GRAVITATIONAL WAVE - BACKGROUNDS -

MITP Summer School - CrossLinks of Early Universe Cosmology, 15 July - August 2, 2024

Gravitational Wave Backgrounds

OUTLINE

1) Grav. Waves (GWs) 1st Topic (Formal Th.)

- 2) GWs from Inflation
- 3) GWs from Preheating
- 4) GWs from Phase Transitions
- 5) GWs from Cosmic Defects
- 6) Astrophysical Background(s)
- 7) Observational Constraints/Prospects

Gravitational Wave Backgrounds

OUTLINE

1) Grav. Waves (GWs)

Early
Universe
Sources

- 2) GWs from Inflation
- 3) GWs from Preheating
- 4) GWs from Phase Transitions
- 5) GWs from Cosmic Defects

Core Topics (Pheno Th.)

- 6) Astrophysical Background(s)
- 7) Observational Constraints/Prospects

The Gravity of the Situation ...

GW Propagation/Creation in Cosmology

FLRW:
$$ds^2 = a^2(-dt^2 + (\delta_{ij} + h_{ij})dx^i dx^j)$$
, $TT: \begin{cases} h_{ii} = 0 \\ h_{ij},_j = 0 \end{cases}$ (conformal time)

GW Propagation/Creation in Cosmology

FLRW:
$$ds^2 = a^2(-dt^2 + (\delta_{ij} + h_{ij})dx^i dx^j)$$
, $TT: \begin{cases} h_{ii} = 0 \\ h_{ij}, j = 0 \end{cases}$ (conformal time)

Creation/Propagation GWs in FLRW

Eom: $h_{ij}^{\prime\prime} + 2\mathcal{H}h_{ij}^{\prime} - \nabla^2 h_{ij} = 16\pi G\Pi_{ij}^{\mathrm{TT}}$

Source: Anisotropic Stress

$$\Pi_{ij} = T_{ij} - \langle T_{ij} \rangle_{\mathsf{FLRW}}$$

GW Propagation/Creation in Cosmology

FLRW:
$$ds^2 = a^2(-dt^2 + (\delta_{ij} + h_{ij})dx^i dx^j)$$
, $TT: \begin{cases} h_{ii} = 0 \\ h_{ij}, j = 0 \end{cases}$ (conformal time)

Creation/Propagation GWs in FLRW

Eom:
$$h_{ij}^{\prime\prime} + 2\mathcal{H}h_{ij}^{\prime} - \nabla^2 h_{ij} = 16\pi G\Pi_{ij}^{\mathrm{TT}}$$

Source: Anisotropic Stress

$$\Pi_{ij} = T_{ij} - \langle T_{ij} \rangle_{\mathsf{FLRW}}$$

GW Source(s): (SCALARS , VECTOR , FERMIONS)
$$\Pi_{ij}^{TT} \propto \{\partial_i \chi^a \partial_j \chi^a\}^{TT}, \{E_i E_j + B_i B_j\}^{TT}, \{\bar{\psi} \gamma_i D_j \psi\}^{TT}$$

Cosmic History

Cosmic History

Cosmic History

Recall, from previous lecture on

the energy-momentum of GW

Recall, from previous lecture on

the energy-momentum of GW

$$\rho_{\text{GW}}(t) = \frac{1}{32\pi G a^2(t)} \left\langle \dot{h}_{ij}(\mathbf{x}, t) \dot{h}_{ij}(\mathbf{x}, t) \right\rangle_{V}$$

$$\equiv \frac{1}{32\pi G a^2(t)} \frac{1}{V} \int_{V} d\mathbf{x} \, \dot{h}_{ij}(\mathbf{x}, t) \dot{h}_{ij}(\mathbf{x}, t)$$

t: conformal time

Recall, from previous lecture on

the energy-momentum of GW

$$\rho_{\text{GW}}(t) = \frac{1}{32\pi G a^2(t)} \left\langle \dot{h}_{ij}(\mathbf{x}, t) \dot{h}_{ij}(\mathbf{x}, t) \right\rangle_{V}$$

$$\equiv \frac{1}{32\pi G a^2(t)} \frac{1}{V} \int_{V} d\mathbf{x} \, \dot{h}_{ij}(\mathbf{x}, t) \dot{h}_{ij}(\mathbf{x}, t)$$

$$(V^{1/3} \gg \lambda)$$

Recall, from previous lecture on

the energy-momentum of GW

$$\rho_{\text{GW}}(t) = \frac{1}{32\pi G a^{2}(t)} \left\langle \dot{h}_{ij}(\mathbf{x}, t) \dot{h}_{ij}(\mathbf{x}, t) \right\rangle_{V}$$

$$\equiv \frac{1}{32\pi G a^{2}(t)} \frac{1}{V} \int_{V} d\mathbf{x} \, \dot{h}_{ij}(\mathbf{x}, t) \dot{h}_{ij}(\mathbf{x}, t)$$

$$= \frac{1}{32\pi G a^{2}(t)} \int \frac{d\mathbf{k}}{(2\pi)^{3}} \frac{d\mathbf{k}'}{(2\pi)^{3}} \, \dot{h}_{ij}(\mathbf{k}, t) \dot{h}_{ij}^{*}(\mathbf{k}', t)$$

$$\times \frac{1}{V} \int_{V} d\mathbf{x} \, e^{-i\mathbf{x}(\mathbf{k} - \mathbf{k}')},$$

$$(V^{1/3} \gg \lambda)$$

Recall, from previous lecture on

the energy-momentum of GW

$$\rho_{\text{GW}}(t) = \frac{1}{32\pi G a^{2}(t)} \left\langle \dot{h}_{ij}(\mathbf{x}, t) \dot{h}_{ij}(\mathbf{x}, t) \right\rangle_{V}$$

$$\equiv \frac{1}{32\pi G a^{2}(t)} \frac{1}{V} \int_{V} d\mathbf{x} \, \dot{h}_{ij}(\mathbf{x}, t) \dot{h}_{ij}(\mathbf{x}, t)$$

$$= \frac{1}{32\pi G a^{2}(t)} \int \frac{d\mathbf{k}}{(2\pi)^{3}} \frac{d\mathbf{k'}}{(2\pi)^{3}} \, \dot{h}_{ij}(\mathbf{k}, t) \dot{h}_{ij}^{*}(\mathbf{k'}, t)$$

$$\times \frac{1}{V} \underbrace{\int_{(kV^{1/3} \to \infty)}^{C} (2\pi)^{3} \delta(\mathbf{k} - \mathbf{k'})}_{(kV^{1/3} \to \infty)}$$

 $(V^{1/3} \gg \lambda)$

Recall, from previous lecture on

the energy-momentum of GW

$$\rho_{\text{GW}}(t) = \frac{1}{32\pi G a^2(t)} \left\langle \dot{h}_{ij}(\mathbf{x}, t) \dot{h}_{ij}(\mathbf{x}, t) \right\rangle_{V}$$

$$\equiv \frac{1}{32\pi G a^2(t)} \frac{1}{V} \int_{V} d\mathbf{x} \, \dot{h}_{ij}(\mathbf{x}, t) \dot{h}_{ij}(\mathbf{x}, t)$$

$$= \frac{1}{32\pi G a^2(t) V} \int \frac{d\mathbf{k}}{(2\pi)^3} \, \dot{h}_{ij}(\mathbf{k}, t) \dot{h}_{ij}^*(\mathbf{k}, t)$$

$$(V^{1/3} \gg \lambda)$$

Recall, from previous lecture on

the energy-momentum of GW

$$\begin{split} \rho_{\text{GW}}(t) &= \frac{1}{32\pi G a^2(t)} \left\langle \dot{h}_{ij}(\mathbf{x},t) \dot{h}_{ij}(\mathbf{x},t) \right\rangle_{V} \\ &\equiv \frac{1}{32\pi G a^2(t)} \frac{1}{V} \int_{V} d\mathbf{x} \, \dot{h}_{ij}(\mathbf{x},t) \dot{h}_{ij}(\mathbf{x},t) \\ &= \frac{1}{32\pi G a^2(t) V} \int \frac{d\mathbf{k}}{(2\pi)^3} \, \dot{h}_{ij}(\mathbf{k},t) \dot{h}_{ij}^*(\mathbf{k},t) \\ &= \int d \log k \, \left(\frac{1}{(4\pi)^3 G a^2(t) V} \left\langle \dot{h}_{ij}(\mathbf{k},t) \dot{h}_{ij}^*(\mathbf{k},t) \right\rangle_{\Omega_k} \right) \\ &\left[\left\langle |f(\mathbf{k})|^2 \right\rangle_{\Omega_k} \stackrel{=}{=} \frac{1}{4\pi} \int_{|\mathbf{k}| = t}^{d\Omega_k |f(\mathbf{k}')|^2} \right] \end{split}$$

Recall, from previous lecture on

the energy-momentum of GW

$$\begin{split} \rho_{\text{GW}}(t) &= \frac{1}{32\pi G a^2(t)} \left\langle \dot{h}_{ij}(\mathbf{x}, t) \dot{h}_{ij}(\mathbf{x}, t) \right\rangle_{V} \\ &\equiv \frac{1}{32\pi G a^2(t)} \frac{1}{V} \int_{V} d\mathbf{x} \, \dot{h}_{ij}(\mathbf{x}, t) \dot{h}_{ij}(\mathbf{x}, t) \\ &= \frac{1}{32\pi G a^2(t) V} \int \frac{d\mathbf{k}}{(2\pi)^3} \, \dot{h}_{ij}(\mathbf{k}, t) \dot{h}_{ij}^*(\mathbf{k}, t) \\ &= \int d \log k \left(\frac{1}{(4\pi)^3 G a^2(t) V} \left\langle \dot{h}_{ij}(\mathbf{k}, t) \dot{h}_{ij}^*(\mathbf{k}, t) \right\rangle_{\Omega_k} \right) \\ &\left[\left\langle |f(\mathbf{k})|^2 \right\rangle_{\Omega_k} = \frac{1}{4\pi} \int_{|\mathbf{k}| = k}^{d\Omega_k} |f(\mathbf{k}')|^2 \right] &\equiv \left(\frac{d\rho_{\text{GW}}}{d \log k} \right) (k, t) \end{split}$$

Energy density

$$\equiv \left(\frac{d\rho_{\rm GW}}{d\log k}\right)(k,t)$$

Primer on Inflation

(Brief review) Inflation

Lectures by Y. Wong?

$$ds^{2} = -(1+2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1-2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$
$$\phi(\vec{x},t) = \phi(t) + \delta\phi(\vec{x},t)$$

$$ds^{2} = -(1 + 2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1 - 2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$
$$\phi(\vec{x}, t) = \phi(t) + \delta\phi(\vec{x}, t)$$

$$ds^2 = -(1+2\Phi)dt^2 + 2B_i dx^i dt + a^2[(1-2\Psi)\delta_{ij} + E_{ij}]dx^i dx^j$$

$$\phi(\vec{x},t) = \phi(t) + \delta\phi(\vec{x},t)$$

$$B_i = \partial_i B - S_i$$

$$E_{ij} = 2\partial_{ij}E + 2\partial_{(i}F_{j)} + h_{ij}$$

Inflation: Generator of Primordial Fluctuations

$$ds^{2} = -(1+2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1-2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$

$$\phi(\vec{x},t) = \phi(t) + \delta\phi(\vec{x},t)$$

$$E_{ij} = 2\partial_{ij}E + 2\partial_{i}F_{j} + h_{ij}$$

Expanding U. — Vector Perturbations $S_i, F_i \propto \frac{1}{a}$

Inflation: Generator of Primordial Fluctuations

$$ds^{2} = -(1+2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1-2\Psi)\delta_{ij} + E_{ij})dx^{i}dx^{j}$$

$$\phi(\vec{x},t) = \phi(t) + \delta\phi(\vec{x},t)$$

$$B_i = \partial_i B - S_i$$

$$E_{ij} = 2\partial_{ij}E + 2\partial_{(i}F_{j)} + h_{ij}$$

$$\partial_{i}h_{ij} = h_{ii} = 0$$

(tensors = GWs)

$$ds^{2} = -(1+2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1-2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$
$$\phi(\vec{x},t) = \phi(t) + \delta\phi(\vec{x},t)$$

$$ds^{2} = -(1+2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1-2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$
$$\phi(\vec{x},t) = \phi(t) + \delta\phi(\vec{x},t)$$

$$\textbf{Piff.:} \quad x^{\mu} \rightarrow x^{\mu} + \xi^{\mu}$$

Inflation: Generator of Primordial Fluctuations

$$ds^{2} = -(1+2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1-2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$
$$\phi(\vec{x},t) = \phi(t) + \delta\phi(\vec{x},t)$$

$$\zeta \equiv -[\Psi + (H/\dot{
ho})\delta
ho_{\phi}] \stackrel{\mbox{\it Piff.}}{\longrightarrow} \zeta$$

$$\mathcal{R} \equiv \left[\Psi + (H/\dot{\phi})\delta\phi
ight] \stackrel{\mbox{\it Piff.}}{\longrightarrow} \mathcal{R}$$

$$Q \equiv \left[\delta\phi + (\dot{\phi}/H)\Psi
ight] \stackrel{\mbox{\it Piff.}}{\longrightarrow} Q$$

$$Q \equiv [\delta \phi + (\dot{\phi}/H)\Psi] \stackrel{ extstyle extstyle$$

Gauge Inv.!

Inflation: Generator of Primordial Fluctuations

$$ds^{2} = -(1 + 2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1 - 2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$
$$\phi(\vec{x}, t) = \phi(t) + \delta\phi(\vec{x}, t)$$

$$\zeta \equiv -[\Psi + (H/\dot{
ho})\delta
ho_{\phi}] \stackrel{\mbox{\it Piff.}}{\longrightarrow} \zeta$$

$$\mathcal{R} \equiv \left[\Psi + (H/\dot{\phi})\delta\phi
ight] \stackrel{\mbox{\it Piff.}}{\longrightarrow} \mathcal{R}$$
 $Q \equiv \left[\delta\phi + (\dot{\phi}/H)\Psi
ight] \stackrel{\mbox{\it Piff.}}{\longrightarrow} Q$

$$Q \equiv [\delta\phi + (\dot{\phi}/H)\Psi] \stackrel{ extsf{Vitt.}}{\longrightarrow} Q$$

Gauge Inv.!

Curvature

Tensor Pert. (GW)

Fixing Gauge: e.g. $E, \delta \phi = 0 \Rightarrow g_{ij} = a^2[(1-2\mathcal{R})\delta_{ij} + h_{ij}]$

Inflation & Primordial Perturbations

Inflation & Primordial Perturbations

$$g_{\mu\nu} = g_{\mu\nu}^{FRW} + \delta g_{\mu\nu} [\mathcal{R}, h_{ij}]$$

$$\langle \mathcal{R}\mathcal{R}^* \rangle \equiv (2\pi)^3 \frac{2\pi^2}{k^3} \Delta_{\mathcal{R}}^2(k)$$

$$(RR^+) \equiv (2\pi)^3 \frac{\Delta_R^2(k)}{k^3} \Delta_R^2(k)$$

$$g_{\mu\nu} = g_{\mu\nu}^{FRW} + \delta g_{\mu\nu}[R, h_{ij}]$$

$$\langle h_{ij} h_{ij}^* \rangle \equiv (2\pi)^3 \frac{2\pi^2}{k^3} \Delta_h^2(k)$$

$$g_{\mu\nu} = g_{\mu\nu}^{FRW} + \delta g_{\mu\nu}[\mathcal{R}, h_{ij}]$$

Scalar
$$\langle \mathcal{R}\mathcal{R}^* \rangle \equiv (2\pi)^3 \frac{2\pi^2}{k^3} \Delta_{\mathcal{R}}^2(k)$$

$$g_{\mu\nu} = g_{\mu\nu}^{FRW} + \delta g_{\mu\nu} [\mathcal{R}, h_{ij}]$$

$$\langle \mathcal{R} \mathcal{R} \rangle \equiv (2\pi)^3 \frac{\Delta_{\mathcal{R}}(\mathcal{R})}{k^3} \Delta_{\mathcal{R}}(\mathcal{R})$$

$$\text{Tensor}$$

$$\langle h_{ij} h_{ij}^* \rangle \equiv (2\pi)^3 \frac{2\pi^2}{k^3} \Delta_h^2(k)$$

$$\left\{ \langle f(\mathbf{k})f^*(\mathbf{k}') \rangle \equiv (2\pi)^3 \frac{2\pi^2}{k^3} \Delta_f^2(k) \delta(\mathbf{k} - \mathbf{k}') \right\}$$

Quantum fluctuations!

$$g_{\mu\nu} = g_{\mu\nu}^{FRW} + \delta g_{\mu\nu} [\mathcal{R}, h_{ij}]$$

$$\Delta_{\mathcal{R}}^{2}(k) = \frac{H^{4}}{(2\pi)^{2}\dot{\phi}^{2}} \left(\frac{k}{aH}\right)^{n_{s}-1}$$

$$n_{s}-1 \equiv 2(\eta - 2\epsilon)$$

$$\Delta_h^2(k) = \frac{2}{\pi^2} \left(\frac{H}{m_p}\right)^2 \left(\frac{k}{aH}\right)^{n_t}$$

$$n_t \equiv -2\epsilon$$

$$g_{\mu\nu} = g_{\mu\nu}^{FRW} + \delta g_{\mu\nu}[\mathcal{R}, h_{ij}]$$

$$\Delta_{\mathcal{R}}^{2}(k) = \frac{H^{4}}{(2\pi)^{2}\dot{\phi}^{2}} \left(\frac{k}{aH}\right)^{n_{s}-1}$$

$$n_{s}-1 \equiv 2(\eta - 2\epsilon)$$

$$\Delta_h^2(k) = \frac{2}{\pi^2} \left(\frac{H}{m_p}\right)^2 \left(\frac{k}{aH}\right)^{n_t}$$

$$n_t \equiv -2\epsilon$$

Time

$$\Delta_{\mathcal{R}}^{2}(k) = \frac{H^{4}}{(2\pi)^{2}\dot{\phi}^{2}} \left(\frac{k}{aH}\right)^{n_{s}-1}$$

$$n_{s}-1 \equiv 2(\eta - 2\epsilon)$$

$$\Delta_h^2(k) = \frac{2}{\pi^2} \left(\frac{H}{m_p}\right)^2 \left(\frac{k}{aH}\right)^{n_t}$$

$$n_t \equiv -2\epsilon$$

Time

INFLATIONARY COSMOLOGY

$$\hat{h}_{ij}(\mathbf{x},t) = \sum_{r=+,\times} \int \frac{d^3\mathbf{k}}{(2\pi)^{3/2}} \left(h_k(t) \, e^{i\mathbf{k}\mathbf{x}} \, \hat{a}_{\mathbf{k}r} + h_k^*(t) e^{-i\mathbf{k}\mathbf{x}} \, \hat{a}_{\mathbf{k}r}^+ \right) \, e_{ij}^r(\hat{\mathbf{k}})$$
 conformal time

Tensors = GWs

$$\hat{h}_{ij}(\mathbf{x},t) = \sum_{r=+,\times} \int \frac{d^3\mathbf{k}}{(2\pi)^{3/2}} \left(h_k(t) e^{i\mathbf{k}\mathbf{x}} \hat{a}_{\mathbf{k}r} + h_k^*(t) e^{-i\mathbf{k}\mathbf{x}} \hat{a}_{\mathbf{k}r}^+ \right) e_{ij}^r(\hat{\mathbf{k}})$$

quantum operators

Polarizations: +, x

$$\hat{h}_{ij}(\mathbf{x},t) = \sum_{r=+,\times} \int \frac{d^3 \mathbf{k}}{(2\pi)^{3/2}} \left(h_k(t) e^{i\mathbf{k}\mathbf{x}} \, \hat{a}_{\mathbf{k}r} + h_k^*(t) e^{-i\mathbf{k}\mathbf{x}} \, \hat{a}_{\mathbf{k}r}^+ \right) e_{ij}^r(\hat{\mathbf{k}})$$

$$ho_{\scriptscriptstyle \mathrm{GW}}(t) = \frac{1}{32\pi Ga^2(t)} \left\langle \dot{h}_{ij}(\mathbf{x},t)\dot{h}_{ij}(\mathbf{x},t) \right\rangle_V \longrightarrow \text{Volume/Time Average}$$

$$\hat{h}_{ij}(\mathbf{x},t) = \sum_{r=+,\times} \int \frac{d^3\mathbf{k}}{(2\pi)^{3/2}} \left(h_k(t) e^{i\mathbf{k}\mathbf{x}} \,\hat{a}_{\mathbf{k}r} + h_k^*(t) e^{-i\mathbf{k}\mathbf{x}} \,\hat{a}_{\mathbf{k}r}^+ \right) e_{ij}^r(\hat{\mathbf{k}})$$

$$\rho_{\text{GW}}(t) = \frac{1}{32\pi G a^2(t)} \left\langle \dot{h}_{ij}(\mathbf{x},t) \dot{h}_{ij}(\mathbf{x},t) \right\rangle_{\text{QM}} \longrightarrow \text{ensemble average}$$

$$\hat{h}_{ij}(\mathbf{x},t) = \sum_{r=+,\times} \int \frac{d^3\mathbf{k}}{(2\pi)^{3/2}} \left(h_k(t) e^{i\mathbf{k}\mathbf{x}} \, \hat{a}_{\mathbf{k}r} + h_k^*(t) e^{-i\mathbf{k}\mathbf{x}} \, \hat{a}_{\mathbf{k}r}^+ \right) e_{ij}^r(\hat{\mathbf{k}})$$

$$\rho_{\text{GW}}(t) = \frac{1}{32\pi G a^{2}(t)} \left\langle \dot{h}_{ij}(\mathbf{x}, t) \dot{h}_{ij}(\mathbf{x}, t) \right\rangle_{\text{QM}} \longrightarrow \text{ensemble average}$$

$$= \frac{1}{32\pi G a^{2}(t)} \int \frac{d\mathbf{k}}{(2\pi)^{3}} \frac{d\mathbf{k}'}{(2\pi)^{3}} \, e^{i\mathbf{x}(\mathbf{k} - \mathbf{k}')} \left\langle \dot{h}_{ij}\left(\mathbf{k}, t\right) \dot{h}_{ij}^{*}\left(\mathbf{k}', t\right) \right\rangle$$

$$\hat{h}_{ij}(\mathbf{x},t) = \sum_{r=+,\times} \int \frac{d^3\mathbf{k}}{(2\pi)^{3/2}} \left(h_k(t) e^{i\mathbf{k}\mathbf{x}} \,\hat{a}_{\mathbf{k}r} + h_k^*(t) e^{-i\mathbf{k}\mathbf{x}} \,\hat{a}_{\mathbf{k}r}^+ \right) e_{ij}^r(\hat{\mathbf{k}})$$

$$\rho_{\text{GW}}(t) = \frac{1}{32\pi G a^{2}(t)} \left\langle \dot{h}_{ij}(\mathbf{x}, t) \dot{h}_{ij}(\mathbf{x}, t) \right\rangle_{\text{QM}} \longrightarrow \text{ensemble average}$$

$$= \frac{1}{32\pi G a^{2}(t)} \int \frac{d\mathbf{k}}{(2\pi)^{3}} \frac{d\mathbf{k}'}{(2\pi)^{3}} e^{i\mathbf{x}(\mathbf{k} - \mathbf{k}')} \left\langle \dot{h}_{ij}(\mathbf{k}, t) \dot{h}_{ij}^{*}(\mathbf{k}', t) \right\rangle$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv (2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

$$\hat{h}_{ij}(\mathbf{x},t) = \sum_{r=+,\times} \int \frac{d^3\mathbf{k}}{(2\pi)^{3/2}} \left(h_k(t) e^{i\mathbf{k}\mathbf{x}} \,\hat{a}_{\mathbf{k}r} + h_k^*(t) e^{-i\mathbf{k}\mathbf{x}} \,\hat{a}_{\mathbf{k}r}^+ \right) e_{ij}^r(\hat{\mathbf{k}})$$

$$\rho_{\text{GW}}(t) = \frac{1}{(4\pi)^3 G a^2(t)} \int \frac{dk}{k} \ k^3 \mathcal{P}_h(k, t) = \int \frac{d\rho_{\text{GW}}}{d\log k} \, d\log k$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv (2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

$$\hat{h}_{ij}(\mathbf{x}, t) = \sum_{r=+,\times} \int \frac{d^3 \mathbf{k}}{(2\pi)^{3/2}} \left(h_k(t) e^{i\mathbf{k}\mathbf{x}} \, \hat{a}_{\mathbf{k}r} + h_k^*(t) e^{-i\mathbf{k}\mathbf{x}} \, \hat{a}_{\mathbf{k}r}^+ \right) e_{ij}^r(\hat{\mathbf{k}})$$

$$\rho_{\text{GW}}(t) = \frac{1}{(4\pi)^3 G a^2(t)} \int \frac{dk}{k} \ k^3 \mathcal{P}_h(k, t) = \int \frac{d\rho_{\text{GW}}}{d\log k} \, d\log k$$

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G \, a^2(t)} \, k^3 \, \mathcal{P}_{\dot{h}}(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv (2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G a^2(t)} k^3 \mathcal{P}_{\dot{h}}(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv (2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G \, a^2(t)} \, k^3 \, \mathcal{P}_{\dot{h}}(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv(2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G a^2(t)} k^3 \mathcal{P}_{\dot{h}}(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv (2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

Horizon Re-entry tensors propagate
$$Rad \ \ Pom: \ h_r(\mathbf{k},t) = \frac{A_r(\mathbf{k})}{a(t)} \, e^{ikt} + \frac{B_r(\mathbf{k})}{a(t)} \, e^{-ikt}$$

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G \, a^2(t)} \, k^3 \, \mathcal{P}_{\dot{h}}(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv (2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

Horizon Re-entry tensors propagate
$$\begin{cases} \text{Morizon : } \left\{ \begin{array}{l} h = h_* \\ \dot{h}_* = 0 \end{array} \right. \\ \text{Rad Pom: } h_r(\mathbf{k},t) = \frac{A_r(\mathbf{k})}{a(t)} \, e^{ikt} + \frac{B_r(\mathbf{k})}{a(t)} \, e^{-ikt} \end{cases}$$

$$A = B = \frac{1}{2}a_*h_*$$

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G \, a^2(t)} \, k^3 \, \mathcal{P}_{\dot{h}}(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv (2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

Horizon Re-entry tensors propagate
$$\begin{cases} \text{Morizon}: \left\{ \begin{array}{l} h=h_* \\ \dot{h}_*=0 \end{array} \right. \\ \text{Rad Pom:} \quad h_r(\mathbf{k},t) = \frac{A_r(\mathbf{k})}{a(t)} \, e^{ikt} + \frac{B_r(\mathbf{k})}{a(t)} \, e^{-ikt} \end{cases}$$

$$A = B = \frac{1}{2}a_*h_*$$

$$\left\langle \dot{h}\dot{h}\right\rangle = k^2\langle hh\rangle$$

After horizon re-entry

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G \, a^2(t)} \, k^3 \, \mathcal{P}_{\dot{h}}(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv (2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

Horizon Re-entry tensors propagate
$$\begin{cases} \text{ } &\text{ } lensors \text{ } propagate \\ \hline \\ &\hat{h}_{*} = 0 \end{cases}$$
 Rad Pom: $h_{r}(\mathbf{k},t) = \frac{A_{r}(\mathbf{k})}{a(t)} \, e^{ikt} + \frac{B_{r}(\mathbf{k})}{a(t)} \, e^{-ikt}$
$$\begin{cases} A = B = \frac{1}{2} a_{*} h_{*} \end{cases}$$

© Horizon:
$$\begin{cases} n = n_* \\ \dot{h}_* = 0 \end{cases}$$

$$A = B = \frac{1}{2}a_*h_*$$

$$\langle \dot{h}\dot{h}\rangle = k^2\langle hh\rangle = \left(\frac{a_*}{a}\right)^2 \frac{k^2}{2}\langle |h_*|^2\rangle$$

After horizon re-entry

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G \, a^2(t)} \, k^3 \, \mathcal{P}_{\dot{h}}(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv (2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

Horizon Re-entry tensors propagate
$$\begin{cases} \text{Morizon: } \left\{ \begin{array}{l} h = h_* \\ \dot{h}_* = 0 \end{array} \right. \\ \text{Rad Pom: } h_r(\mathbf{k},t) = \frac{A_r(\mathbf{k})}{a(t)} \, e^{ikt} + \frac{B_r(\mathbf{k})}{a(t)} \, e^{-ikt} \end{cases}$$

© Horizon :
$$\begin{cases} n = n_* \\ \dot{h}_* = 0 \end{cases}$$

$$A = B = \frac{1}{2}a_*h_*$$

$$\langle \dot{h}\dot{h}\rangle = k^2 \langle hh\rangle = \left(\frac{a_*}{a}\right)^2 \frac{k^2}{2} \langle |h_*|^2 \rangle = \left(\frac{a_o}{a}\right)^2 \frac{k^2}{2(1+z_*)^2} \frac{2\pi^2}{k^3} \Delta_{h_*}^2$$

After horizon re-entry

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G \, a^2(t)} \, k^3 \, \mathcal{P}_{\dot{h}}(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv(2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

Horizon Re-entry tensors propagate
$$\begin{cases} \text{Morizon : } \begin{cases} h = h_* \\ \dot{h}_* = 0 \end{cases}$$
 Rad Pom: $h_r(\mathbf{k},t) = \frac{A_r(\mathbf{k})}{a(t)} \, e^{ikt} + \frac{B_r(\mathbf{k})}{a(t)} \, e^{-ikt}$
$$A = B = \frac{1}{2} a_* h_*$$

$$A = B = \frac{1}{2}a_*h_*$$

$$\left\langle \dot{h}\dot{h}\right\rangle = k^2\langle hh\rangle = \left(\frac{a_*}{a}\right)^2\frac{k^2}{2}\langle |h_*|^2\rangle = \left(\frac{a_o}{a}\right)^2\frac{k^2}{2(1+z_*)^2}\frac{2\pi^2}{k^3}\Delta_{h_*}^2$$
 After horizon re-entry

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G \, a^2(t)} \, k^3 \, \mathcal{P}_{\dot{h}}(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv (2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

$$\mathcal{P}_{h} = \left(\frac{a_{o}}{a}\right)^{2} \frac{k^{2}}{2(1+z_{*})^{2}} \frac{2\pi^{2}}{k^{3}} \Delta_{h_{*}}^{2} \longrightarrow \frac{d\rho_{GW}}{d\log k} = \frac{1}{8} \frac{a_{o}^{2}}{a^{4}} \frac{m_{p}^{2}k^{2}}{(1+z_{*})^{2}} \Delta_{h_{*}}^{2}$$

$$\frac{d\rho_{\text{GW}}}{d\log k} = \frac{1}{8} \frac{a_o^2}{a^4} \frac{m_p^2 k^2}{(1+z_*)^2} \Delta_{h_*}^2$$

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G \, a^2(t)} \, k^3 \, \mathcal{P}_{\dot{h}}(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv (2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

$$\mathcal{P}_{h} = \left(\frac{a_{o}}{a}\right)^{2} \frac{k^{2}}{2(1+z_{*})^{2}} \frac{2\pi^{2}}{k^{3}} \Delta_{h_{*}}^{2} \longrightarrow \frac{d\rho_{GW}}{d\log k} = \frac{1}{8} \frac{a_{o}^{2}}{a^{4}} \frac{m_{p}^{2}k^{2}}{(1+z_{*})^{2}} \Delta_{h_{*}}^{2}$$

$$\frac{d\rho_{\text{GW}}}{d\log k} = \frac{1}{8} \frac{a_o^2}{a^4} \frac{m_p^2 k^2}{(1+z_*)^2} \Delta_{h_*}^2$$

Scales as Radiation!

(This happens for any GWB, once freely propagating @ sub-H scales)

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G \, a^2(t)} \, k^3 \, \mathcal{P}_h(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv (2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

$$\mathcal{P}_{h} = \left(\frac{a_{o}}{a}\right)^{2} \frac{k^{2}}{2(1+z_{*})^{2}} \frac{2\pi^{2}}{k^{3}} \Delta_{h_{*}}^{2} \longrightarrow \frac{d\rho_{GW}}{d\log k} = \frac{1}{8} \frac{a_{o}^{2}}{a^{4}} \frac{m_{p}^{2}k^{2}}{(1+z_{*})^{2}} \Delta_{h_{*}}^{2}$$

$$\frac{d\rho_{\text{GW}}}{d\log k} = \frac{1}{8} \frac{a_o^2}{a^4} \frac{m_p^2 k^2}{(1+z_*)^2} \Delta_{h_*}^2$$

$$(1+z_*)_{\rm RD}^{-2} = \Omega_{\rm Rad}^{(o)} \frac{a_o^2 H_o^2}{k^2} \longrightarrow \frac{d\rho_{\rm GW}}{d\log k} = \frac{\Omega_{\rm Rad}^{(o)}}{24} \left(\frac{a_o}{a}\right)^4 3m_p^2 H_o^2 \Delta_{h_*}^2$$

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G \, a^2(t)} \, k^3 \, \mathcal{P}_{\dot{h}}(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv (2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

$$\mathcal{P}_{h} = \left(\frac{a_{o}}{a}\right)^{2} \frac{k^{2}}{2(1+z_{*})^{2}} \frac{2\pi^{2}}{k^{3}} \Delta_{h_{*}}^{2} \longrightarrow \frac{d\rho_{GW}}{d\log k} = \frac{1}{8} \frac{a_{o}^{2}}{a^{4}} \frac{m_{p}^{2}k^{2}}{(1+z_{*})^{2}} \Delta_{h_{*}}^{2}$$

RD:
$$(1+z_*)_{\text{RD}}^{-2} = \Omega_{\text{Rad}}^{(o)} \frac{a_o^2 H_o^2}{k^2}$$
 \longrightarrow $\frac{d\rho_{\text{GW}}}{d\log k} = \frac{\Omega_{\text{Rad}}^{(o)}}{24} \left(\frac{a_o}{a}\right)^4 \underbrace{3m_p^2 H_o^2 \Delta_{h_*}^2}$

$$\Omega_{\scriptscriptstyle \mathrm{GW}}^{(o)} \equiv rac{1}{
ho_c^{(o)}} \left(-rac{d
ho_{\scriptscriptstyle \mathrm{GW}}}{d\log k}
ight)_o$$

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G \, a^2(t)} \, k^3 \, \mathcal{P}_{\dot{h}}(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv (2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

$$\mathcal{P}_{h} = \left(\frac{a_{o}}{a}\right)^{2} \frac{k^{2}}{2(1+z_{*})^{2}} \frac{2\pi^{2}}{k^{3}} \Delta_{h_{*}}^{2} \longrightarrow \frac{d\rho_{GW}}{d\log k} = \frac{1}{8} \frac{a_{o}^{2}}{a^{4}} \frac{m_{p}^{2}k^{2}}{(1+z_{*})^{2}} \Delta_{h_{*}}^{2}$$

RD:
$$(1+z_*)_{\text{RD}}^{-2} = \Omega_{\text{Rad}}^{(o)} \frac{a_o^2 H_o^2}{k^2}$$
 \longrightarrow $\frac{d\rho_{\text{GW}}}{d\log k} = \frac{\Omega_{\text{Rad}}^{(o)}}{24} \left(\frac{a_o}{a}\right)^4 \underbrace{3m_p^2 H_o^2 \Delta_{h_*}^2}$

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G \, a^2(t)} \, k^3 \, \mathcal{P}_{\dot{h}}(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv(2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

$$\mathcal{P}_{h} = \left(\frac{a_{o}}{a}\right)^{2} \frac{k^{2}}{2(1+z_{*})^{2}} \frac{2\pi^{2}}{k^{3}} \Delta_{h_{*}}^{2} \longrightarrow \frac{d\rho_{GW}}{d\log k} = \frac{1}{8} \frac{a_{o}^{2}}{a^{4}} \frac{m_{p}^{2}k^{2}}{(1+z_{*})^{2}} \Delta_{h_{*}}^{2}$$

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,t) = \frac{1}{(4\pi)^3 G \, a^2(t)} \, k^3 \, \mathcal{P}_{\dot{h}}(k,t)$$

$$\left\langle \dot{h}_{ij}\left(\mathbf{k},t\right)\dot{h}_{ij}^{*}\left(\mathbf{k}',t\right)\right\rangle \equiv (2\pi)^{3}\,\mathcal{P}_{\dot{h}}(k,t)\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$

$$\mathcal{P}_{h} = \left(\frac{a_{o}}{a}\right)^{2} \frac{k^{2}}{2(1+z_{*})^{2}} \frac{2\pi^{2}}{k^{3}} \Delta_{h_{*}}^{2} \longrightarrow \frac{d\rho_{GW}}{d\log k} = \frac{1}{8} \frac{a_{o}^{2}}{a^{4}} \frac{m_{p}^{2}k^{2}}{(1+z_{*})^{2}} \Delta_{h_{*}}^{2}$$

$$\Omega_{\scriptscriptstyle \mathrm{GW}}^{(o)}(f) \equiv \frac{1}{\rho_c^{(o)}} \left(\begin{array}{c} d\rho_{\rm GW} \\ d\log k \end{array} \right)_o = \frac{\Omega_{\rm Rad}^{(o)}}{24} \Delta_{h_*}^2(k) \qquad (k=2\pi f)$$
 Transfer Funct
$$T(k) \equiv \frac{\Omega_{\scriptscriptstyle \mathrm{GW}}^{(o)}(k)}{\Delta_{h_*}^2(k)} \propto k^0(\mathrm{RD})$$

Small red-tilt

(almost-) scale-invariant

$$\Omega_{\text{GW}}^{(o)}(f) \equiv \frac{1}{\rho_c^{(o)}} \left(\frac{d\rho_{\text{GW}}}{d\log k} \right)_o = \underbrace{\frac{\Omega_{\text{Rad}}^{(o)}}{24} \Delta_{h_*}^2(k)} \qquad \Delta_h^2(k) = \frac{2}{\pi^2}$$

Transfer Funct.: $T(k) \propto k^0(\mathrm{RD})$

energy scale $\Delta_h^2(k) = \frac{2}{\pi^2} \left(\frac{H}{m_p}\right)^2 \left(\frac{k}{aH}\right)^{n_t}$ $n_t \equiv -2\epsilon$

Small red-tilt

(almost-) scale-invariant

$$\Omega_{\text{GW}}^{(o)}(f) \equiv \frac{1}{\rho_c^{(o)}} \left(\frac{d\rho_{\text{GW}}}{d\log k} \right)_o = \underbrace{\Omega_{\text{Rad}}^{(o)}}_{24} \Delta_{h_*}^2(k)$$

 $\Delta_h^2(k) = \frac{2}{\pi^2} \left(\frac{H}{m_p}\right)^2 \left(\frac{k}{aH}\right)^{n_t}$ $n_t \equiv -2c$

Transfer Funct.: $T(k) \propto k^0(\mathrm{RD})$

(almost-) scale-invariant

energy scale

Small red-tilt

$$\Omega_{\text{GW}}^{(o)}(f) \equiv \frac{1}{\rho_c^{(o)}} \left(\frac{d\rho_{\text{GW}}}{d\log k} \right)_o = \underbrace{\frac{\Omega_{\text{Rad}}^{(o)}}{24} \Delta_{h_*}^2(k)}_{o}$$

energy scale $\Delta_h^2(k) = \frac{2}{\pi^2} \left(\frac{H}{m_p}\right)^2 \left(\frac{k}{aH}\right)^{n_t}$ $n_t \equiv -2e^{-t}$

Transfer Funct.: $T(k) \propto k^{-2} (\mathrm{MD})$

Small red-tilt

$$\Omega_{\text{GW}}^{(o)}(f) \equiv \frac{1}{\rho_c^{(o)}} \left(\frac{d\rho_{\text{GW}}}{d\log k} \right)_o = \underbrace{\frac{\Omega_{\text{Rad}}^{(o)}}{24} \Delta_{h_*}^2(k)}_{o}$$

energy scale $\Delta_h^2(k) = \frac{2}{\pi^2} \left(\frac{H}{m_p}\right)^2 \left(\frac{k}{aH}\right)^{n_t}$ $n_t \equiv -2$

Transfer Funct.: $T(k) \propto k^{-2} (\mathrm{MD})$

Small red-tilt

Inflation **aLIGO** pectrum $\Omega_{\rm GW} \propto 1/k^2$ Search of B-modes @ -12.0 CMB, might be only -14.0 change to detect Inflationary Tensors! -18.0 -14.0

Key, think about T(k)

 $\Delta_h^2(k) = \frac{2}{\pi^2} \left(\frac{H}{m_p}\right)^2 \left(\frac{k}{aH}\right)^{n_t}$

Transfer Funct.:
$$T(k) = \begin{cases} 1, & \text{RD} \\ (k_{eq}/k)^2, & \text{MD} \end{cases}$$

Small red-tilt

energy scale

Period before RD: $T(k) \propto k^{2\frac{(w_s-1/3)}{(w_s+1/3)}}$

$$\Omega_{\mathrm{GW}}^{(o)}(f) \equiv \frac{1}{\rho_c^{(o)}} \left(\begin{array}{c} d\rho_{\mathrm{GW}} \\ d\log k \end{array} \right)_o = \frac{\Omega_{\mathrm{rad}}^{(o)}}{24} T(k) \Delta_{h_*}^2(k) \qquad \qquad \Delta_h^2(k) = \frac{2}{\pi^2} \left(\frac{H}{m_p} \right)^2 \left(\frac{k}{aH} \right)^{n_t} \qquad \qquad n_t \equiv -2\epsilon$$

Transfer Funct.: $T(k) = \begin{cases} 1, & \text{RI} \\ (k_{eq}/k)^2, & \text{MI} \end{cases}$

Small red-tilt

Period before RD: $T(k) \propto k^{2\frac{(w_s-1/3)}{(w_s+1/3)}}$

, RD , MD $T(k) = \begin{cases} 1 \\ (k_{\rm eq}/k)^2 \end{cases}$ Transfer Funct.:

Period before RD: $T(k) \propto k^{2\frac{(w_s-1/3)}{(w_s+1/3)}}$ (e.g. Stiff era: $\omega_s > 1/3$)

Realistic computation of Transfer function

- @ Stiff Domination —>
 - -> Radiation Dom.

$$\Omega_{\text{GW}}^{(0)}(f) = \Omega_{\text{GW}}^{(0)} \Big|_{\text{plateau}} \times \mathcal{W}(f/f_{\text{RD}}) \times \mathcal{A}_{\text{s}} \left(\frac{f}{f_{\text{RD}}}\right)^{n_t(w_s)}$$

$$\Omega_{\rm GW}^{(0)}\Big|_{\rm plateau} \simeq 2 \cdot 10^{-16} \left(\frac{H_*}{H_{\rm max}}\right)^2$$

Rad. Plateau **Transfer Funct. Stiff Period**

$$\Omega_{\mathrm{GW}}^{(0)}(f) = \Omega_{\mathrm{GW}}^{(0)} \Big|_{\mathrm{plateau}} \times \mathcal{W}(f/f_{\mathrm{RD}}) \times \mathcal{A}_{\mathrm{s}} \left(\frac{f}{f_{\mathrm{RD}}}\right)^{n_t(w_s)}$$

 $\Omega_{\rm GW}^{(0)}\Big|_{\rm plateau} \simeq 2 \cdot 10^{-16} \left(\frac{H_*}{H_{\rm max}}\right)^2$

Rad. Plateau

$$\Omega_{\text{GW}}^{(0)}(f) = \Omega_{\text{GW}}^{(0)} \Big|_{\text{plateau}} \times \mathcal{W}(f/f_{\text{RD}}) \times \mathcal{A}_{\text{s}} \left(\frac{f}{f_{\text{RD}}}\right)^{n_t(w_s)},$$

 $\Omega_{\rm GW}^{(0)}\Big|_{\rm plateau} \simeq 2 \cdot 10^{-16} \left(\frac{H_*}{H_{\rm max}}\right)^2$

Rad. Plateau

$$\Omega_{\mathrm{GW}}^{(0)}(f) = \Omega_{\mathrm{GW}}^{(0)} \Big|_{\mathrm{plateau}} \times \mathcal{W}(f/f_{\mathrm{RD}}) \times \mathcal{A}_{\mathrm{s}} \left(\frac{f}{f_{\mathrm{RD}}}\right)^{n_t(w_s)}$$

 $\Omega_{\rm GW}^{(0)}\Big|_{\rm plateau} \simeq 2 \cdot 10^{-16} \left(\frac{H_*}{H_{\rm max}}\right)^2$

Rad. Plateau

$$\Omega_{\text{GW}}^{(0)}(f) = \Omega_{\text{GW}}^{(0)} \Big|_{\text{plateau}} \times \mathcal{W}(f/f_{\text{RD}}) \times \mathcal{A}_{\text{s}} \left(\frac{f}{f_{\text{RD}}}\right)^{n_t(w_s)},$$

 $\Omega_{\rm GW}^{(0)}\Big|_{\rm plateau} \simeq 2 \cdot 10^{-16} \left(\frac{H_*}{H_{\rm max}}\right)^2$

Rad. Plateau

$$\Omega_{\text{GW}}^{(0)}(f) = \Omega_{\text{GW}}^{(0)} \Big|_{\text{plateau}} \times \mathcal{W}(f/f_{\text{RD}}) \times \mathcal{A}_{\text{s}} \left(\frac{f}{f_{\text{RD}}}\right)^{n_t(w_s)}$$

$$\Omega_{\rm GW}^{(0)}\Big|_{\rm plateau} \simeq 2 \cdot 10^{-16} \left(\frac{H_*}{H_{\rm max}}\right)^2$$

Rad. Plateau Transfer Funct. Stiff Period Window x power-law

Is this the real GW spectrum?

$$\Omega_{\mathrm{GW}}^{(0)}(f) = \Omega_{\mathrm{GW}}^{(0)} \Big|_{\mathrm{plateau}} \times \mathcal{W}(f/f_{\mathrm{RD}}) \times \mathcal{A}_{\mathrm{s}} \left(\frac{f}{f_{\mathrm{RD}}}\right)^{n_t(w_s)}$$

 $\Omega_{\rm GW}^{(0)}\Big|_{\rm plateau} \simeq 2 \cdot 10^{-16} \left(\frac{H_*}{H_{\rm max}}\right)^2$

Rad. Plateau Transfer Funct. Stiff Period Window x power-law

Real signal: highly oscillatory

Stochastic Signal: average measurement

$$\langle \dot{h}_{ij}(f)\dot{h}_{ij}(f)\rangle = \mathcal{P}_h(f)$$

$$\Omega_{\mathrm{GW}}^{(0)}(f) = \Omega_{\mathrm{GW}}^{(0)} \Big|_{\mathrm{plateau}} \times \mathcal{W}(f/f_{\mathrm{RD}}) \times \mathcal{A}_{\mathrm{s}} \left(\frac{f}{f_{\mathrm{RD}}}\right)^{n_t(w_s)}$$

 $\Omega_{\rm GW}^{(0)}\Big|_{\rm plateau} \simeq 2 \cdot 10^{-16} \left(\frac{H_*}{H_{\rm max}}\right)^2$

Rad. Plateau Transfer Funct. Stiff Period Window x power-law

This is the oscillation averaged spectrum!

$$\Omega_{\text{GW}}^{(0)}(f) = \Omega_{\text{GW}}^{(0)} \Big|_{\text{plateau}} \times \mathcal{W}(f/f_{\text{RD}}) \times \mathcal{A}_{\text{s}} \left(\frac{f}{f_{\text{RD}}}\right)^{n_t(w_s)},$$

$$\Omega_{\rm GW}^{(0)}\Big|_{\rm plateau} \simeq 2 \cdot 10^{-16} \left(\frac{H_*}{H_{\rm max}}\right)^2$$

Rad. Plateau Transfer Funct. Stiff Period

Window x power-law

Slope/Tilt (EoS Stiff Period)

$$\Omega_{\text{GW}}^{(0)}(f) = \Omega_{\text{GW}}^{(0)} \Big|_{\text{plateau}} \times \mathcal{W}(f/f_{\text{RD}}) \times \mathcal{A}_{\text{s}} \left(\frac{f}{f_{\text{RD}}}\right)^{n_t(w_s)},$$

 $\Omega_{\rm GW}^{(0)}\Big|_{\rm plateau} \simeq 2 \cdot 10^{-16} \left(\frac{H_*}{H_{\rm max}}\right)^2$

Rad. Plateau Transfer Funct. Stiff Period Window x power-law

Overall
Amplitude
(Energy
Scale
Inflation)

$$\Omega_{\text{GW}}^{(0)}(f) = \Omega_{\text{GW}}^{(0)} \Big|_{\text{plateau}} \times \mathcal{W}(f/f_{\text{RD}}) \times \mathcal{A}_{\text{s}} \left(\frac{f}{f_{\text{RD}}}\right)^{n_t(w_s)}$$

 $\left.\Omega_{\rm GW}^{(0)}\right|_{\rm plateau} \simeq 2 \cdot 10^{-16} \left(\frac{H_*}{H_{\rm max}}\right)^2$

Rad. **Transfer Funct. Stiff Period Plateau** Window x power-law

Freq. RD

 $k_{\rm RD} = a_{\rm RD} H_{\rm RD}$

 $f_{\rm RD} \equiv k_{\rm RD}/(2\pi a_0)$

SD-to-RD transition

$$\Omega_{
m GW}(f) \propto H_{
m inf}^2 \left(rac{f}{f_{
m RD}}
ight)^{rac{2(w-1/3)}{(w+1/3)}}$$

Not Scale Invariant!

$$\Omega_{\mathrm{GW}}(f) \propto H_{\mathrm{inf}}^2 \left(\frac{f}{f_{\mathrm{RD}}}\right)^{\frac{2(w-1/3)}{(w+1/3)}}$$

Not Scale Invariant!

$$\Omega_{
m GW}(f) \propto H_{
m inf}^2 \left(rac{f}{f_{
m RD}}
ight)^{rac{2(w-1/3)}{(w+1/3)}}$$

$$\Omega_{
m GW}(f) \propto H_{
m inf}^2 \left(rac{f}{f_{
m RD}}
ight)^{rac{2(w-1/3)}{(w+1/3)}}$$

$$\Omega_{\mathrm{GW}}(f) \propto H_{\mathrm{inf}}^2 \left(\frac{f}{f_{\mathrm{RD}}}\right)^{\frac{2(w-1/3)}{(w+1/3)}}$$

$$\Omega_{
m GW}(f) \propto H_{
m inf}^2 \left(rac{f}{f_{
m RD}}
ight)^{rac{2(w-1/3)}{(w+1/3)}}$$

$$\Omega_{\mathrm{GW}}(f) \propto H_{\mathrm{inf}}^2 \left(\frac{f}{f_{\mathrm{RD}}}\right)^{\frac{2(w-1/3)}{(w+1/3)}}$$

Axion-Inflation

Freese, Frieman, Olinto '90; ...

Shift symmetry $\phi \rightarrow \phi + C$ on couplings to other fields

Axion-Inflation

Freese, Frieman, Olinto '90; ...

Shift symmetry $\phi \rightarrow \phi + C$ on couplings to other fields

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right)^2 + V_{\text{shift}} \left(\phi \right) + \frac{c_{\psi}}{f} \, \partial_{\mu} \phi \, \bar{\psi} \, \gamma^{\mu} \, \gamma_5 \, \psi + \frac{\alpha}{f} \, \phi \, F_{\mu\nu} \, \tilde{F}^{\mu\nu}$$

derivative couplings to: fermions gauge fields

Axion-Inflation

Freese, Frieman, Olinto '90; ...

Shift symmetry $\phi \rightarrow \phi + C$ on couplings to other fields

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right)^2 + V_{\text{SMift}} \left(\phi \right) + \frac{c_{\psi}}{f} \, \partial_{\mu} \phi \, \bar{\psi} \, \gamma^{\mu} \, \gamma_5 \, \psi + \frac{\alpha}{f} \, \phi \, F_{\mu\nu} \, \tilde{F}^{\mu\nu}$$

derivative couplings to: fermions gauge fields

Not the QCD axion;

Axion-Inflation

Freese, Frieman, Olinto '90; ...

Shift symmetry $\phi \to \phi + C$ on couplings to other fields

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right)^{2} + V_{\text{shift}} \left(\phi \right) + \frac{c_{\psi}}{f} \partial_{\mu} \phi \, \bar{\psi} \, \gamma^{\mu} \, \gamma_{5} \, \psi + \frac{\alpha}{f} \, \phi \, F_{\mu\nu} \, \tilde{F}^{\mu\nu}$$
 fermions gauge fields (derivative couplings)

Axion-Inflation

Freese, Frieman, Olinto '90; ...

Shift symmetry $\phi \rightarrow \phi + C$ on couplings to other fields

Axion-Inflation

Freese, Frieman, Olinto '90; ...

Shift symmetry $\phi \rightarrow \phi + C$ on couplings to other fields

AXION-NETATION Shift symmetry $\phi \rightarrow \phi + const.$ Freese, Frieman, Olinto '90; ...

inflaton ϕ = pseudo-scalar axion

Axion-Inflation Shift symmetry $\phi \rightarrow \phi + const.$ Freese, Frieman, Olinto '90: ...

Photon: 2 helicities

$$\vec{A}(\tau, \mathbf{x}) = \sum_{\lambda = \pm} \int \frac{d^3k}{(2\pi)^{3/2}} \left[\vec{\epsilon}_{\lambda}(\mathbf{k}) a_{\lambda}(\mathbf{k}) A_{\lambda}(\tau, \mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}} + \text{h.c.} \right]$$

$$\left[a_{\lambda}(\mathbf{k}), a_{\lambda'}^{\dagger}(\mathbf{k'})\right] = \delta_{\lambda\lambda'}\delta^{(3)}(\mathbf{k} - \mathbf{k'})$$

Axion-Inflation Freese, Frieman, Olinto '90: ...

Shift symmetry $\phi \rightarrow \phi + const.$

$$V(\varphi) + \frac{\phi}{f} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

inflaton ϕ = pseudo-scalar axion

Photon: 2 helicities

$$\vec{A}(\tau, \mathbf{x}) = \sum_{\lambda = +} \int \frac{d^3k}{(2\pi)^{3/2}} \left[\vec{\epsilon}_{\lambda}(\mathbf{k}) a_{\lambda}(\mathbf{k}) A_{\lambda}(\tau, \mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}} + \text{h.c.} \right]$$

$$\vec{A}'' - \nabla^2 \vec{A} - \frac{1}{f} \phi' \vec{\nabla} \times \vec{A} = 0 \quad \Longrightarrow \quad \left[\frac{\partial^2}{\partial \tau^2} + k^2 \pm \frac{2k\xi}{\tau} \right] A_{\pm}(\tau, k) = 0,$$

$$\xi \equiv \frac{\dot{\phi}}{2fH}$$

Axion-Inflation Freese, Frieman, Olinto '90: ...

Shift symmetry $\phi \rightarrow \phi + const.$

inflaton ϕ = pseudo-scalar axion

Photon: 2 helicities

$$\vec{A}(\tau, \mathbf{x}) = \sum_{\lambda = +} \int \frac{d^3k}{(2\pi)^{3/2}} \left[\vec{\epsilon}_{\lambda}(\mathbf{k}) a_{\lambda}(\mathbf{k}) A_{\lambda}(\tau, \mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}} + \text{h.c.} \right]$$

$$\vec{A}'' - \nabla^2 \vec{A} - \frac{1}{f} \phi' \vec{\nabla} \times \vec{A} = 0 \quad \Longrightarrow \quad \left[\frac{\partial^2}{\partial \tau^2} + k^2 \pm \frac{2k\xi}{\tau} \right] A_{\pm}(\tau, k) = 0,$$

Chiral instability

$$A_{+}(\tau, k) \cong \frac{1}{\sqrt{2k}} \left(\frac{k}{2\xi aH}\right)^{1/4} e^{\pi \xi - 2\sqrt{2\xi k/(aH)}}$$

$$\xi \equiv \frac{\dot{\phi}}{2fH}$$

AXION-INFACTION Shift symmetry $\phi \rightarrow \phi + const.$ Freese, Frieman, Olinto '90; ...

inflaton ϕ = pseudo-scalar axion

$$A_{+} \propto e^{\pi \xi} \,, \quad |A_{-}| \ll |A_{+}|$$

A+ exponentially amplified, A- has no amplification

Axion-Inflation Shift symmetry $\phi \rightarrow \phi + const.$ Freese, Frieman, Olinto '90: ...

inflaton ϕ = pseudo-scalar axion

$$A_{+} \propto e^{\pi \xi} \,, \quad |A_{-}| \ll |A_{+}|$$

A+ exponentially amplified, A- has no amplification

Gauge field excitation creates chiral GWs!

Axion-Inflation Shift symmetry $\phi \rightarrow \phi + const.$ Freese, Frieman, Olinto '90: ...

inflaton ϕ = pseudo-scalar axion

Gauge field excitation creates chiral GWs!

$$h_{ij}^{"} + 2\mathcal{H}h_{ij}^{"} - \nabla^2 h_{ij} = 16\pi G \Pi_{ij}^{\rm TT} \propto \{E_i E_j + B_i B_j\}^{TT}$$

Axion-Inflation Shift symmetry $\phi \rightarrow \phi + const.$ Freese. Frieman. Olinto '90: ...

$$V(\varphi) + \frac{\phi}{f} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

inflaton ϕ = pseudo-scalar axion

Gauge field excitation creates chiral GWs!

$$h_{ij}''+2\mathcal{H}h_{ij}'-
abla^2h_{ij}=16\pi G\Pi_{ij}^{\mathrm{TT}}\propto \{E_iE_j+B_iB_j\}^{TT}$$
 GW mostly* one-chirality

(*why not exactly just one?)

INFLATIONARY MODELS Axion-Inflation

GW energy spectrum today

Gauge fields source a

Blue-Tilted

+ Chiral

+ Non-G

GW background

INFLATIONARY MODELS Axion-Inflation

GW energy spectrum today

INFLATIONARY MODELS Axion-Inflation

GW energy spectrum today

Axion-Inflation

Bartolo et al '16

$$h^2 \Omega_{\rm gw} = A_* \left(\frac{f}{f_*}\right)^{n_T}$$

Axion-Inflation

Axion-Inflation

LISA ability

Axion-Inflation

Axion-Inflation: Shift symmetry —— Natural (chiral) coupling to A_{μ}

huge excitation of fields! (photons)

Axion-Inflation: Shift symmetry — Natural (chiral) coupling to A_{μ} huge excitation of fields! (photons)

What if there are arbitrary fields coupled to the inflaton?

(i.e. no need of extra symmetry)

Axion-Inflation: Shift symmetry — Natural (chiral) coupling to A_{μ} huge excitation of fields! (photons)

What if there are arbitrary large exfields coupled to the inflaton? these (i.e. no need of extra symmetry) will they c

large excitation of these fields!?

will they create GWs?

fields coupled to the inflaton?

large excitation?
(i.e. no need of extra symmetry) GW generation!?

fields coupled to the inflaton? large excitation? (i.e. no need of extra symmetry) GW generation!?

$$-\mathcal{L}_{\gamma} = (\partial \chi)^2/2 + q^2(\phi - \phi_0)^2\chi^2/2$$
 Scalar Fld

$$-\mathcal{L}_{\psi} = \bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + g(\phi - \phi_0)\bar{\psi}\psi$$
 Fermion Fld

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - |(\partial_{\mu} - gA_{\mu})\Phi)|^2 - V(\Phi^{\dagger}\Phi)$$
 Gauge Fld ($\Phi = \phi e^{i\theta}$)

fields coupled to the inflaton? large excitation? (i.e. no need of extra symmetry) **GW** generation !?

$$-\mathcal{L}_{\chi} = (\partial \chi)^2/2 + g^2(\phi - \phi_0)^2\chi^2/2$$
 Sc

Scalar Fld

$$-\mathcal{L}_{\psi} = \bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + g(\phi - \phi_0)\bar{\psi}\psi$$

Fermion Fld

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - |(\partial_{\mu} - gA_{\mu})\Phi)|^2 - V(\Phi^{\dagger}\Phi)$$
 Gauge Fld ($\Phi = \phi e^{i\theta}$)

All 3 cases:

non-adiabatic

$$m=g(\phi(t)-\phi_0)$$
 $\Longrightarrow m^2$ during $\Delta t_{\rm na}\sim 1/\mu\,, \quad \mu^2\equiv g\dot{\phi}_0$

$$\mu^2 \equiv g\dot{\phi}_0$$

$$n_k = \operatorname{Exp}\{-\pi(k/\mu)^2\}$$

 $n_k = \mathrm{Exp}\{-\pi(k/\mu)^2\}$ Non-adiabatic field excitation (particle creation)

fields coupled to the inflaton? -> large excitation </ri>
(i.e. no need of extra symmetry)
GW generation !?

$$n_k = \operatorname{Exp}\{-\pi(k/\mu)^2\}$$

Non-adiabatic field excitation (particle creation!) (spin-independent)

fields coupled to the inflaton? - large excitation < (i.e. no need of extra symmetry)

$$n_k = \operatorname{Exp}\{-\pi(k/\mu)^2\}$$

Non-adiabatic field excitation (particle creation!) (spin-independent)

In all three cases (scalars, fermions, and vectors)

GWs generated by anisotropic distribution of the created species

(Only $k \ll \mu$ long-wave modes excited)

fields coupled to the inflaton? - large excitation < (i.e. no need of extra symmetry)

$$n_k = \operatorname{Exp}\{-\pi(k/\mu)^2\}$$

Non-adiabatic field excitation (particle creation!) (spin-independent)

In all three cases (scalars, fermions, and vectors)

GWs power spectrum: $\mathcal{P}_h^{(\mathrm{tot})}(k) = \mathcal{P}_h^{(\mathrm{vac})}(k) + \mathcal{P}_h^{(\mathrm{pp})}(k)$

from particle

```
GW Source(s): (SCALARS , VECTOR , FERMIONS ) \Pi_{ij}^{TT} \propto \{\partial_i \chi^a \partial_j \chi^a\}^{TT}, \{E_i E_j + B_i B_j\}^{TT}, \{\bar{\psi} \gamma_i D_j \psi\}^{TT}
```

fields coupled to the inflaton? - large excitation < (i.e. no need of extra symmetry)

$$n_k = \operatorname{Exp}\{-\pi(k/\mu)^2\}$$

Non-adiabatic field excitation (particle creation!) (spin-independent)

In all three cases (scalars, fermions, and vectors)

GWs power spectrum: $\mathcal{P}_h^{(\mathrm{tot})}(k) = \mathcal{P}_h^{(\mathrm{vac})}(k) + \mathcal{P}_h^{(\mathrm{pp})}(k)$ from particle

$$\frac{\Delta \mathcal{P}_h}{\mathcal{P}_h} \equiv \frac{\mathcal{P}_h^{(\text{tot})} - \mathcal{P}_h^{(\text{vac})}}{\mathcal{P}_h^{(\text{vac})}} \equiv \frac{\mathcal{P}_h^{(\text{pp})}}{\mathcal{P}_h^{(\text{vac})}} \sim few \times \mathcal{O}(10^{-4}) \frac{H^2}{m_{\text{pl}}^2} W(k\tau_0) \left(\frac{\mu}{H}\right)^3 \ln^2(\mu/H)$$
Remarks at al. Phys. Box. D86, 102508 (2012), [1206,6117].

$$(W \lesssim 0.5)$$

N. Barnaby et al., Phys. Rev. **D86**, 103508 (2012), [1206.6117].

J. L. Cook and L. Sorbo, Phys. Rev. **D85**, 023534 (2012), [1109.0022].

$$\frac{\Delta \mathcal{P}_h}{\mathcal{P}_h} \equiv \frac{\mathcal{P}_h^{(\text{tot})} - \mathcal{P}_h^{(\text{vac})}}{\mathcal{P}_h^{(\text{vac})}} \equiv \frac{\mathcal{P}_h^{(\text{pp})}}{\mathcal{P}_h^{(\text{vac})}} \sim few \times \mathcal{O}(10^{-4}) \frac{H^2}{m_{\text{pl}}^2} W(k\tau_0) \left(\frac{\mu}{H}\right)^3 \ln^2(\mu/H)$$

(Sorbo et al 2011, Peloso et al 2012-2013, Caprini & DGF 2018)

$$\frac{\Delta \mathcal{P}_h}{\mathcal{P}_h} \equiv \frac{\mathcal{P}_h^{(\text{tot})} - \mathcal{P}_h^{(\text{vac})}}{\mathcal{P}_h^{(\text{vac})}} \equiv \frac{\mathcal{P}_h^{(\text{pp})}}{\mathcal{P}_h^{(\text{vac})}} \sim few \times \mathcal{O}(10^{-4}) \frac{H^2}{m_{\text{pl}}^2} W(k\tau_0) \left(\frac{\mu}{H}\right)^3 \ln^2(\mu/H)$$

(Sorbo et al 2011, Peloso et al 2012-2013, Caprini & DGF 2018)

(quasi-)scale invariance --- Slow roll monotonic potentials

(quasi-)scale invariance --- Slow roll monotonic potentials

What if the potential is not monotonic?

Ultra Slow-Roll Regime

Ultra Slow-Roll Regime


```
 | \mathbf{NFLATION} \longrightarrow \mathbf{IF} \left\{ \begin{array}{l} \mathbf{NON-MONOTONic} \\ \mathbf{multi-field} \end{array} \right\} \begin{array}{l} \mathbf{possible\ to} \\ \mathbf{enhance}\ \Delta^2_{\mathcal{R}} \\ \mathbf{(at\ small\ scales)} \\ \end{array}
```


$$| \text{INFLATION} \longrightarrow | \text{IF} \left\{ \begin{array}{l} \text{Non-monotonic} \\ \text{wulti-field} \end{array} \right\} \stackrel{\text{possible to}}{\Longrightarrow} \text{enhance } \Delta^2_{\mathcal{R}} \\ \text{(at small scales)}$$

Let us suppose
$$\left| \Delta_{\mathcal{R}}^2 \gg \Delta_{\mathcal{R}}^2 \right|_{\mathrm{CMB}} \sim 3 \cdot 10^{-9}$$
, @ small scales

$$ds^{2} = a^{2}(\eta)[-(1+2\Phi)d\eta^{2} + [(1-2\Psi)\delta_{ij} + 2F_{(i,j)} + h_{ij}]dx^{i}dx^{j}]$$

(at small scales)

Let us suppose
$$\Delta_R^2 \gg \Delta_R^2|_{\rm CMB} \sim 3 \cdot 10^{-9}$$
, @ small scales

$$ds^{2} = a^{2}(\eta)[-(1+2\Phi)d\eta^{2} + [(1-2\Psi)\delta_{ij} + 2F_{(i,j)} + h_{ij}]dx^{i}dx^{j}]$$

$$h_{ij}^{\prime\prime}+2\mathcal{H}h_{ij}^{\prime}+k^2h_{ij}=S_{ij}^{TT}$$
 $\sim\Phi*\Phi$ (2nd Order Pert.)

$$\begin{split} \underbrace{\left(S_{ij}\right)} &= \ 2\Phi\partial_i\partial_j\Phi - 2\Psi\partial_i\partial_j\Phi + 4\Psi\partial_i\partial_j\Psi + \partial_i\Phi\partial_j\Phi - \partial^i\Phi\partial_j\Psi - \partial^i\Psi\partial_j\Phi + 3\partial^i\Psi\partial_j\Psi \\ &- \frac{4}{3(1+w)\mathcal{H}^2}\partial_i(\Psi' + \mathcal{H}\Phi)\partial_j(\Psi' + \mathcal{H}\Phi) \\ &- \frac{2c_s^2}{3w\mathcal{H}} \left[3\mathcal{H}(\mathcal{H}\Phi - \Psi') + \nabla^2\Psi\right]\partial_i\partial_j(\Phi - \Psi) \end{split} \end{split}$$
 D. Wands et al, 2006-2010 Baumann et al, 2007 Peloso et al, 2018

 $| \textbf{INFLATION} \longrightarrow \textbf{IF} \left\{ \begin{array}{l} \textbf{non-monotonic} \\ \textbf{multi-field} \end{array} \right\} \xrightarrow{\textbf{possible to}} \textbf{enhance} \ \Delta^2_{\mathcal{R}} \\ \textbf{(at small scales)}$

Let us suppose
$$\Delta_R^2 > \Delta_R^2|_{\rm CMB} \sim 3 \cdot 10^{-9}$$
, @ small scales

$$ds^{2} = a^{2}(\eta)[-(1+2\Phi)d\eta^{2} + [(1-2\Psi)\delta_{ij} + 2F_{(i,j)} + h_{ij}]dx^{i}dx^{j}]$$

$$h_{ij}'' + 2\mathcal{H}h_{ij}' + k^2h_{ij} = S_{ij}^{TT}$$
 $\sim \Phi * \Phi$ (2nd Order Pert.)

$$\Omega_{\text{GW}}^{(0)}(f) = \frac{\Omega_{\text{rad}}^{(0)} \mathcal{G}(\eta_c)}{24} \left(\frac{2\pi f}{a(\eta_c) H(\eta_c)} \right)^2 \overline{\mathcal{P}_h^{\text{ind}}(\eta_c, 2\pi f)}$$

(at small scales)

Let us suppose
$$\Delta_R^2 > \Delta_R^2|_{\rm CMB} \sim 3 \cdot 10^{-9}$$
, @ small scales

$$ds^{2} = a^{2}(\eta)[-(1+2\Phi)d\eta^{2} + [(1-2\Psi)\delta_{ij} + 2F_{(i,j)} + h_{ij}]dx^{i}dx^{j}]$$

$$h_{ij}'' + 2\mathcal{H}h_{ij}' + k^2h_{ij} = S_{ij}^{TT}$$
 $\sim \Phi * \Phi$ (2nd Order Pert.)

$$\Omega_{\text{GW}}^{(0)}(f) = \frac{\Omega_{\text{rad}}^{(0)} \mathcal{G}(\eta_c)}{24} \left(\frac{2\pi f}{a(\eta_c) H(\eta_c)} \right)^2 \overline{\mathcal{P}_h^{\text{ind}}(\eta_c, 2\pi f)}$$

$$\overline{\mathcal{P}_h^{\text{ind}}(\eta, k)} = 2 \int_0^\infty dt \int_{-1}^1 ds \left[\frac{t(2+t)(s^2-1)}{(1-s+t)(1+s+t)} \right]^2$$

$$\times \overline{I^2(u, v, k, \eta)} \left(\Delta_{\mathcal{R}}^2(ku) \cdot \Delta_{\mathcal{R}}^2(kv), \right)$$

(at small scales)

Let us suppose
$$\Delta_R^2 > \Delta_R^2|_{\rm CMB} \sim 3 \cdot 10^{-9}$$
, @ small scales

$$ds^{2} = a^{2}(\eta)[-(1+2\Phi)d\eta^{2} + [(1-2\Psi)\delta_{ij} + 2F_{(i,j)} + h_{ij}]dx^{i}dx^{j}]$$

$$h_{ij}'' + 2\mathcal{H}h_{ij}' + k^2h_{ij} = S_{ij}^{TT}$$
 $\sim \Phi * \Phi$ (2nd Order Pert.)

$$\Omega_{\text{GW}}^{(0)}(f) = \frac{\Omega_{\text{rad}}^{(0)} \mathcal{G}(\eta_c)}{24} \left(\frac{2\pi f}{a(\eta_c)H(\eta_c)} \right)^2 \overline{\mathcal{P}_h^{\text{ind}}(\eta_c, 2\pi f)}$$

$$\overline{\mathcal{P}_h^{\text{ind}}(\eta, k)} = 2 \int_0^\infty dt \int_{-1}^1 ds \left[\frac{t(2+t)(s^2-1)}{(1-s+t)(1+s+t)} \right]^2$$

$$\times \overline{I^2(u, v, k, \eta)} \Delta_{\mathcal{R}}^2(ku) \cdot \Delta_{\mathcal{R}}^2(kv),$$

(at small scales)

BBN
$$\Omega_{gw,0} < 1.5 \times 10^{-6}$$
 \longrightarrow $\triangle_{\mathcal{R}}^2 < 0.1$

LIGO
$$\Omega_{gw,0} < 6.9 \times 10^{-8}$$
 $\triangle_{\mathcal{R}}^2 < 0.01$

PTA
$$\Omega_{gw,0} < 1 \times 10^{-9}$$
 \longrightarrow $\triangle_{\mathcal{R}}^2 < 5 \times 10^{-3}$

LISA
$$\Omega_{gw,0} < 10^{-13}$$
 \longrightarrow $\Delta_{\mathcal{R}}^2 < 1 \times 10^{-5}$

BBO
$$\Omega_{gw,0} < 10^{-17}$$
 \longrightarrow $\Delta_{\mathcal{R}}^2 < 3 \times 10^{-7}$

(Numbers not updated!)

possible to
$$\Rightarrow$$
 enhance $\Delta^2_{\mathcal{R}}$ (at small scales)

BBN
$$\Omega_{gw,0} < 1.5 \times 10^{-6}$$
 \longrightarrow $\triangle_{\mathcal{R}}^2 < 0.1$

LIGO
$$\Omega_{gw,0} < 6.9 \times 10^{-8}$$
 $\triangle_{\mathcal{R}}^2 < 0.01$

PTA
$$\Omega_{gw,0} < 1 \times 10^{-9}$$
 \longrightarrow $\triangle_{\mathcal{R}}^2 < 5 \times 10^{-3}$

LISA
$$\Omega_{gw,0} < 10^{-13}$$
 — $\triangle_{\mathcal{R}}^2 < 1 \times 10^{-5}$

BBO
$$\Omega_{gw,0} < 10^{-17}$$
 \longrightarrow $\triangle_{\mathcal{R}}^2 < 3 \times 10^{-7}$

(Numbers not updated!)

IF $\Delta^2_{\mathcal{R}}$ very enhanced Primordial Black Holes (PBH) may be produced!

 $\begin{array}{c|c} \text{IF } \Delta^2_{\mathcal{R}} \text{very} \\ \text{enhanced} \end{array}$ Primordial Black Holes (PBH) may be produced!

PBH candidate for DM ? Yes!, for $\sim 10^{-15}$ – $10^{-11}M_{\odot}$

 $\begin{array}{c|c} \text{IF } \Delta^2_{\mathcal{R}} \text{very} \\ \text{enhanced} \end{array}$ Primordial Black Holes (PBH) may be produced!

PBH candidate for DM ? Yes !, for $\sim 10^{-15} - 10^{-11} M_{\odot}$

* If PBH are the DM, what is the GWB from 2nd O(Φ)? Bartolo et al, '18

Right in the middle of LISA!

 $\begin{array}{c|c} \text{IF } \Delta^2_{\mathcal{R}} \text{very} \\ \text{enhanced} \end{array}$ Primordial Black Holes (PBH) may be produced!

Has LIGO detected PBH's ?

IF $\Delta_{\mathcal{R}}^2$ very enhanced

Primordial Black Holes (PBH) may be produced!

Has LIGO detected PBH's?

'We will know determining the mass/spin distribution'

(M. Fishbach (LIGO), Moriond'19)

e.g. 2102.03809, 2105.03349, De Luca et al

IF $\Delta_{\mathcal{R}}^2$ very enhanced

Primordial Black Holes (PBH) may be produced!

Has LIGO detected PBH's? it does not look like...

'We will know determining the mass/spin distribution'

(M. Fishbach (LIGO), Moriond'19)

e.g. 2102.03809, 2105.03349, De Luca et al

* Is that ALL? NO!

* Is that ALL? NO!

Inflation: A generator of Primordial Fluctuations

but WHY fluctuations?

Quantum Mechanics!

Inflation: A generator of Primordial Fluctuations

but WHY fluctuations?

Quantum Mechanics!

$$\hat{\phi}(\vec{x},t) \; \rightarrow \; \langle \hat{\phi}(\vec{x},t) \rangle = \phi(t) \quad \Rightarrow \quad \hat{\phi}(\vec{x},t) = \phi(t) + \hat{\delta\phi}(\vec{x},t)$$
 QM:{

Inflation: A generator of Primordial Fluctuations

but WHY fluctuations?

Quantum Mechanics!

$$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ \\ \end{array} \end{array} \\ & \begin{array}{c} \hat{\phi}(\vec{x},t) \ \rightarrow \ \langle \hat{\phi}(\vec{x},t) \rangle = \phi(t) \end{array} \\ & \Rightarrow \begin{array}{c} \hat{\phi}(\vec{x},t) = \phi(t) + \hat{\delta \phi}(\vec{x},t) \end{array} \end{array} \\ & \begin{array}{c} \\ \\ \langle \hat{\delta \phi}(\vec{x},t) \rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t) \right\rangle = 0 \end{array} \quad \begin{array}{c} \begin{array}{c} \\\\\\\\\\\\\\\\\end{array} \\ \left\langle \hat{\delta \phi}(\vec{x},t)$$

$$\langle \hat{\delta \phi}(\vec{x},t) \rangle = 0$$
 but... $\left\langle \left[\hat{\delta \phi}(\vec{x},t) \right]^2 \right\rangle \neq 0$

Inflation: A generator of Primordial Fluctuations

but WHY fluctuations?

Quantum Mechanics!

$$\begin{array}{c} \text{QM:} \\ \\ \begin{pmatrix} \hat{\phi}(\vec{x},t) \ \rightarrow \ \langle \hat{\phi}(\vec{x},t) \rangle = \phi(t) \\ \\ \langle \hat{\delta\phi}(\vec{x},t) \rangle = 0 \end{array} \begin{array}{c} \text{but...} \\ \\ \begin{pmatrix} [\hat{\delta\phi}(\vec{x},t)]^2 \end{pmatrix} \neq 0 \\ \\ \end{array}$$

Inflation: A generator of Primordial Fluctuations

$$\hat{\phi}(\vec{x},t) = \phi(t) + \hat{\delta\phi}(\vec{x},t) \rightarrow \langle \hat{\delta\phi}^2(\vec{x},t) \rangle \neq 0$$

but ... Minkowski→ Curved Space: (quasi)dS

Inflation: A generator of Primordial Fluctuations

$$\hat{\phi}(\vec{x},t) = \phi(t) + \hat{\delta\phi}(\vec{x},t) \rightarrow \langle \hat{\delta\phi}^2(\vec{x},t) \rangle \neq 0$$

but ... Minkowski→ Curved Space: (quasi)dS

$$S = \frac{m_p^2}{2} \int d^4x \sqrt{-g} \{ R - (\partial \phi)^2 - 2V(\phi) \}$$

$$g_{\mu\nu}(t) + \delta g_{\mu\nu}(\vec{x}, t)$$

Inflation: A generator of Primordial Fluctuations

$$\hat{\phi}(\vec{x},t) = \phi(t) + \hat{\delta\phi}(\vec{x},t) \rightarrow \langle \hat{\delta\phi}^2(\vec{x},t) \rangle \neq 0$$

but ... Minkowski→ Curved Space: (quasi)dS

$$S = \frac{m_p^2}{2} \int d^4x \sqrt{-g} \{ R - (\partial \phi)^2 - 2V(\phi) \}$$

$$g_{\mu\nu}(t) + \delta g_{\mu\nu}(\vec{x}, t)$$

$$ds^{2} = g_{\mu\nu}^{\text{tot}} dx^{\mu} dx^{\nu} = (g_{\mu\nu}(t) + \delta g_{\mu\nu}(\vec{x}, t)) dx^{\mu} dx^{\nu}$$

$$= -(1 + 2\Phi) dt^{2} + 2B_{i} dx^{i} dt + a^{2} [(1 - 2\Psi)\delta_{ij} + E_{ij}] dx^{i} dx^{j}$$

$$ds^{2} = -(1 + 2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1 - 2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$
$$\phi(\vec{x}, t) = \phi(t) + \delta\phi(\vec{x}, t)$$

$$ds^{2} = -(1+2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1-2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$

$$\phi(\vec{x},t) = \phi(t) + \delta\phi(\vec{x},t)$$

$$E_{ij} = 2\partial_{ij}E + 2\partial_{(i}F_{j)} + h_{ij}$$

Inflation: A generator of Primordial Fluctuations

$$ds^{2} = -(1+2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1-2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$

$$\phi(\vec{x},t) = \phi(t) + \delta\phi(\vec{x},t)$$

$$E_{ij} = 2\partial_{ij}E + 2\partial_{i}F_{j} + h_{ij}$$

Expanding U. — Vector Perturbations $S_i, F_i \propto \frac{1}{a}$

$$ds^2 = -(1+2\Phi)dt^2 + 2B_i dx^i dt + a^2[(1-2\Psi)\delta_{ij} + E_{ij}]dx^i dx^j$$

$$\phi(\vec{x},t) = \phi(t) + \delta\phi(\vec{x},t)$$

$$E_{ij} = 2\partial_{ij}E + 2\partial_{i}F_{j} + h_{ij}$$

$$\partial_i h_{ij} = h_{ii} = 0$$
(tensors = GWs)

$$ds^{2} = -(1+2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1-2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$
$$\phi(\vec{x},t) = \phi(t) + \delta\phi(\vec{x},t)$$

$$ds^{2} = -(1+2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1-2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$
$$\phi(\vec{x},t) = \phi(t) + \delta\phi(\vec{x},t)$$

$$\textbf{Piff.:} \quad x^{\mu} \rightarrow x^{\mu} + \xi^{\mu}$$

Inflation: A generator of Primordial Fluctuations

$$ds^{2} = -(1 + 2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1 - 2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$
$$\phi(\vec{x}, t) = \phi(t) + \delta\phi(\vec{x}, t)$$

$$\zeta \equiv -[\Psi + (H/\dot{
ho})\delta
ho_{\phi}] \stackrel{ extbf{piff.}}{\longrightarrow} \zeta$$
 $\mathcal{R} \equiv [\Psi + (H/\dot{\phi})\delta\phi] \stackrel{ extbf{piff.}}{\longrightarrow} \mathcal{R}$
 $Q \equiv [\delta\phi + (\dot{\phi}/H)\Psi] \stackrel{ extbf{piff.}}{\longrightarrow} Q$

All Gauge Inv.!

Inflation: A generator of Primordial Fluctuations

$$ds^{2} = -(1+2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1-2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$
$$\phi(\vec{x},t) = \phi(t) + \delta\phi(\vec{x},t)$$

$$\zeta \equiv -[\Psi + (H/\dot{
ho})\delta
ho_{\phi}] \stackrel{ extbf{piff.}}{\longrightarrow} \zeta$$
 $\mathcal{R} \equiv [\Psi + (H/\dot{\phi})\delta\phi] \stackrel{ extbf{piff.}}{\longrightarrow} \mathcal{R}$ $Q \equiv [\delta\phi + (\dot{\phi}/H)\Psi] \stackrel{ extbf{piff.}}{\longrightarrow} Q$

Tensor

Curvature

All Gauge Inv.!

Fixing Gauge: e.g. $E, \delta \phi = 0 \Rightarrow g_{ij} = a^2[(1-2\mathcal{R})\delta_{ij} + h_{ij}]$

$$ds^{2} = -(1 + 2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1 - 2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$
$$\phi(\vec{x}, t) = \phi(t) + \delta\phi(\vec{x}, t)$$

$$g_{ij} = a^2[(1 - 2\mathcal{R})\delta_{ij} + h_{ij}]$$

$$ds^{2} = -(1 + 2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1 - 2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$
$$\phi(\vec{x}, t) = \phi(t) + \delta\phi(\vec{x}, t)$$

$$g_{ij} = a^{2}[(1-2\mathcal{R})\delta_{ij} + h_{ij}] S = \frac{m_p^2}{2} \int d^4x \sqrt{-g} \{R - (\partial\phi)^2 - 2V(\phi)\}$$

Inflation: A generator of Primordial Fluctuations

$$ds^{2} = -(1 + 2\Phi)dt^{2} + 2B_{i}dx^{i}dt + a^{2}[(1 - 2\Psi)\delta_{ij} + E_{ij}]dx^{i}dx^{j}$$
$$\phi(\vec{x}, t) = \phi(t) + \delta\phi(\vec{x}, t)$$

$$g_{ij} = a^2[(1 - 2\mathcal{R})\delta_{ij} + h_{ij}]$$

$$g_{ij} = a^{2}[(1-2\mathcal{R})\delta_{ij} + h_{ij}] \qquad S = \frac{m_p^2}{2} \int d^4x \sqrt{-g} \{R - (\partial\phi)^2 - 2V(\phi)\} \quad \Box > 0$$

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right]$$

Background Inflationary dynamics

$$S_{(2)}^{(t)} = \frac{m_p^2}{8} \int dt dx^3 a^3 \left[(\dot{h}_{ij})^2 - a^{-2} (\partial_l h_{ij})^2 \right]$$

(UV limit: deep inside Hubble radius)

Inflation: A generator of Primordial Fluctuations

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right]$$

Inflation: A generator of Primordial Fluctuations

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right]$$

$$d\tau \equiv dt/a(t)$$
 (Conformal time)

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right]$$

$$\frac{1}{2} \int d\tau dx^3 \left[(v')^2 - (\nabla v)^2 + \frac{z''}{z} v^2 \right]$$

$$v \equiv z\mathcal{R}, \quad z \equiv a\frac{\dot{\phi}}{H}$$
 (Mukhanov variable)

Inflation: A generator of Primordial Fluctuations

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right]$$

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right] = \left[\frac{1}{2} \int d\tau dx^3 \left[(v')^2 - (\nabla v)^2 + \frac{z''}{z} v^2 \right] \right]$$

(F.T.:
$$v(\mathbf{x},t) = \int d\mathbf{k} e^{-i\mathbf{k}\mathbf{x}} v_{\mathbf{k}}(t)$$
)

$$v_{\vec{k}}'' + (k^2 - z''/z)v_{\vec{k}} = 0$$

$$v_{\vec{k}}'' + (k^2 - z''/z)v_{\vec{k}} = 0 \qquad \text{with} \qquad \frac{z''}{z} = \frac{1}{\tau^2} \left(\nu^2 - \frac{1}{4} \right), \quad \nu \equiv \frac{3}{2} + 2\epsilon - \eta$$

Inflation: A generator of Primordial Fluctuations

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right]$$

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right] = \left[\frac{1}{2} \int d\tau dx^3 \left[(v')^2 - (\nabla v)^2 + \frac{z''}{z} v^2 \right] \right]$$

$$v_{\vec{k}}'' + (k^2 - z''/z)v_{\vec{k}} = 0$$

$$v_{\vec{k}}'' + (k^2 - z''/z)v_{\vec{k}} = 0 \qquad \text{with} \quad \frac{z''}{z} = \frac{1}{\tau^2} \left(\nu^2 - \frac{1}{4} \right), \quad \nu \equiv \frac{3}{2} + 2\epsilon - \eta$$

Quantization:
$$v_{\vec{k}}(t) \to v_k(t) \hat{a}_{\vec{k}} + v_k^*(t) \hat{a}_{-\vec{k}}^{\dagger}$$
, $[a_{\vec{k}}, a_{\vec{k}'}^{\dagger}] = (2\pi)^3 \delta(\vec{k} - \vec{k}')$

Inflation: A generator of Primordial Fluctuations

Scalar Fluctuations:

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right]$$

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right] = \left[\frac{1}{2} \int d\tau dx^3 \left[(v')^2 - (\nabla v)^2 + \frac{z''}{z} v^2 \right] \right]$$

$$v_{\vec{k}}'' + (k^2 - z''/z)v_{\vec{k}} = 0$$

$$v_{\vec{k}}'' + (k^2 - z''/z)v_{\vec{k}} = 0 \qquad \text{with} \quad \frac{z''}{z} = \frac{1}{\tau^2} \left(\nu^2 - \frac{1}{4} \right) , \quad \nu \equiv \frac{3}{2} + 2\epsilon - \eta$$

Quantization:
$$v_{\vec{k}}(t) \to v_k(t) \hat{a}_{\vec{k}} + v_k^*(t) \hat{a}_{-\vec{k}}^{\dagger}$$
, $[a_{\vec{k}}, a_{\vec{k'}}^{\dagger}] = (2\pi)^3 \delta(\vec{k} - \vec{k'})$

2 linearly independent solutions (Hankel functions)

Inflation: A generator of Primordial Fluctuations

Scalar Fluctuations:

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right]$$

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right] = \left[\frac{1}{2} \int d\tau dx^3 \left[(v')^2 - (\nabla v)^2 + \frac{z''}{z} v^2 \right] \right]$$

$$v_{\vec{k}}'' + (k^2 - z''/z)v_{\vec{k}} = 0$$

$$v_{\vec{k}}'' + (k^2 - z''/z)v_{\vec{k}} = 0 \qquad \text{with} \quad \frac{z''}{z} = \frac{1}{\tau^2} \left(\nu^2 - \frac{1}{4} \right) , \quad \nu \equiv \frac{3}{2} + 2\epsilon - \eta$$

Quantization:
$$v_{\vec{k}}(t) \to v_k(t) \hat{a}_{\vec{k}} + v_k^*(t) \hat{a}_{-\vec{k}}^{\dagger}$$
, $[a_{\vec{k}}, a_{\vec{k'}}^{\dagger}] = (2\pi)^3 \delta(\vec{k} - \vec{k'})$

$$v_k(\tau) = \frac{\sqrt{\pi}}{2} e^{i\pi(\nu+1/2)/2} (-\tau)^{1/2} H_{\nu}^{(1)}(-k\tau)$$

(we keep only one, $\hat{H}v_k = +kv_k$, $\langle v_k, v_k \rangle > 0$)

Inflation: A generator of Primordial Fluctuations

Scalar Fluctuations:

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right]$$

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right] = \left[\frac{1}{2} \int d\tau dx^3 \left[(v')^2 - (\nabla v)^2 + \frac{z''}{z} v^2 \right] \right]$$

$$v_{\vec{k}}'' + (k^2 - z''/z)v_{\vec{k}} = 0$$

$$v_{\vec{k}}'' + (k^2 - z''/z)v_{\vec{k}} = 0 \qquad \text{with} \quad \frac{z''}{z} = \frac{1}{\tau^2} \left(\nu^2 - \frac{1}{4} \right) , \quad \nu \equiv \frac{3}{2} + 2\epsilon - \eta$$

Quantization:
$$v_{\vec{k}}(t) \to v_k(t) \hat{a}_{\vec{k}} + v_k^*(t) \hat{a}_{-\vec{k}}^{\dagger}$$
, $[a_{\vec{k}}, a_{\vec{k}'}^{\dagger}] = (2\pi)^3 \delta(\vec{k} - \vec{k}')$

$$v_k(\tau) = \frac{\sqrt{\pi}}{2} e^{i\pi(\nu + 1/2)/2} (-\tau)^{1/2} H_{\nu}^{(1)}(-k\tau) \xrightarrow{-k\tau \gg 1} \frac{1}{\sqrt{2k}} e^{-ik\tau}$$

$$\frac{-k\tau \gg 1}{\text{(sub-Hubble)}}$$

$$\frac{1}{\sqrt{2k}}e^{-ik\tau}$$

(we keep only one, $\hat{H}v_k=+kv_k$, $\langle v_k,v_k \rangle>0$)

Positive define freq

Inflation: A generator of Primordial Fluctuations

Scalar Fluctuations:

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right]$$

$$S_{(2)}^{(s)} = \frac{1}{2} \int d^4x \ a^3 \frac{\dot{\phi}^2}{H^2} \left[\dot{\mathcal{R}}^2 - a^{-2} (\partial_i \mathcal{R})^2 \right] = \left[\frac{1}{2} \int d\tau dx^3 \left[(v')^2 - (\nabla v)^2 + \frac{z''}{z} v^2 \right] \right]$$

$$v_{\vec{k}}'' + (k^2 - z''/z)v_{\vec{k}} = 0$$

with
$$\frac{z''}{z} = \frac{1}{\tau^2} \left(\nu^2 - \frac{1}{4} \right), \quad \nu \equiv \frac{3}{2} + 2\epsilon - \eta$$

Quantization:
$$v_{\vec{k}}(t) \to v_k(t) \hat{a}_{\vec{k}} + v_k^*(t) \hat{a}_{-\vec{k}}^{\dagger}$$
, $[a_{\vec{k}}, a_{\vec{k'}}^{\dagger}] = (2\pi)^3 \delta(\vec{k} - \vec{k'})$

$$v_k(\tau) = \frac{\sqrt{\pi}}{2} e^{i\pi(\nu+1/2)/2} (-\tau)^{1/2} H_{\nu}^{(1)}(-k\tau)$$

(Bunch-Davies) Vacuum Fluct.

Inflation: A generator of Primordial Fluctuations

Scalar Fluct:

$$v_k(\tau) = \frac{\sqrt{\pi}}{2} e^{i\pi(\nu+1/2)/2} (-\tau)^{1/2} H_{\nu}^{(1)}(-k\tau)$$

$$\hat{v}_{\vec{k}}(t) \to v_k(t) \hat{a}_{\vec{k}} + v_k^*(t) \hat{a}_{-\vec{k}}^{\dagger}$$

(Bunch-Davies) Vacuum Fluct.

Inflation: A generator of Primordial Fluctuations

Scalar Fluct:

$$v_k(\tau) = \frac{\sqrt{\pi}}{2} e^{i\pi(\nu+1/2)/2} (-\tau)^{1/2} H_{\nu}^{(1)}(-k\tau)$$

$$\hat{v}_{\vec{k}}(t) \to v_k(t) \hat{a}_{\vec{k}} + v_k^*(t) \hat{a}_{-\vec{k}}^{\dagger}$$

(Bunch-Davies) Vacuum Fluct.

$$\boxed{v \equiv z\mathcal{R}, \quad z \equiv a\frac{\dot{\phi}}{H}}$$

$$\left[v \equiv z\mathcal{R}, \quad z \equiv a\frac{\dot{\phi}}{H}\right] \qquad \qquad \left\langle \hat{\mathcal{R}}_{\vec{k}}\hat{\mathcal{R}}_{\vec{k}'} \right\rangle \equiv \frac{1}{z^2} \left\langle \hat{v}_{\vec{k}}\hat{v}_{\vec{k}'} \right\rangle \equiv (2\pi)^3 \frac{H^2}{a^2\dot{\phi}^2} \left|v_k(\eta)\right|^2 \delta(\vec{k} + \vec{k}')$$

Inflation: A generator of Primordial Fluctuations

Scalar Fluct:

$$v_k(\tau) = \frac{\sqrt{\pi}}{2} e^{i\pi(\nu+1/2)/2} (-\tau)^{1/2} H_{\nu}^{(1)}(-k\tau)$$

$$\hat{v}_{\vec{k}}(t) \to v_k(t) \hat{a}_{\vec{k}} + v_k^*(t) \hat{a}_{-\vec{k}}^{\dagger}$$

(Bunch-Davies) Vacuum Fluct.

$$\left[v \equiv z\mathcal{R} \,, \quad z \equiv a\frac{\dot{\phi}}{H}\right]$$

Scalar Power Spectrum

Inflation: A generator of Primordial Fluctuations

Scalar Fluct:

$$v_k(\tau) = \frac{\sqrt{\pi}}{2} e^{i\pi(\nu+1/2)/2} (-\tau)^{1/2} H_{\nu}^{(1)}(-k\tau)$$

$$\hat{v}_{\vec{k}}(t) \to v_k(t) \hat{a}_{\vec{k}} + v_k^*(t) \hat{a}_{-\vec{k}}^{\dagger}$$

(Bunch-Davies) Vacuum Fluct.

Power Spectrum

$$\Delta^2_{\mathcal{R}}(k,\tau) \equiv \frac{k^3}{2\pi^2} P_{\mathcal{R}}(k,\tau) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \Delta^2_{\mathcal{R}}(k) = \frac{H^4}{(2\pi)^2 \dot{\phi}^2} \left(\frac{k}{aH}\right)^{2\eta - 4\epsilon}$$

$$\Delta_{\mathcal{R}}^{2}(k) = \frac{H^{4}}{(2\pi)^{2}\dot{\phi}^{2}} \left(\frac{k}{aH}\right)^{2\eta - 4\epsilon}$$

Dimensionless Scalar PS

Inflation: A generator of Primordial Fluctuations

Tensor Fluctuations:

$$S_{(2)}^{(t)} = \frac{m_p^2}{8} \int dt dx^3 a^3 \left[(\dot{h}_{ij})^2 - a^{-2} (\partial_l h_{ij})^2 \right]$$

Inflation: A generator of Primordial Fluctuations

$$S_{(2)}^{(t)} = \frac{m_p^2}{8} \int dt dx^3 a^3 \left[(\dot{h}_{ij})^2 - a^{-2} (\partial_l h_{ij})^2 \right]$$

Same Procedure as with Scalar Pert.

Quantize Bunch-Pavies Power Spectrum

Quantization of Gravity dof!

Inflation: A generator of Primordial Fluctuations

$$S_{(2)}^{(t)} = \frac{m_p^2}{8} \int dt dx^3 a^3 \left[(\dot{h}_{ij})^2 - a^{-2} (\partial_l h_{ij})^2 \right]$$

Same Procedure as with Scalar Pert.

Quantize Bunch-Pavies Power Spectrum

Quantization of Gravity dof!

$$\Delta_h^2(k,\tau) \equiv \frac{k^3}{2\pi^2} P_h(k,\tau)$$

$$\Delta_h^2(k,\tau) \equiv \frac{k^3}{2\pi^2} P_h(k,\tau) \qquad \qquad \qquad \qquad \qquad \qquad \Delta_h^2(k) = \frac{2}{\pi^2} \left(\frac{H}{m_p}\right)^2 \left(\frac{k}{aH}\right)^{-2\epsilon}$$