale at the time when the
gravitational waves are generated.
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2. Constraint from CMB

A very similar bound on the effective energy density of primordial gravitational waves can be obtained around
the time of last scattering of the cosmic microwave background. Again a limit on the number of massless neutrino
species [52] can be translated into a bound on the gravitational wave background [53]. Unlike the BBN constraint,
however, the CMB constraint depends upon the nature of inhomogeneous perturbations about the average density.
For a gravitational wave background produced from a Gaussian random field of primordial density perturbations on
small scales, we expect the effective energy density on long wavelengths (on scales of order 100 Mpc) to be independent
of the density perturbations on this scale. Thus long wavelength perturbations of the gravitational wave background
are non-adiabatic and Smith et al [53] give a 95% c.l. bound

Ωgw,0 < 1.3× 10−5 , (25)

for a “homogeneous” gravitational wave background. This is marginally stronger than the BBN constraint (20). It
gives effectively the same constraint on the primordial density perturbation (21), and the effective spectral index
(24), but extends to longer wavelengths ∼ 10−15 Hz, corresponding to scales inside the Hubble scale at the time of
last-scattering.
Future data from CMB experiments such as Planck and the proposed CMBPol mission are expected to improve

the CMB bound. For Planck the expected bound corresponds to Ωgw,0 < 2.7× 10−6 [53] which would bound

△2
R < 0.04

(

Frad

30

)− 1

2

. (26)

B. Constraints from ground-based detectors

1. Current LIGO/VIRGO

We can obtain a tighter constraint on the primordial density perturbation on scales probed by direct detectors,
such as the Laser Interferometer Gravitational Wave Observatory (LIGO) [37] and gravitational wave detector at the
European gravitational observatory (VIRGO) [38]. LIGO’s maximum sensitivity is around a frequency, ν = 100 Hz.
The latest results from the LIGO S5 science run give a bound on the energy density of gravitational waves on this
scale [39]

Ωgw,0 < 6.9× 10−6 . (27)

Hence from Eq. (17) the constraint on the density perturbation on the LIGO/VIRGO scale is

△2
R < 0.07

(

Frad

30

)− 1

2

. (28)

This is a slightly tighter bound than that currently obtained from BBN and the CMB, Eq. (21), however unlike the
BBN and CMB bound it only applies to LIGO/VIRGO scales. The corresponding constraint on ns on this scale
comes from Eq. (23)

ns < 1.37−
1

40
log10

(

Frad

30

)

. (29)

2. Advanced LIGO/VIRGO

Advanced LIGO/VIRGO will give us an improved constraint on a stochastic background of gravitational waves
on the same scales [38, 54]. The smallest density of gravitational waves which could be detected by Advanced
LIGO/VIRGO is 103 times smaller than current LIGO/VIRGO bounds. Considering the smallest detectable energy
density Ωgw,0 < 10−9 in Eq. (17) returns

△2
R < 8× 10−4

(

Frad

30

)− 1

2

(30)
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Equation (23) gives the expected constraint on ns from Advanced LIGO/VIRGO (taking ν = 100 Hz)

ns < 1.27−
1

40
log10

(

Frad

30

)

. (31)

C. Constraints from LISA

The Laser Interferometer Space Antenna (LISA) is the first gravitational wave detector planned in space and is
the most sensitive detector currently planned. Assuming LISA’s instrumental noise is well-behaved [55], it could
detect a stochastic background of gravitational waves at a level Ωgw,0 ∼ 10−11 at frequencies νLISA ∼ 10−3 Hz
[40, 41]. However the sensitivity of LISA leads to many potential overlapping sources and hence the problem of source
confusion. In particular the astrophysical background from unresolved extra-galactic white-dwarf binaries is expected
to limit LISA’s ability to distinguish a primordial gravitational wave background to [55, 56]

Ωgw,0 < 10−10 . (32)

The corresponding upper bound on the primordial density perturbation on LISA scales comes from (17):

△2
R < 3× 10−4

(

Frad

30

)− 1

2

(33)

The constraint on ns on LISA scales comes from Eq. (23)

ns < 1.34−
1

30
log10

(

Frad

30

)

. (34)

This is a slightly weaker bound on the effective spectral index compared with Advanced LIGO, as LISA is sensitive
on length scales much larger than LIGO scales.

D. Constraints from BBO/DECIGO

The Big Bang Observer (BBO) [42] and the DECi-hertz Interferometer Gravitational wave Observatory (DECIGO)
[43] are ambitious proposals for future space-based observatories to detect cosmological gravitational waves. They
should be able to detect a stochastic background of gravitational waves down to an effective energy density Ωgw,0 ≈
10−16 at νBBO ≈ 1 Hz. This waveband is chosen to avoid the confusion noise due to white dwarf binary mergers
which cuts off above 0.2 Hz. The designs of BBO and DECIGO are based on the requirement to identify and remove
the remaining foregrounds from neutron star and black hole binaries [57].
If induced gravitational waves during the radiation era are not detected with BBO/DECIGO, then we will be able

to place a tight constraint on the primordial density perturbation and hence ns on this scale (1 Hz). From (17) and
(23) we obtain
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E. Constraints from pulsar timings

Analysis of pulse data from pulsars shows that they are very stable clocks. Measurement of timing residuals,
which is the difference between the observed time of arrival and predicted time of arrival, can in principle be used
to directly detect gravitational waves passing between the pulsar and the observer [35, 36]. The data from current
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Equation (23) gives the expected constraint on ns from Advanced LIGO/VIRGO (taking ν = 100 Hz)
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C. Constraints from LISA
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confusion. In particular the astrophysical background from unresolved extra-galactic white-dwarf binaries is expected
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The corresponding upper bound on the primordial density perturbation on LISA scales comes from (17):
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The constraint on ns on LISA scales comes from Eq. (23)
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This is a slightly weaker bound on the effective spectral index compared with Advanced LIGO, as LISA is sensitive
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to directly detect gravitational waves passing between the pulsar and the observer [35, 36]. The data from current
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observations of an array of pulsars places an upper bound on the stochastic background of gravitational waves, with
periods comparable to the total observation time span. This is typically 1-10 years, and corresponds to 10−8-10−9

Hz. For ν = 10−8 Hz, the constraint on the present density of gravitational waves is [36]

Ωgw,0 < 4× 10−8 . (37)

Substituting (37) in (17), gives us the current constraints on the primordial density perturbation
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. (38)

The constraint on ns comes from (17)

ns < 1.63−
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log10
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30
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Saito and Yokoyama [34] have recently used similar constraints, on the induced gravitational wave background
from pulsar timing arrays, to rule out the large amplitude of primordial density perturbations required to produce
any significant number of primordial black holes in the intermediate mass range, 4× 102M⊙ ≤ MPBH ≤ 5× 103M⊙,
corresponding to 8×1035 g ≤ MPBH ≤ 1037g, which from Eq. (2) would have formed at temperatures T ≈ 3−10 MeV.
Future pulsar timing will give a better constraint. If gravitational waves are not detected, the upper limit, based

on timing 20 pulsars over 5 years, would be Ωgw,0 < 10−10 [36]. From (17), the future constraint on the primordial
density perturbation in five years time for ν = 10−8 Hz would be

△2
R < 3× 10−4

(

Frad

30

)− 1

2

. (40)

The future constraint on ns would then be

ns < 1.50−
1

20
log10

(

Frad

30

)

. (41)

IV. CONCLUSION

Despite remarkable recent progress in astronomical observations mapping density perturbations on large scales (10-
1000 Mpc) in our Universe, we know little about the primordial distribution of matter on much smaller scales. This
is due to Silk damping and free-streaming of relativistic particles in the early universe, and subsequent non-linear
evolution of matter perturbations at much later times. The only constraints on these scales come from gravitational
relics of the very early universe. Previous work has focussed on the possible formation of primordial black holes from
large over-densities.
In this paper we have shown how limits on a stochastic background of gravitational waves can be used to place

limits on density perturbations in the early radiation-dominated era of the standard hot big bang cosmology.
BBN and CMB limits on a primordial gravitational wave background places only a weak constraint on the amplitude

of primordial density perturbations, △2
R < 0.1, but this applies across a wide range of frequencies, from 10−15 Hz

to frequencies as high as 108 Hz, depending on the maximum temperature at the start of the radiation-dominated
era. By contrast, gravitational wave detectors such as LIGO and VIRGO place slightly tighter bounds, currently
△2

R < 0.07, but only over a narrower range determined by the frequency response of the detector.
Future gravitational wave experiments offer the prospect of much tighter bounds on, or a detection of, a stochastic

gravitational wave background and hence the primordial density perturbation on small scales. A space-based experi-
ment such as LISA could detect gravitational waves produced by density perturbations △2

R ∼ 10−4, and future data
from pulsar timing arrays could have similar sensitivity. The most ambitious current proposed gravitational wave
observatories including BBO and DECIGO offer the prospect of detecting gravitational waves as small as △2

R ∼ 10−7.
If gravitational wave background is not detected by these experiments it would imply that the primordial power

spectrum remains close to scale-invariant, or decreases in power on small scales, ns < 1.29, which provides a valuable
new constraint on models for the origin of structure. Nonetheless it remains a challenge to design an experiment that
could detect gravitational waves produced by primordial density perturbations of the same power, △2

R ∼ 10−9, as
seen on the largest scales in the universe today.
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(ḣij)2 � a�2(@lhij)2

i

S(s)
(2) =

1
2

R
d4x a3 �̇

2

H2

h
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Ṙ2 � a�2(@iR)2

i
?

Inflation & Primordial Perturbations

Inflation: A generator of Primordial Fluctuations 

=
1

2

Z
d⌧dx3


(v0)2 � (rv)2 +

z00

z
v

�

withv00~k + (k2 � z00/z)v~k = 0 z00

z
=

1

⌧2

✓
⌫2 � 1

4

◆
, ⌫ ⌘ 3

2
+ 2✏� ⌘

(F.T.:                    )v(x, t) =

Z
dk e�ikx vk(t)

v2]



Scalar Fluctuations: 
=S(s)

(2) =
1
2

R
d4x a3 �̇

2

H2

h
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<latexit sha1_base64="+q0BhUBcKXQDTEt8iMNPE06tbio=">AAAB/HicdZBLS8NAFIUn9VXrK9qlm8EiCEJJpaAulIKbLivYB7QhTKaTdsjkwcxNIYT6V9y4UMStP8Sd/8ZJW6G+Dgx8nHMvczluLLgCy/owCiura+sbxc3S1vbO7p65f9BRUSIpa9NIRLLnEsUED1kbOAjWiyUjgStY1/Vv8rw7YVLxKLyDNGZ2QEYh9zgloC3HLA/GBHATTxwfX+FTPwfHrNSq1kzY+gVfUQUt1HLM98EwoknAQqCCKNWvWTHYGZHAqWDT0iBRLCbUJyPW1xiSgCk7mx0/xcfaGWIvkvqFgGfu8kZGAqXSwNWTAYGx+pnl5l9ZPwHvws54GCfAQjr/yEsEhgjnTeAhl4yCSDUQKrm+FdMxkYSC7qu0XML/0Dmr1urVy9t6pXG9qKOIDtEROkE1dI4aqIlaqI0oStEDekLPxr3xaLwYr/PRgrHYKaNvMt4+AVE8k0Y=</latexit>

<latexit sha1_base64="bLnutZ+DNYdpNh5AJ2Bv/xXnbok=">AAACBXicdZBNS8MwGMfT+TbnW9WjHoJD8CClrWWbFxl68TjBvcA6SpplW1ialiQdjLGLF7+KFw+KePU7ePPbmG4TVPSBhD+///OQPP8wYVQq2/4wckvLK6tr+fXCxubW9o65u9eQcSowqeOYxaIVIkkY5aSuqGKklQiCopCRZji8yvzmiAhJY36rxgnpRKjPaY9ipDQKzEOfId5nBI6C4Wl2QV/MwQW0A7NoW+eVkuuVoG3ZdtlxnUy4Ze/Mg44mWRXBomqB+e53Y5xGhCvMkJRtx05UZ4KEopiRacFPJUkQHqI+aWvJUURkZzLbYgqPNenCXiz04QrO6PeJCYqkHEeh7oyQGsjfXgb/8tqp6lU6E8qTVBGO5w/1UgZVDLNIYJcKghUba4GwoPqvEA+QQFjp4Ao6hK9N4f+i4VpOyfJuvGL1chFHHhyAI3ACHFAGVXANaqAOMLgDD+AJPBv3xqPxYrzOW3PGYmYf/Cjj7ROuVJds</latexit>

hvk, vki > 0



Scalar Fluctuations: 
=S(s)

(2) =
1
2

R
d4x a3 �̇

2

H2

h
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Finally, in the case of slow-roll inflation, quantum fluctuations of a light scalar field (m� ⌧ H) in

quasi-de Sitter space (H ⇡ const.) scale with the Hubble parameter H, cf. Eqn. (200),

h��k ��k0i = (2⇡)3 �(k + k0)
2⇡

2

k3

✓
H

2⇡

◆
2

, �2

��
=

✓
H

2⇡

◆
2

. (206)

Inflationary quantum fluctuations therefore produce the following power spectrum for R
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This is consistent with our result (203).

12.3 Tensor Perturbations

Having discussed the quantization of scalar perturbation is some details, the corresponding calcula-

tion for tensor perturbations will appear almost trivial.

12.3.1 Action

By expansion of the Einstein-Hilbert action one may obtain the second-order action for tensor
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Here, we have reintroduced explicit factors of Mpl to make hij manifestly dimensionless. Up to a

normalization factor of
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2
this is the same as the action for a massless scalar field in an FRW

universe.
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holds in de Sitter space. This should be recognized as e↵ectively two copies of the action (183).
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holds in de Sitter space. This should be recognized as e↵ectively two copies of the action (183).
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