
Deconstructing the CMB temperature 
power spectrum…



CMB temperature power spectrum…

CMB photon temperature fluctuations can 
be parameterised as:
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Position, direction, time

• We can only observe photons here and now (i.e., A = AX) and map their 
temperatures on a 2D spherical map.

→ So it makes sense to decompose these fluctuations in terms of spherical 
harmonics BℓL C2 .
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Temperature fluctuation power spectrum
79



CMB temperature power spectrum…

7ℓ =
2
π=8 A	A

# Θℓ A, η% #

Θ(9, ,0) = Present-day Fourier-decomposed 
temperature fluctuation 

9 = Fourier
wavenumber.

ℓ(ℓ + 1)

2Q
ℓ̂

But there is neat way to think about it that pretty much gets all the 
gross features of the power spectrum right.

… comes from solving numerically the 
Einstein-Boltzmann system.

How do you calculate 6ℓ 
from theory?
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Photon decoupling…

The most important event in the photon evolution history is decoupling 
(7∗	~	0.25	eV, i.e., ?∗	~	1100	in most cosmological models).

At C > C
∗, photons scatter off free electrons 

efficiently, performing a random walk → the 
universe is opaque to photons

At C < C
∗, electrons are bound in atoms; 

photons decouple and free-stream to infinity 
as if emanating from a last scattering surface.

Last scattering surface
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CMB in two steps…

Relative to photon decoupling (7∗	~	0.25	eV, ?∗	~	1100), CMB 
anisotropies can be understood in two steps:

• What happens up to and at 
decoupling?
• Is the k mode superhorizon or 

subhorizon?

• What happens after decoupling?
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Superhorizon up to the LSS…

At photon decoupling @∗, the effective CMB temperature perturbation 
on superhorizon scales is related to the CDM density perturbation via
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ΘXX +Ψ > ≪ ℋ, A∗ ≃ −16JJ >, A∗

→ An observed CMB hot spot corresponds to an underdense region (true 
only for adiabatic initial conditions).

overdense

underdense

Observed photon energy 
changed by a factor (1 + Ψ) 
due to gravitational redshift 

Intrinsically 3Θ0(0) = ^3



Subhorizon up to the LSS…

Here the photons and baryons are tightly coupled because of Compton 
scattering, i.e., Ḃ ≫ ℋ, → 
• Leads to acoustic oscillations.
• To get acoustic oscillations with baryon loading, the relevant 

equations are:
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(.)
− G(

(.)

Photons

1

=
≡
4

3

DFG
DF(
=

3

4

Ω(ℎ'

ΩGℎ'
/

:3









Subhorizon up to the LSS…

Before decoupling, Compton scattering ensures that photon and 
baryons system form a tightly-coupled fluid.
• Equation of motion for the monopole in this limit: 

Θ̈%(%) +
[̇

1 + [ Θ̇%
(%) + A#\A#Θ%(%) = Φ̈ + [̇

1 + [ Φ̇ − A
#

3 Ψ

There is a similar equation 
for the dipole.

• A damped and driven harmonic oscillator with sound speed: 

[<, ≡
1

3 1 + \ \ ≡ 3
4
Ω=ℎ,
Ω>ℎ,

) Baryon-to-
photon ratio

→ The presence of baryons lowers the fluid sound speed.
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Acoustic oscillations: monopole…

Suppose for now baryons are negligible: C = 0.
• Take a fixed Fourier >-mode and see how it evolves in time → acoustic  

oscillations  

In an underdense region

In an overdense region

Assuming constant
Φ and Ψ.

Gravity pulling photons into
dense regions (compression)

Pressure pushing
photons out
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Acoustic oscillations: monopole & dipole…
Assuming constant
Φ and Ψ.

Gravity pulling photons into
dense regions (compression)

Pressure pushing
photons out

Effective
monopole

In an overdense region

Monopole and dipole are
exactly out of phase.

Suppose for now baryons are negligible: C = 0.
• Take a fixed Fourier >-mode and see how it evolves in time → acoustic  

oscillations  

Dipole
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Acoustic oscillations: monopole & dipole…

Monopole and dipole spectra at decoupling @∗:
Assuming constant
Φ and Ψ.

Normalised to initial values of  Θ0

Effective monopole

Dipole

B0

1st peak
D = 0

• Position of 1st peak corresponds to the > mode that has completed exactly 
one compression at photon decoupling.

-6?@A =
_8
<̀ '∗

, _ = 1,2,3, . . .

Peak positions:

D) E∗ ≡ F
.

<∗
G E′I) E′

Sound horizon at decoupling
= Coordinate distance travelled
by a sound wave since time , = 0.
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Acoustic oscillations: add baryons…

Now let’s put the baryons back in, i.e., C ≠ 0.
Assuming constant
Φ and Ψ.

D = 0 Effective
monopole

Dipole

D ≠ 0

• The presence of baryons offsets the midpoint of acoustic oscillations for the 
effective monopole, reduces the sound horizon, and alters the oscillation 
amplitudes (monopole and dipole).
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Acoustic oscillations: add baryons…
Assuming constant
Φ and Ψ.

Gravity pulling photons into
dense regions (compression)

Pressure pushing
photons out

The physical reason is straightforward:

Effective
monopole

Dipole

• A reduced sound speed due to baryon inertia leads to less pressure 
resistance → the photon are compressed more and become hotter.
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Acoustic oscillations on the LSS…

E ≠ F monopole and dipole spectra at decoupling @∗	:
Assuming constant
Φ and Ψ.

Effective monopole

Dipole

D = 0

• Odd and even peaks how have different heights, where the height ratio 
depends on the baron-to-photon ratio K.
• Essential features remain even for time-dependent Φ and Ψ.

B0 B0

D ≠ 0
Normalised to initial values of  Θ0
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CMB in two steps…

Relative to photon decoupling (7∗	~	0.25	eV, ?∗	~	1100), CMB 
anisotropies can be understood in two steps:

• What happens up to and at 
decoupling?
• Is the k mode superhorizon or 

subhorizon?

• What happens after decoupling?
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After decoupling…

Photon free-streaming spreads the monopole and dipole solutions on 
the last scattering surface to all multipoles ℓ.
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Θℓ% -, η% ≃ Θ%% -, η∗ +Ψ%% -, η∗ dℓ - η% − η∗
	− 3- Θ(
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monopole
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After decoupling…

Photon free-streaming spreads the monopole and dipole solutions on 
the last scattering surface to all multipoles ℓ.
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Θℓ% -, η% ≃ Θ%% -, η∗ +Ψ%% -, η∗ dℓ - η% − η∗
	− 3- Θ(

C -, η∗
6
6η dℓ - η% − η∗
	

monopole

dipole
• Lℓ #  peaks at #~ℓ (not exactly though)

→ ΘℓX >, ηX  gets most contribution from 
k modes satisfying

Spherical Bessel functions

-~ ℓ
'% − '∗

= ℓ
f∗

J∗	= Comoving 
distance to the 
LSS



After decoupling…

Photon free-streaming spreads the monopole and dipole solutions on 
the last scattering surface to all multipoles ℓ.
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Θℓ% -, η% ≃ Θ%% -, η∗ +Ψ%% -, η∗ dℓ - η% − η∗
	− 3- Θ(

C -, η∗
6
6η dℓ - η% − η∗
	

monopole

dipole
• Lℓ #  peaks at #~ℓ (not exactly though)

→ ΘℓX >, ηX  gets most contribution from 
k modes satisfying

-~ ℓ
'% − '∗

= ℓ
f∗

J∗	= Comoving 
distance to the 
LSS

Where should we expect to 
find the acoustic peaks?
ℓ;GHI = A;GHI	^∗

= _T^∗
À(/∗)

Comoving 
sound horizon 
up to the LSS



But there is more: the ISW effect…

The Integrated Sachs-Wolfe effect is an additional contribution from 
time-dependent potentials.
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Δ%
% 567*89*:

= Δ%
% ;<=8;<7;>

+ΨSachs-Wolfe effect:
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• In the time-dependent case, photons suffer less gravitational redshift than in 
the case of constant Φ and Ψ → Larger observed temperature fluctuation

Δ%
% 567*89*:

= Δ%
% ;<=8;<7;>

+ΨSachs-Wolfe effect:

Integrated Sachs-Wolfe effect (potential decay after decoupling):

Δ%
% ?@A

= a
0

B!
' ηc- C B Ψ̇ 9, η + Φ̇ 9, η
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Early and late ISW…

Except deep in matter domination, the ISW effect is always present.
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• Early ISW effect: due to transition from 
radiation to matter domination
• Effects mainly around the first acoustic 

peak

• Late ISW effect: due to transition from 
matter to dark energy domination.
• Contributions mainly left of first peak



Let’s put it back together…

Θℓ0 9, η0 ≃ Θ00 9, η∗ +Ψ00 9, η∗ dℓ 9 η0 − η∗
	− 39 Θ.

0 9, η∗
'
'η dℓ 9 η0 − η∗

	+a
0

B!
' ηc- C B Ψ̇ 9, η + Φ̇ 9, η dℓ 9 η0 − η
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CMB TT power spectrum deconstructed…

Naïve projection (peak of the spherical Bessel function)
Θ0 +Ψ 9 = ⁄ℓ ,0 − ,∗ , ,∗

Comoving sound horizon
up to the LSS

Comoving distance
to the LSS

Position of the
first peak

Proper free-streaming (full spherical Bessel function) in 
fact shifts peaks a little from their naïve positions.

ℓKI"Q ∼
MJ∗
D)

Θℓ0 9, η0 ≃ Θ00 9, η∗ +Ψ00 9, η∗ dℓ 9 η0 − η∗
	− 39 Θ.

0 9, η∗
'
'η dℓ 9 η0 − η∗

	+a
0

B!
' ηc- C B Ψ̇ 9, η + Φ̇ 9, η dℓ 9 η0 − η
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CMB TT power spectrum deconstructed…

Θℓ0 9, η0 ≃ Θ00 9, η∗ +Ψ00 9, η∗ dℓ 9 η0 − η∗
	− 39 Θ.

0 9, η∗
'
'η dℓ 9 η0 − η∗

	+a
0

B!
' ηc- C B Ψ̇ 9, η + Φ̇ 9, η dℓ 9 η0 − η

Monopole and dipole add incoherently (because 
of property of spherical Bessel function); adding 
dipole makes the troughs less prominent.
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CMB TT power spectrum deconstructed…

Θℓ0 9, η0 ≃ Θ00 9, η∗ +Ψ00 9, η∗ dℓ 9 η0 − η∗
	− 39 Θ.

0 9, η∗
'
'η dℓ 9 η0 − η∗

	+a
0

B!
' ηc- C B Ψ̇ 9, η + Φ̇ 9, η dℓ 9 η0 − η

ISW effect adds in phase with the monopole
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CMB TT power spectrum deconstructed…

One more thing: Diffusion damping
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Diffusion damping…

Previously, we invoked the tightly-coupled limit, which assumes 
Compton scattering keeps photons and baryons moving as one fluid.

• In reality this is never exactly true.
• Photons random walk between scattering, leading to diffusion.
• Diffusion washes out temperature differences on scales smaller than the 

diffusion length:

Photon mean
free path

~ a few Mpc at decouplingNR = OST"UUIVNWXY~ 1
*ZR1S

Free-electron 
density

Thomson scattering 
cross-section

Hubble rate
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D[' E∗ ≡ F
.

<∗ GE′
8 E′ T*ZR1

U' + ⁄16 15 1 + U
6 1 + U '

Diffusion damping

CMB temperature
measurements
here are foreground-
dominated.

Damping scale:

Baryon-to-photon ratio

Free electron number density
Thomson scattering 
cross-section
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Where cosmological parameter 
constraints come from...



Cosmological parameters…

Some standard parameters of interest:
• Matter density (including dark matter): h5 = Ω5ℎ,
• Baryon density: h= = Ω=ℎ,
• Hubble parameter, spatial curvature, dark energy: ℎ, ΩG , ΩH
• Inflation parameters: scalar fluctuation amplitude "<, spectral index _<

• Others: number of neutrino families i?II, neutrino mass sum ∑k"

• The CMB temperature anisotropies do not measure these 
parameters per se, rather some combinations thereof.
• Let’s see how that works.
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Odd-even peak heights: baryon-photon ratio…

We have seen earlier that the 
baryon-to-photon ratio R causes 
uneven fluctuation peak heights 
in the CMB TT spectrum.

B

\ ≡ 3
4
m̄=
m̄J
= 3
4
Ω=ℎ,
ΩJℎ,

)
Photon energy 
density 

• Since Ωfℎ3is known, measuring the 
odd-to-even peak ratio gives ΩKℎ3.
• Probably the most robust (i.e., 

model-independent) parameter 
measurement from the CMB.
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Odd-even peak heights: baryon-photon ratio…

Increasing the baryon 
density enhances the 
uneven odd and even 
peak heights (note 
especially the first two 
peaks)
→ Measures the 
baryon-photon ratio K.
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Early ISW effect: matter-radiation equality…

Decaying potentials during transition 
from radiation to matter domination 
enhance the 1st peak.
• The ratio of the 1st to 3rd peak probes the 

early ISW effect.
• The parameter that controls this transition 

is the redshift of matter radiation equality, 
3gh.

1 + ZIJ =
Ω8ℎ'
Ω\ℎ'

≃ 2.4×10] Ω8ℎ'
1 + 0.2271OI^^

Photons + massless neutrinos

→ If Ogii is known, then early ISW yields ΩLℎ3. 

Effective number 
of neutrinos
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Early ISW effect: matter-radiation equality…

Changing the matter 
density modifies the 
early ISW effect.
• Keeps 1st to 2nd peak ratio 

largely unchanged but 
alters the 1st to 3rd peak 
ratio.

• Good for measuring the 
redshift of MR equality.

• (Upturn at low ℓ is due to 
the late ISW effect.)

Normalisation has been adjusted for easy comparison.
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Angular sound horizon…

We have seen that the position of the 
1st acoustic peak is given roughly by

ℓKI"Q ∼
M E. − E∗
D) E∗ ,0 − ,∗ = j ,∗

Comoving distance to
the last scattering surface

Sound horizon
at decoupling

• Had we allowed for spatial curvature:

J K∗ → sin[J K∗ ]
sinh[J K∗ ]

• More generally, the 1st peak position is 
described by the angular sound horizon:

_) ≡
M

ℓ3"#	KI"Q
= 8 E∗ D) E∗

G_ E∗

` = +1
` = −1

Angular diameter 
distance to the last 
scattering surface
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Angular sound horizon…

For fixed ΩKℎ3 (from odd-even peak ratios) and 3gh (from early ISW), the 
main parameter dependence of Pk goes something like this:

n< =
) '∗ <̀ '∗
6K '∗

∝ (Ω5ℎ,)E(/,

∫%
M∗ 6q

Ω5ℎ,)E0 + ΩGℎ,)E, + ℎ, − Ω5ℎ, − ΩGℎ,

• Thus, if ΩNℎ2 is known (because Ogii is known), then the remaining 
unknown parameters in Pk are Ωl and ℎ, which are degenerate.
• If ΩNℎ2 is not known (because Ogii is not known), then there is a 3-way 

degeneracy and there’s still more work to do.  More on this in a bit!

114



Angular sound horizon…

Changing the spatial 
geometry alters the 
way the acoustic peaks 
on the LSS are 
projected onto ℓ space.
• Shifts the positions of 

the peaks.
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Angular sound horizon…

Same effect if we keep the 
geometry flat but vary the 
Hubble parameter ℎ.
• This means it is not 

possible to pin down 
both ℎ and ΩG  at the 
same time using n< alone 
(parameter degeneracy).
• However, ℎ and ΩG  have 

very different late ISW 
effects, and so can be 
distinguished using CMB 
temperature data.
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Angular damping scale…

First measured by ACT and SPT; now also measured by Planck and 
ground-based successors to ACT/SPT.

Dunkley et al. [ACT] 2010
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Angular damping scale…

Like the angular sound horizon, for fixed ΩKℎ3 (from odd-even peak ratios) 
and 3gh (from early ISW), the main parameter dependence of Pm is:

nP =
) '∗ P̀ '∗
6K '∗

∝ (Ω5ℎ,)E(//

∫%
M∗ 6q

Ω5ℎ,)E0 + ΩGℎ,)E, + ℎ, − Ω5ℎ, − ΩGℎ,

→ The ratio of aS and aA measures Ω:ℎ# independently of dark energy, 
spatial curvature, Hubble rate, etc.
• If ΩNℎ2 is not already known from early ISW, (because Ogii is not known), 

this nP/n< measurement also allows us to measure the effective number of 
neutrinos Ogii! 

∝ (Ω5ℎ,)(//n< Angular sound horizon
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Irreducible signature of '#$$…

Hou, Keisler, Knox et al. 2011
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Take-home message…

Uniformity is good, but fluctuations are even better.
• Statistical properties of the CMB fluctuations are strongly dependent 

on
• The redshift of matter-radiation equality (1st to 3rd peak heights)
• The baryon-to-photon ratio (odd-to-even peak heights)
• The sound horizon at decoupling (peak positions)
• The distance to the last scattering surface (peak positions)
• The damping scale at decoupling (damping tail)
• The late ISW effect (low-ℓ multipoles)

• Understanding how various cosmological parameters affect these 
physical quantities enables us to constrain them.
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