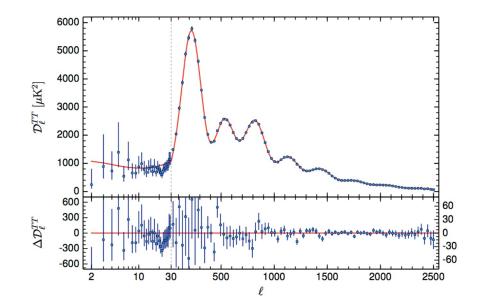
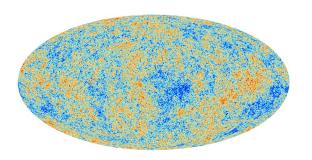
# Deconstructing the CMB temperature power spectrum...



#### CMB temperature power spectrum...



CMB photon temperature fluctuations can be parameterised as:

$$T_{\gamma}(x^{i}, n^{i}, \eta) = \overline{T}_{\gamma}(\eta)[1 + \Theta(x^{i}, n^{i}, \eta)]$$

Position, direction, time

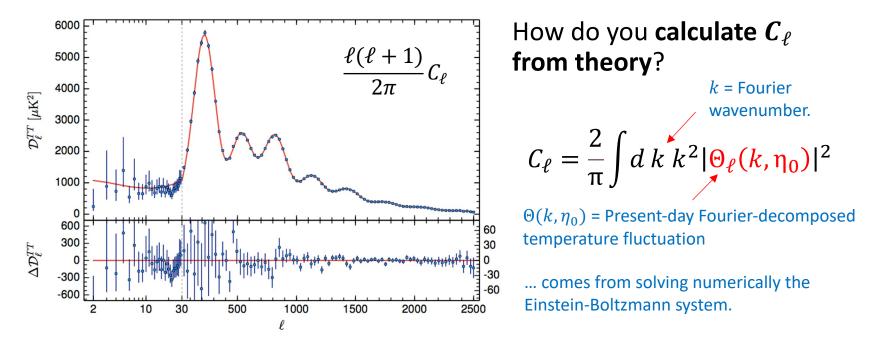
• We can only observe photons here and now (i.e.,  $\eta = \eta_0$ ) and map their temperatures on a 2D spherical map.

→ So it makes sense to decompose these fluctuations in terms of spherical harmonics  $Y_{\ell m}(n^i)$ .

$$\Theta(x^{i}, n^{i}, \eta_{0}) = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m}(x^{i}, \eta_{0}) Y_{\ell m}(n^{i}) \qquad \langle a_{\ell m} a_{\ell m}^{*} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$$

Temperature fluctuation power spectrum

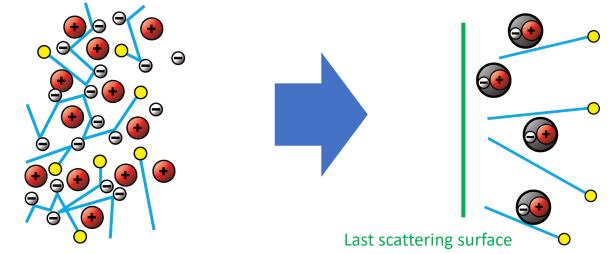
#### CMB temperature power spectrum...



But there is neat way to think about it that pretty much gets all the gross features of the power spectrum right.

## Photon decoupling...

The most important event in the photon evolution history is decoupling  $(T^* \sim 0.25 \text{ eV}, \text{ i.e.}, z^* \sim 1100 \text{ in most cosmological models}).$ 



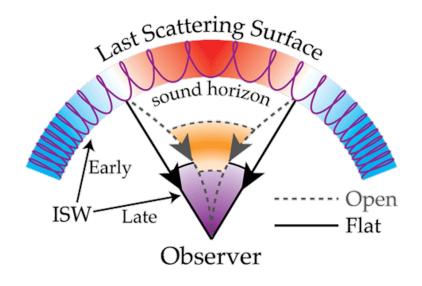
At  $T > T^*$ , photons scatter off free electrons efficiently, performing a random walk  $\rightarrow$  the universe is opaque to photons

At  $T < T^*$ , electrons are bound in atoms; photons decouple and free-stream to infinity as if emanating from a last scattering surface.

# CMB in two steps...

Relative to photon decoupling ( $T^* \sim 0.25 \text{ eV}$ ,  $z^* \sim 1100$ ), CMB anisotropies can be understood in **two steps**:

- What happens up to and at decoupling?
  - Is the k mode superhorizon or subhorizon?
- What happens after decoupling?



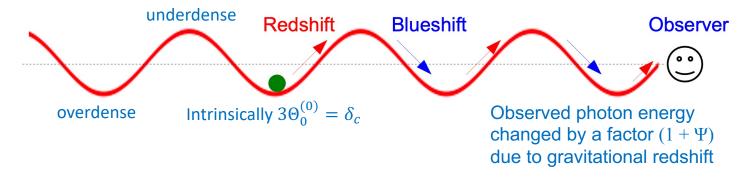
5.1 Superhorizan up to the last scattering surface From the Boltzmann hierarchy for photons, we have in the superhorizon limit (L(CE):  $f_8 = 4 \hat{\Theta}_0^{(0)} \simeq 4 \bar{\oplus}$  $= \Theta_{0}^{(0)} = \overline{\Phi} = \Theta_{0}^{(0)}(k_{y}) = \overline{\Phi}(k_{y}) + C$ For adichatic initial conditions:  $\Theta_{0}^{(0)}\left(k, \gamma \rightarrow 0\right) = - \underline{\Phi}_{p}(k)$  $\exists \mathfrak{g}_{\mathfrak{o}}^{\mathfrak{o}}(k_{\mathfrak{i}}) = \underline{\mathfrak{F}}(k_{\mathfrak{i}}) - \underline{\mathfrak{F}}_{\mathfrak{p}}(k)$ In ACOM-type cosmologies, photon decoupling happens during maker domination, i.e., y\*> leg. Thus,  $\overline{\oplus}(k,y_{\star}) = \frac{9}{6} \overline{\oplus}_{p}(k)$  $= = \bigoplus_{n=1}^{\infty} (k, y_{k}) = \underbrace{=}_{n=1}^{\infty} (k, y_{k}) - \underbrace{=}_{n=1}^{\infty} \underbrace{=}_{n=1}^{\infty} (k, y_{k})$  $= -\frac{2}{3} \underline{\Phi}(k, y_{*})$ Using I = D; we find  $(\Theta_{0}^{(0)} + \overline{E})(k \ll \mathcal{U}_{*}, \gamma_{*}) = \frac{1}{3} \overline{E}(k, \gamma_{*})$  $\frac{\text{using}}{\text{Emstein's equ}} = -\frac{1}{6} f_c(k, q_*)$ 

## Superhorizon up to the LSS...

At photon decoupling  $\eta_*$ , the **effective CMB temperature** perturbation on superhorizon scales is related to the CDM density perturbation via

$$\left(\Theta_0^{(0)} + \Psi\right)(k \ll \mathcal{H}, \eta_*) \simeq -\frac{1}{6}\delta_c(k, \eta_*)$$

→ An observed CMB hot spot corresponds to an **underdense region** (true only for adiabatic initial conditions).



# Subhorizon up to the LSS...

Here the photons and baryons are tightly coupled because of Compton scattering, i.e.,  $\dot{\kappa} \gg \mathcal{H}$ ,  $\rightarrow$ 

- Leads to acoustic oscillations.
- To get acoustic oscillations with baryon loading, the relevant equations are:

$$\dot{\delta}_b + kv_b^{(0)} - 3\dot{\Phi} = 0$$
$$\dot{v}_b^{(0)} + \mathcal{H}v_b^{(0)} - k\Phi = \frac{\dot{\kappa}}{R} \left( v_{\gamma}^{(0)} - v_b^{(0)} \right)$$
$$\frac{1}{R} \equiv \frac{4}{3} \frac{\bar{\rho}_{\gamma}}{\bar{\rho}_b} = \left[ \frac{3}{4} \frac{\Omega_b h^2}{\Omega_{\gamma} h^2} a \right]^{-1}$$
baryons

$$\dot{\delta}_{\gamma} + \frac{4}{3}kv_{\gamma}^{(0)} - 4\dot{\Phi} = 0 \qquad \text{Photons}$$
$$\dot{v}_{\gamma}^{(0)} - k\left[\frac{1}{4}\delta_{\gamma} + \Phi\right] = -\dot{\kappa}\left(v_{\gamma}^{(0)} - v_{b}^{(0)}\right)$$

5.2 Subhorizon up to decoupling

For those knodes that are subharized before photon decoupling, the tightly coupled limit applies before  $\hat{\alpha} \gg \mathcal{U}$ . As we approach decoupling, however, we also need to consider  $\frac{4}{2}\hat{z}$  effects, in order to see how baryons affect the photon perturbations.

The wele vant equations are:  $photons \left[ \begin{array}{c} \hat{J}_{8} = -\frac{4}{3} k v_{8}^{(o)} + 4 \bar{\pm} \\ (\tilde{v}_{8}^{(o)} = k [\frac{1}{7} \hat{J}_{8} + \bar{I}] - \hat{\kappa} (v_{8}^{(o)} - v_{6}^{(o)}) \end{array} \right]$  $bcryons \left\{ \vec{J}_{b} + k \vec{v}_{b}^{(0)} - \vec{J}_{b} = 0 \\ \vec{v}_{b}^{(0)} + \vec{\mathcal{A}} \vec{v}_{b}^{(0)} - k \vec{\mathcal{I}} = -\frac{\hat{\kappa}}{R} \left( \vec{v}_{b}^{(0)} - \vec{v}_{s}^{(0)} \right) \right\}$ L= 4 Pr || k= R= 3 Pr || borgon-to-photon Pb || every density ratio Llav  $= \left[\frac{3}{4} \frac{\Omega_b h^2}{\Omega_r h^2} \alpha \right]^{-1} \sim 10^7 \alpha^{-1}$ 

First verifite & as

 $V_{5}^{(0)} = V_{8}^{(0)} - \frac{R}{\kappa} \left[ \dot{v}_{5}^{(0)} - k I + 4 v_{5}^{(0)} \right]$ 

$$= \mathcal{T}_{\delta}^{(6)} - R\frac{\mathcal{H}}{\mathcal{X}} \left[ \frac{1}{\mathcal{H}} \mathcal{T}_{\delta}^{(6)} - \frac{k}{\mathcal{H}} \mathcal{I} + \mathcal{T}_{\delta}^{(6)} \right]$$
  
In the tightly-coupled limit:  

$$\mathcal{T}_{\delta}^{(6)} = \mathcal{T}_{\delta}^{(6)} + O\left(\frac{\mathcal{H}}{\mathcal{I}}\right)$$
  
Therefor:  

$$\mathcal{T}_{\delta}^{(6)} \simeq \mathcal{T}_{\delta}^{(6)} - R\left(\frac{\mathcal{H}}{\mathcal{I}}\right) \left[ \frac{1}{\mathcal{H}} \mathcal{T}_{\delta}^{(6)} - \frac{k}{\mathcal{H}} \mathcal{I} + \mathcal{T}_{\delta}^{(6)} \right] + O\left(\frac{\mathcal{H}}{\mathcal{I}}\right)$$
  
Then,  $(\textcircled{d})$  can now be inserted into the  $\mathcal{T}_{\delta}$  equation:  

$$\mathcal{T}_{\delta}^{(6)} = k\left[\frac{1}{4}S_{T} + \mathcal{I}\right] - R\left[\mathcal{T}_{\delta}^{(6)} - k\mathcal{I} + \mathcal{H}\mathcal{T}_{\delta}^{(0)}\right]$$
  

$$= \left(1+R\right) \mathcal{T}_{\delta}^{(6)} = \frac{k}{4}S_{\delta} - R\mathcal{H}\mathcal{T}_{\delta}^{(6)} + (1+R)k\mathcal{I}$$
  

$$= \frac{k}{4}S_{\delta} - 3R\frac{\mathcal{H}}{k}\left[\frac{1}{2} - \frac{1}{4}S_{\delta}\right] + (1+R)k\mathcal{I}$$
  
Forthermore:  

$$\tilde{S}_{\delta} = -\frac{4}{3}k\mathcal{T}_{\delta}^{(6)} + 4\overset{\oplus}{\Xi}$$
  
Lue can substitute  $\mathcal{T}_{\delta}^{(6)} + 4\overset{\oplus}{\Xi}$   
Lue can substitute  $\mathcal{T}_{\delta}^{(6)} + m$   

$$= 4\overset{L}{\Xi} + \frac{4k}{4k} \mathcal{L}_{\delta} = -\frac{4}{3}k^{2}\mathcal{I}$$

Lastly, since 
$$R \propto a$$
, he must also have  

$$\frac{\ddot{R}}{R} = \frac{\ddot{a}}{a} = 74$$

$$\Rightarrow R74 = \ddot{R}$$
Thus, the final equation for  $\delta_{8}$  is:  

$$\frac{\ddot{S}_{8} + \ddot{R}}{1+R} \frac{\ddot{S}_{8}}{5} + \frac{k^{2}}{3} \frac{1}{1+R} \frac{}{5}s$$

$$= 4\ddot{\Xi} + 4 \frac{\ddot{R}}{1+R} \dot{\Xi} - \frac{4}{3}k^{2}E$$

G' in terms of the monopole temperature:  

$$\begin{array}{c} \overbrace{0}^{(\omega)} + \overset{\overset{\circ}{R}}{\overset{\circ}{I}} & \overbrace{0}^{(\omega)} + \overset{\overset{\circ}{R}^{2}}{\overset{\circ}{3}} \overset{1}{I+R} & \overbrace{0}^{(o)} & \overbrace{0}^{(o)} \\
&= \overset{\overset{\circ}{\Xi}}{\overset{\circ}{I}} + \overset{\overset{\circ}{R}}{\overset{\circ}{I}} & \overbrace{1+R} & \overbrace{0}^{(o)} \\
&= \overset{\overset{\circ}{\Xi}}{\overset{\circ}{I}} + \overset{\overset{\circ}{R}}{\overset{\circ}{I}} & \overbrace{1+R} & \overbrace{0}^{(o)} \\
&= \overset{\overset{\circ}{\Xi}}{\overset{\circ}{I}} + \overset{\overset{\circ}{R}}{\overset{\circ}{I}} & \overbrace{1+R} & \overbrace{0}^{(o)} \\
&= \overset{\overset{\circ}{\Xi}}{\overset{\circ}{I}} + \overset{\overset{\circ}{R}}{\overset{\circ}{I}} & \overbrace{1+R} & \overbrace{3}^{(o)} \\
&= \overset{\overset{\circ}{\Xi}}{\overset{\circ}{I}} + \overset{\overset{\circ}{R}}{\overset{\circ}{I}} & \overbrace{3}^{(o)} \\
&= \overset{\overset{\circ}{I}}{\overset{\circ}{I}} + \overset{\overset{\circ}{R}}{\overset{\circ}{I}} & \overbrace{3}^{(o)} \\
&= \overset{\circ}{I} + \overset{\overset{\circ}{R}}{\overset{\circ}{I}} & \overbrace{3}^{(o)} \\
&= \overset{\overset{\circ}{I}}{\overset{\circ}{I}} + \overset{\overset{\circ}{R}}{\overset{\circ}{I}} & \overbrace{3}^{(o)} \\
&= \overset{\circ}{I} + \overset{\overset{\circ}{R}} & \overbrace{3}^{(o)} \\
&= \overset{\circ}{I} + \overset{\overset{\circ}{R}}{\overset{\circ}{I}} & \overbrace{3}^{(o)} \\
&= \overset{\circ}{I} + \overset{\overset{\circ}{R} \\
&= \overset{\circ}{I} + \overset{\circ}{R} & \overbrace{3}^{(o)} \\
&= \overset{\circ}{I} + \overset{\circ}{R} & \overbrace{3}^{(o)} \\
&= \overset{\circ}{I} + \overset{\circ}{I} + \overset{\circ}{R} & \overbrace{3}^{(o)} \\
&= \overset{\circ}{I} + \overset{\circ}{I} + \overset{\circ}{R} & \overbrace{3}^{(o)} \\
&= \overset{\circ}{I} + \overset{\circ}{R} & \overbrace{3}^{(o)} & \overbrace{3} \\
&= \overset{\circ}{I} + \overset{\circ}{R} & \overbrace{3}^{(o)} \\
&= \overset{\circ}{I} + \overset{\circ}{R$$

 $C_{S} \equiv \boxed{\frac{1}{3(HR)}}$ 

Sound Spred. If the tightlycoupled photon bargon fluid.

# Subhorizon up to the LSS...

Before decoupling, Compton scattering ensures that photon and baryons system form a tightly-coupled fluid.

• Equation of motion for the monopole in this limit: <sup>f</sup>

There is a similar equation for the dipole.

$$\ddot{\Theta}_{0}^{(0)} + \frac{\dot{R}}{1+R} \dot{\Theta}_{0}^{(0)} + k^{2} c_{s}^{2} \Theta_{0}^{(0)} = \ddot{\Phi} + \frac{\dot{R}}{1+R} \dot{\Phi} - \frac{k^{2}}{3} \Psi$$

• A damped and driven harmonic oscillator with sound speed:

$$c_s^2 \equiv \frac{1}{3(1+R)}$$
  $R \equiv \frac{3}{4} \frac{\Omega_b h^2}{\Omega_\gamma h^2} a$  Baryon-to-  
photon ratio

 $\rightarrow$  The presence of baryons lowers the fluid sound speed.

Approximate solution

Suppose I and I are constant in time (can be Justified during matter domination), and consider the limit  $k^2 c_s^2 \gg \left(\frac{R}{1+R}\right)^2 \textcircled{}$ 

or equivalently:  $\frac{k^2}{3(1+R)} \gg \left(\frac{R}{1+R}\right)^2 4t^2 \qquad \text{leasy to satisfy}$   $\frac{k^2}{3(1+R)} \gg \left(\frac{R}{1+R}\right)^2 4t^2 \qquad \text{on subhorizon}$ scales

Then, the DE simplifies to  $\hat{\Theta}_{0}^{(6)} + k^{2}C_{s}^{2}\Theta_{0}^{(6)} = -\frac{k^{2}}{3}\Psi$ 

The same condition (\*) also allows for a LIKB Solution:

 $(\Theta_{0} + \tilde{\Psi})(k, \eta) = C_{i}sin(kr_{s}) + C_{z}cos(kr_{s}) - R\tilde{\Psi}$ for the monopole, and using  $k\Theta_{i}^{(0)} = \tilde{\Xi} - \tilde{\Theta}_{0}^{(0)}$ , we can construct a solution for the dipole:  $\Theta_{i}^{(0)}(k, \eta) = -C_{s}C_{i}cos(kr_{s}) + C_{s}C_{z}sin(kr_{s})$ . Here, he have defined  $r_{s}(\eta) \equiv \int_{0}^{\gamma} d\eta' C_{s}(\eta') \int_{sound horizon}^{comoving} sound horizon$  i.e., the coordinate distance travelled by a sound hrave since y=0. The compiling sound horizon is perhaps the most important quantity in CMB physics! We save earlier that during MD, a superhorizon kmode has solution  $(\Theta_{o}^{(o)} + \overline{E})(k(x), y) = \frac{1}{3}\overline{E}(k, y) = constant$ Our WKB solution must also respect this finding in the limit  $kr_s \rightarrow 0$ . This immediately means C, =0  $C_z \left[ Q_0^{(o)} + (I+R) \mp \right] (k, \gamma \rightarrow 0)$ 

Thus, the find solution is

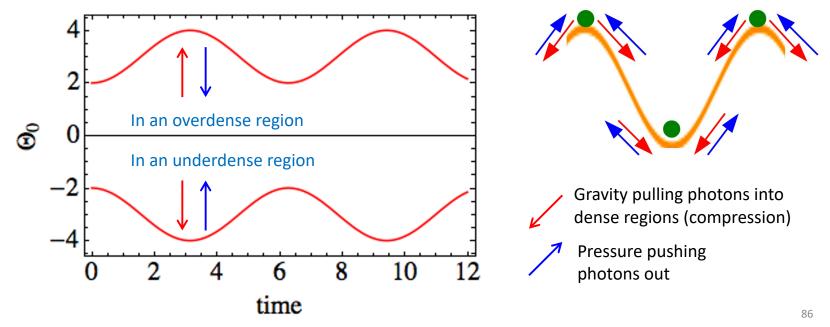
 $\begin{bmatrix} \Theta_{0}^{(0)} + \bar{\Psi} \end{bmatrix} (k, y) = \begin{bmatrix} \Theta_{0}^{(0)} + (1+R)\bar{\Psi} \end{bmatrix} (k, 0) \cos(kr_{s}) \\ -R\bar{\Psi} \\ \Theta_{1}^{(0)}(k, y) = C_{s} \begin{bmatrix} \Theta_{0}^{(0)} + (1+R)\bar{\Psi} \end{bmatrix} (k, 0) \sin(kr_{s}) \\ \end{bmatrix}$ 

Only the cosine mode is excited in the monopole solution, while the dipole solution contains only the sine mode. This is a consequence of the advalatic initial conditions. If the initial conditions had been a mixture of adiabatic and isocurreture modes, then in general the sine mode would have been excited too in the monopole solution.

## Acoustic oscillations: monopole...

Suppose for now baryons are negligible: R = 0.

- Assuming constant  $\Phi$  and  $\Psi$ .
- Take a fixed Fourier k-mode and see how it evolves in time → acoustic oscillations

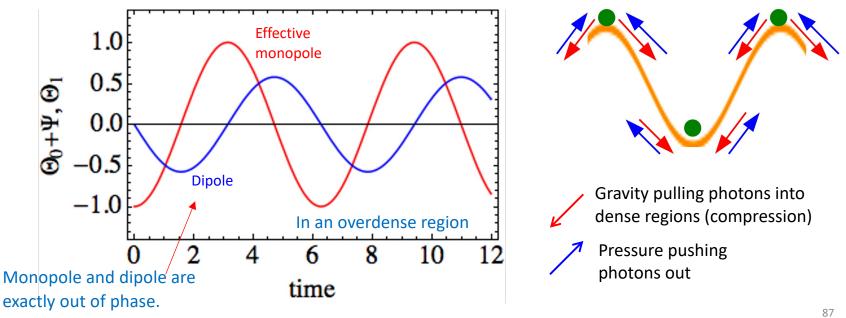


# Acoustic oscillations: monopole & dipole...

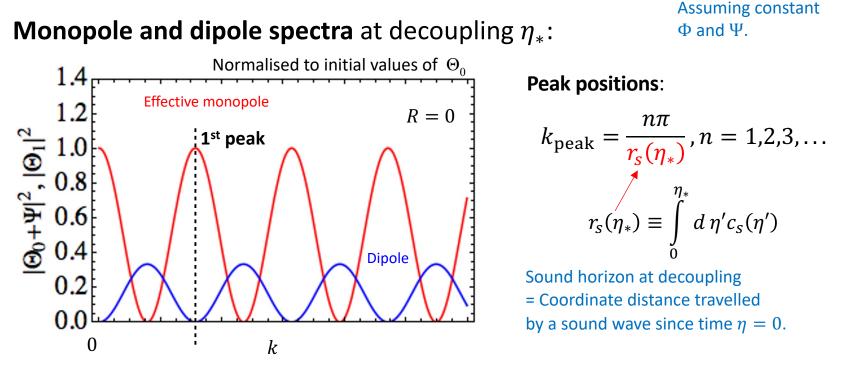
Suppose for now baryons are negligible: R = 0.

Assuming constant  $\Phi$  and  $\Psi$ .

Take a fixed Fourier k-mode and see how it evolves in time → acoustic oscillations



## Acoustic oscillations: monopole & dipole...

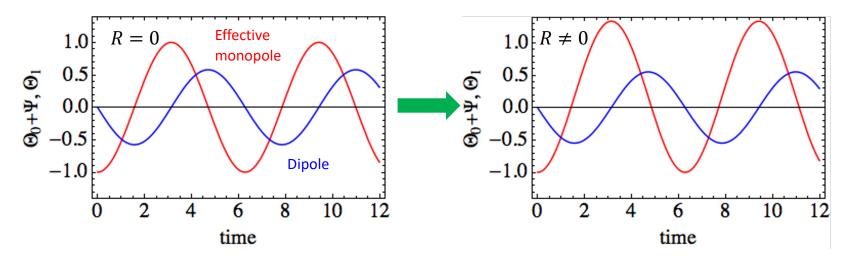


 Position of 1<sup>st</sup> peak corresponds to the k mode that has completed exactly one compression at photon decoupling.

#### Acoustic oscillations: add baryons...

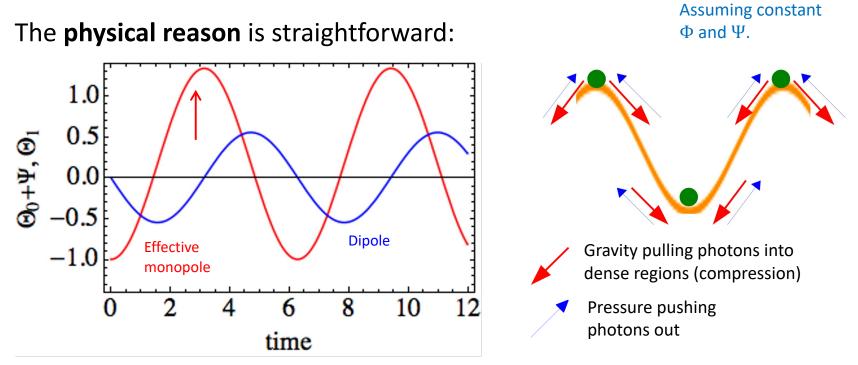
Now let's **put the baryons back** in, i.e.,  $R \neq 0$ .





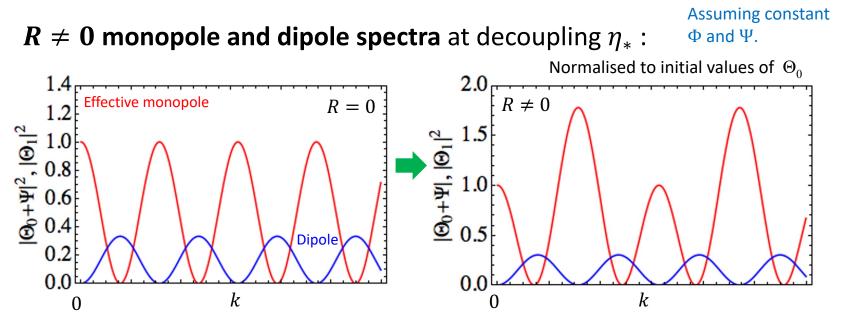
 The presence of baryons offsets the midpoint of acoustic oscillations for the effective monopole, reduces the sound horizon, and alters the oscillation amplitudes (monopole and dipole).

## Acoustic oscillations: add baryons...



 A reduced sound speed due to baryon inertia leads to less pressure resistance → the photon are compressed more and become hotter.

#### Acoustic oscillations on the LSS...

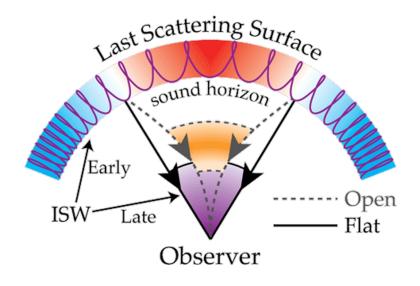


- Odd and even peaks how have different heights, where the **height ratio** depends on the baron-to-photon ratio *R*.
- Essential features remain even for time-dependent  $\Phi$  and  $\Psi.$

## CMB in two steps...

Relative to photon decoupling ( $T^* \sim 0.25 \text{ eV}$ ,  $z^* \sim 1100$ ), CMB anisotropies can be understood in **two steps**:

- What happens up to and at decoupling?
  - Is the k mode superhorizon or subhorizon?
- What happens after decoupling?



5.3 After decoupling  
After decoupling, photons free stream. We saw  
earlier that the Boltzmann equation for the  
photon temperature fluctuation is:  

$$\frac{10^{(0)}}{39}$$
 + nid;  $0^{(0)}$  + gravitational = Collisions  
In a space, this is equivalently:  
 $\frac{10^{(0)}}{39}$  + ik; nid  $0^{(0)}$  + ... = ...  
Thus, free streaming corresponds to a solution  
 $9^{(0)}(ki, y, ni) \sim 9^{(0)}(y_{*}) \exp[-ikni(y - y_{*})]$   
I manopole + dipole  
solution on the last  
s aftering surface.  
Decomposing to Multipoles:  
 $9^{(0)}(ki, y, ni) = \sum_{l=0}^{\infty} (2l+1)1^{l} Ol(k, y) P_{2}(k, h)$   
legende polynomiss  
 $\sim m=0$  spherice  
harmones

Then, the free-streaming solution for 
$$\Theta_{\ell}(k, \eta)$$
 is equivalently.  

$$\begin{bmatrix} \Theta_{\ell}^{(0)}(k, \eta) \sim \Theta_{\ell}^{(0)}(\eta_{k}) & je [k(\eta - \eta_{k})] \end{bmatrix}$$

where  $j_{\ell}(x)$  is a spherical Bessel function of degree l, arising from the plane wave expansion  $e^{i\frac{1}{2}\cdot x} = \frac{2}{l}(2l+i)i^{2}j_{\ell}(kx)P_{\ell}(k\cdot \hat{x})$ 

That was a schematic solution. A proper calculation actually yields  $\Theta_{k}^{(0)}(k, y) \simeq \left[\Theta_{0}^{(0)}(k, \eta_{*}) + \tilde{T}_{0}^{(0)}(k, \eta_{*})\right] je\left[k(\eta_{-}\eta_{*})\right]$  $- \frac{3}{k} \Theta_{i}^{(0)}(k, \eta_{*}) \stackrel{d}{\rightarrow} je\left[k(\eta_{-}\eta_{*})\right]$ 

# After decoupling...

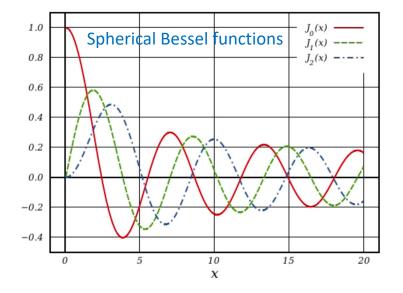
**Photon free-streaming** spreads the monopole and dipole solutions on the last scattering surface to all multipoles  $\ell$ .

$$\begin{split} \Theta_{\ell}^{(0)}(k,\eta_{0}) &\simeq \left[\Theta_{0}^{(0)}(k,\eta_{*}) + \Psi_{0}^{(0)}(k,\eta_{*})\right] j_{\ell}[k(\eta_{0}-\eta_{*})] & \text{monopole} \\ &- \frac{3}{k} \Theta_{1}^{(0)}(k,\eta_{*}) \frac{d}{d\eta} j_{\ell}[k(\eta_{0}-\eta_{*})] & \text{dipole} \end{split}$$

# After decoupling...

**Photon free-streaming** spreads the monopole and dipole solutions on the last scattering surface to all multipoles  $\ell$ .

$$\Theta_{\ell}^{(0)}(k,\eta_0) \simeq \left[\Theta_0^{(0)}(k,\eta_*) + \Psi_0^{(0)}(k,\eta_*)\right] j_{\ell}[k(\eta_0 - \eta_*)] \quad \text{monopole}$$



•  $j_{\ell}(x)$  peaks at  $x \sim \ell$  (not exactly though)  $\rightarrow \Theta_{\ell}^{(0)}(k, \eta_0)$  gets most contribution from k modes satisfying

$$k \sim \frac{\ell}{\eta_0 - \eta_*} = \frac{\ell}{\chi_*}$$
  $\chi_* = \text{Comoving distance to the LSS}$ 

# After decoupling...

**Photon free-streaming** spreads the monopole and dipole solutions on the last scattering surface to all multipoles  $\ell$ .

$$\Theta_{\ell}^{(0)}(k,\eta_0) \simeq \left[\Theta_0^{(0)}(k,\eta_*) + \Psi_0^{(0)}(k,\eta_*)\right] j_{\ell}[k(\eta_0 - \eta_*)] \quad \text{monopole}$$

Where should we expect to find the acoustic peaks?

$$\ell_{\text{peak}} = k_{\text{peak}} \chi_*$$

$$= \frac{n\pi\chi_*}{r_s(\eta_*)} \xrightarrow{\text{Comoving sound horizon up to the LSS}}$$

•  $j_{\ell}(x)$  peaks at  $x \sim \ell$  (not exactly though)  $\rightarrow \Theta_{\ell}^{(0)}(k, \eta_0)$  gets most contribution from k modes satisfying

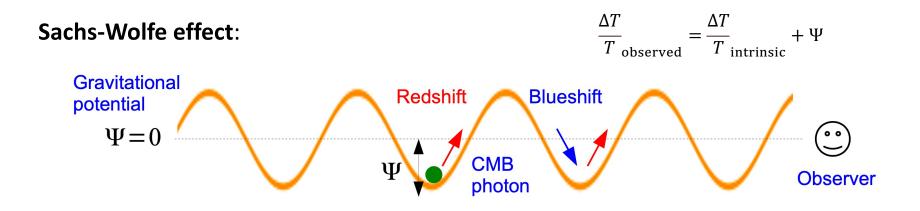
$$k \sim \frac{\ell}{\eta_0 - \eta_*} = \frac{\ell}{\chi_*}$$

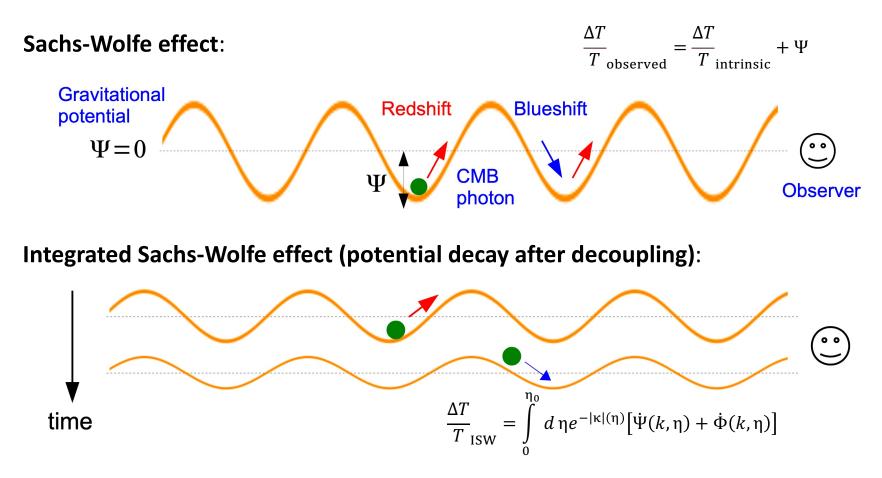
 $\chi_*$  = Comoving - distance to the LSS

#### But there is more: the ISW effect...

The **Integrated Sachs-Wolfe effect** is an additional contribution from time-dependent potentials.

$$\begin{split} \Theta_{\ell}^{(0)}(k,\eta_{0}) &\simeq \left[\Theta_{0}^{(0)}(k,\eta_{*}) + \Psi_{0}^{(0)}(k,\eta_{*})\right] j_{\ell}[k(\eta_{0} - \eta_{*})] & \text{monopole} \\ &- \frac{3}{k}\Theta_{1}^{(0)}(k,\eta_{*})\frac{d}{d\eta}j_{\ell}[k(\eta_{0} - \eta_{*})] & \text{dipole} \\ &+ \int_{0}^{\eta_{0}} d\eta e^{-|\kappa|(\eta)} [\dot{\Psi}(k,\eta) + \dot{\Phi}(k,\eta)]j_{\ell}[k(\eta_{0} - \eta)] & \text{ISW} \end{split}$$



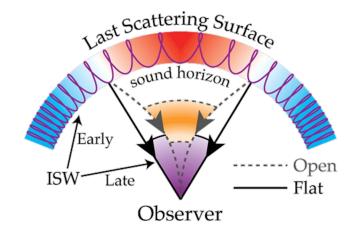


• In the time-dependent case, photons suffer less gravitational redshift than in the case of constant  $\Phi$  and  $\Psi \rightarrow Larger$  observed temperature fluctuation

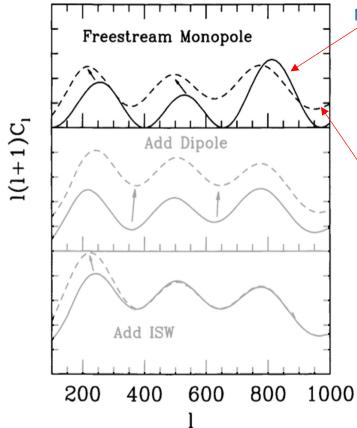
# Early and late ISW...

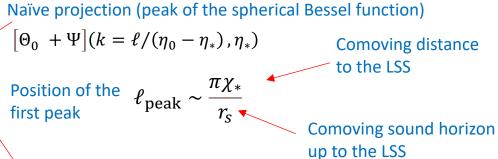
Except deep in matter domination, the ISW effect is always present.

- Early ISW effect: due to transition from radiation to matter domination
  - Effects mainly around the first acoustic peak
- Late ISW effect: due to transition from matter to dark energy domination.
  - Contributions mainly left of first peak



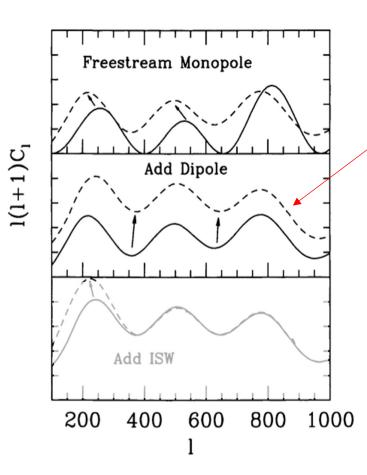
## Let's put it back together...





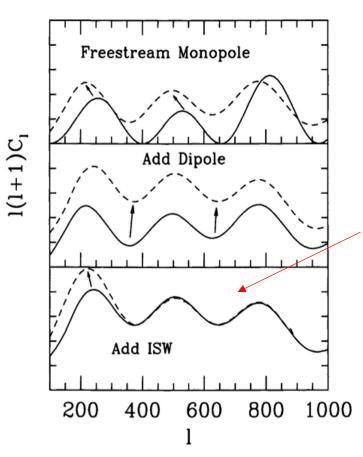
Proper **free-streaming** (full spherical Bessel function) in fact shifts peaks a little from their naïve positions.

$$\begin{split} \Theta_{\ell}^{(0)}(k,\eta_{0}) &\simeq \left[\Theta_{0}^{(0)}(k,\eta_{*}) + \Psi_{0}^{(0)}(k,\eta_{*})\right] j_{\ell}[k(\eta_{0}-\eta_{*})] \\ &- \frac{3}{k}\Theta_{1}^{(0)}(k,\eta_{*}) \frac{d}{d\eta} j_{\ell}[k(\eta_{0}-\eta_{*})] \\ &+ \int_{0}^{\eta_{0}} d\eta e^{-|\kappa|(\eta)} [\dot{\Psi}(k,\eta) + \dot{\Phi}(k,\eta)] j_{\ell}[k(\eta_{0}-\eta)] \end{split}$$



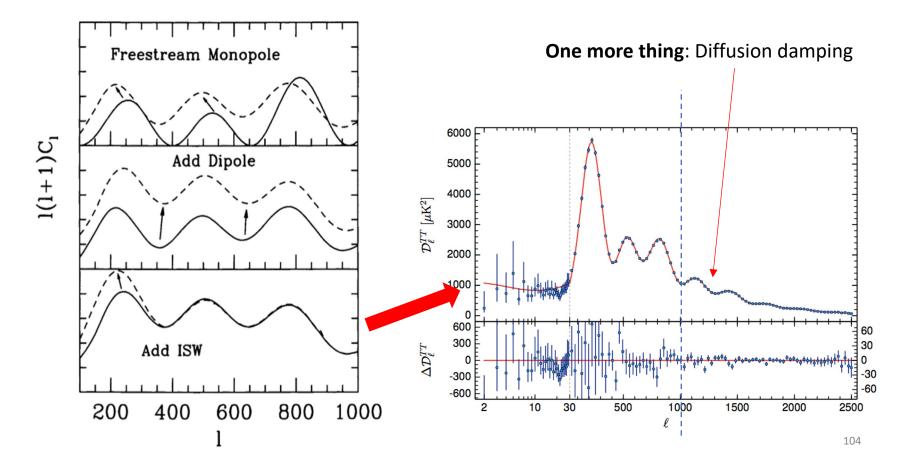
Monopole and dipole add incoherently (because of property of spherical Bessel function); adding dipole makes the troughs less prominent.

$$\begin{split} \Theta_{\ell}^{(0)}(k,\eta_{0}) &\simeq \left[\Theta_{0}^{(0)}(k,\eta_{*}) + \Psi_{0}^{(0)}(k,\eta_{*})\right] j_{\ell}[k(\eta_{0}-\eta_{*}) \\ &- \frac{3}{k} \Theta_{1}^{(0)}(k,\eta_{*}) \frac{d}{d\eta} j_{\ell}[k(\eta_{0}-\eta_{*})] \\ &+ \int_{0}^{\eta_{0}} d\eta e^{-|\kappa|(\eta)} [\dot{\Psi}(k,\eta) + \dot{\Phi}(k,\eta)] j_{\ell}[k(\eta_{0}-\eta)] \end{split}$$



ISW effect adds in phase with the monopole

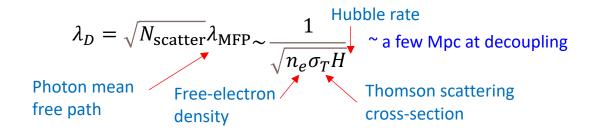
$$\begin{split} \Theta_{\ell}^{(0)}(k,\eta_{0}) &\simeq \left[\Theta_{0}^{(0)}(k,\eta_{*}) + \Psi_{0}^{(0)}(k,\eta_{*})\right] j_{\ell}[k(\eta_{0} - \eta_{*}) \\ &- \frac{3}{k} \Theta_{1}^{(0)}(k,\eta_{*}) \frac{d}{d\eta} j_{\ell}[k(\eta_{0} - \eta_{*})] \\ &+ \int_{0}^{\eta_{0}} d\eta e^{-|\kappa|(\eta)} \left[\dot{\Psi}(k,\eta) + \dot{\Phi}(k,\eta)\right] j_{\ell}[k(\eta_{0} - \eta)] \end{split}$$

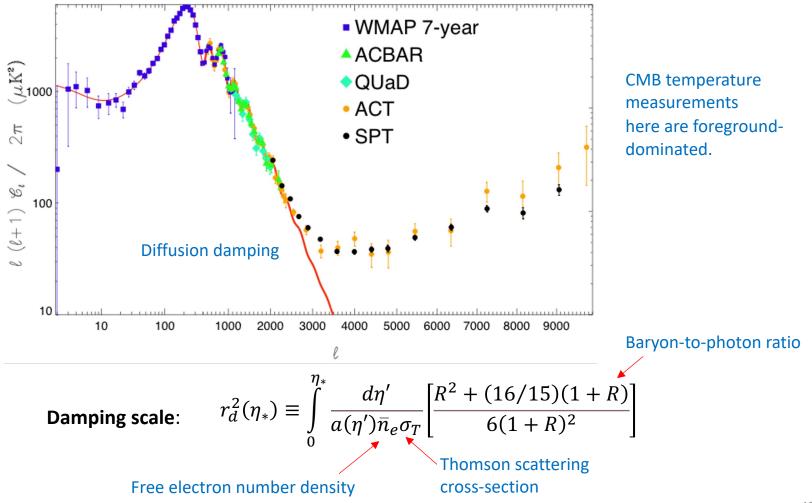


# Diffusion damping...

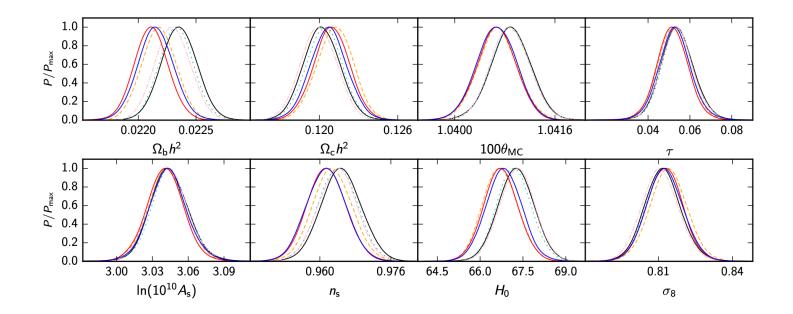
Previously, we invoked the tightly-coupled limit, which assumes Compton scattering keeps photons and baryons moving as one fluid.

- In reality this is **never exactly true**.
- Photons random walk between scattering, leading to diffusion.
- Diffusion washes out temperature differences on scales smaller than the diffusion length:





# Where cosmological parameter constraints come from...



## Cosmological parameters...

Some standard parameters of interest:

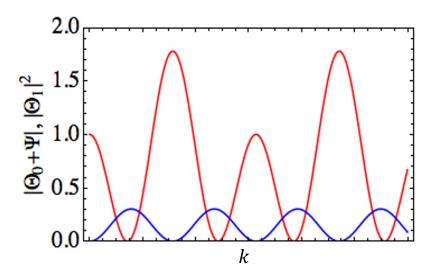
- Matter density (including dark matter):  $\omega_m = \Omega_m h^2$
- Baryon density:  $\omega_b = \Omega_b h^2$
- Hubble parameter, spatial curvature, dark energy: h,  $\Omega_K$ ,  $\Omega_\Lambda$
- Inflation parameters: scalar fluctuation amplitude  $A_s$ , spectral index  $n_s$
- **Others**: number of neutrino families  $N_{
  m eff}$ , neutrino mass sum  $\sum m_{
  u}$
- The CMB temperature anisotropies do **not** measure these parameters *per se*, rather some combinations thereof.
  - Let's see how that works.

#### Odd-even peak heights: baryon-photon ratio...

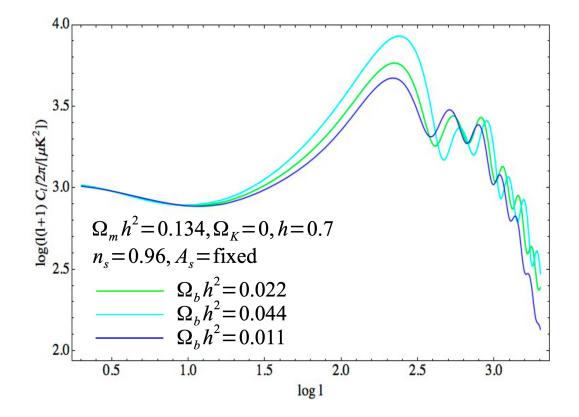
We have seen earlier that the baryon-to-photon ratio *R* causes uneven fluctuation peak heights in the CMB TT spectrum.

$$R \equiv \frac{3}{4} \frac{\bar{\rho}_b}{\bar{\rho}_{\gamma}} = \frac{3}{4} \frac{\Omega_b h^2}{\Omega_{\gamma} h^2} a_{\text{Photon energy}}$$

- Since  $\Omega_{\gamma} h^2$  is known, measuring the odd-to-even peak ratio gives  $\Omega_b h^2$ .
- Probably the most robust (i.e., model-independent) parameter measurement from the CMB.



#### Odd-even peak heights: baryon-photon ratio...



Increasing the baryon density enhances the uneven odd and even peak heights (note especially the first two peaks)

 $\rightarrow$  Measures the baryon-photon ratio R.

# Early ISW effect: matter-radiation equality...

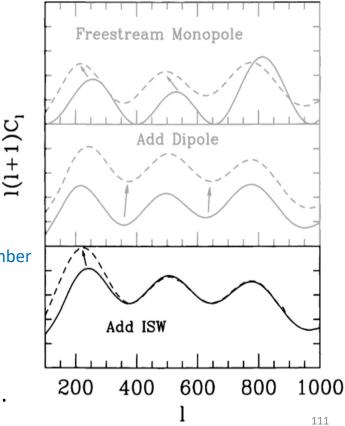
Decaying potentials during transition from radiation to matter domination enhance the 1<sup>st</sup> peak.

- The ratio of the 1<sup>st</sup> to 3<sup>rd</sup> peak probes the early ISW effect.
- The parameter that controls this transition is the **redshift of matter radiation equality**,

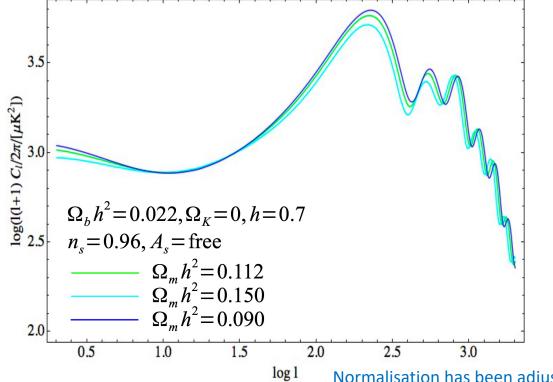
$$Z_{eq}$$
.  
 $1 + z_{eq} = \frac{\Omega_m h^2}{\Omega_r h^2} \simeq 2.4 \times 10^5 \frac{\Omega_m h^2}{1 + 0.2271 N_{eff}}$ 

Photons + massless neutrinos

 $\rightarrow$  If  $N_{\rm eff}$  is known, then early ISW yields  $\Omega_m h^2$ .



### Early ISW effect: matter-radiation equality...



Changing the matter density modifies the **early ISW effect**.

- Keeps 1<sup>st</sup> to 2<sup>nd</sup> peak ratio largely unchanged but alters the 1<sup>st</sup> to 3<sup>rd</sup> peak ratio.
- Good for measuring the redshift of MR equality.
- (Upturn at low ℓ is due to the late ISW effect.)

Normalisation has been adjusted for easy comparison.

We have seen that the position of the 1<sup>st</sup> acoustic peak is given roughly by

Sound horizon at decoupling

• Had we allowed for spatial curvature:

$$\chi(\eta_*) \rightarrow \frac{\sin[\chi(\eta_*)]}{\sinh[\chi(\eta_*)]} \quad \begin{array}{l} K = +1 \\ K = -1 \end{array}$$

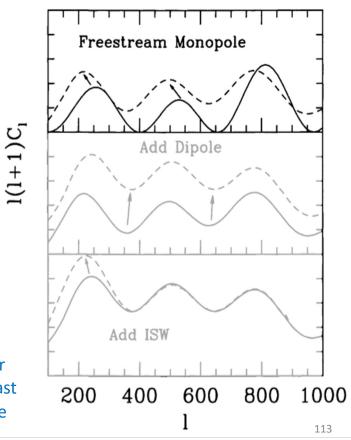
 $\ell_{\text{peak}} \sim \frac{\pi(\eta_0 - \eta_*)}{r_s(\eta_*)}$  the last scattering surface  $\eta_0 - \eta_* = \chi(\eta_*)$ 

 More generally, the 1<sup>st</sup> peak position is described by the angular sound horizon:

$$\theta_{s} \equiv \frac{\pi}{\ell_{1^{\text{st}} \text{peak}}} = \frac{a(\eta_{*})r_{s}(\eta_{*})}{d_{A}(\eta_{*})}$$

Angular diameter distance to the last scattering surface

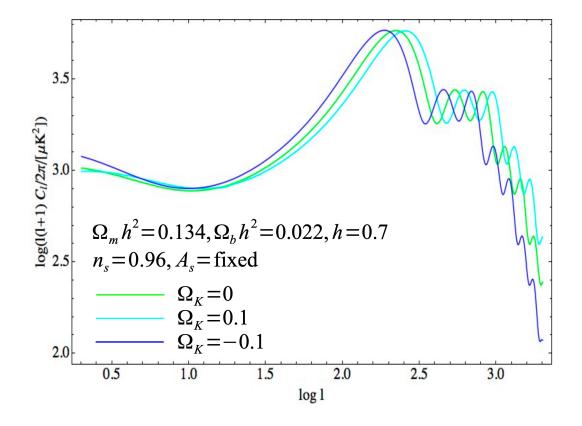
Comoving distance to



For fixed  $\Omega_b h^2$  (from odd-even peak ratios) and  $z_{eq}$  (from early ISW), the main parameter dependence of  $\theta_s$  goes something like this:

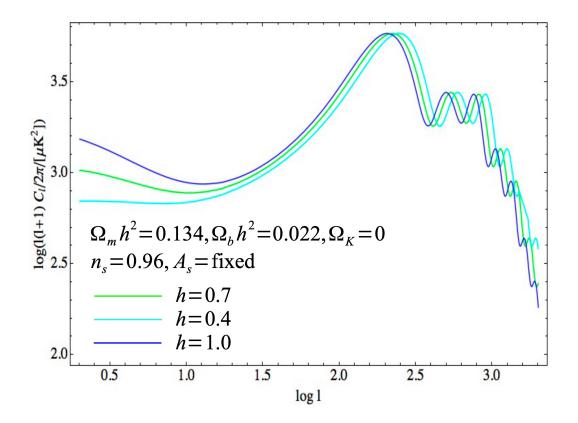
$$\theta_{s} = \frac{a(\eta_{*})r_{s}(\eta_{*})}{d_{A}(\eta_{*})} \propto \frac{(\Omega_{m}h^{2})^{-1/2}}{\int_{0}^{z_{*}} \frac{dz}{\sqrt{\Omega_{m}h^{2}a^{-3} + \Omega_{K}h^{2}a^{-2} + (h^{2} - \Omega_{m}h^{2} - \Omega_{K}h^{2})}}$$

- Thus, if  $\Omega_m h^2$  is known (because  $N_{eff}$  is known), then the remaining unknown parameters in  $\theta_s$  are  $\Omega_k$  and h, which are **degenerate**.
- If  $\Omega_m h^2$  is **not** known (because  $N_{eff}$  is **not** known), then there is a 3-way degeneracy and there's still more work to do. More on this in a bit!



Changing the spatial geometry alters the way the acoustic peaks on the LSS are projected onto  $\ell$  space.

Shifts the positions of the peaks.

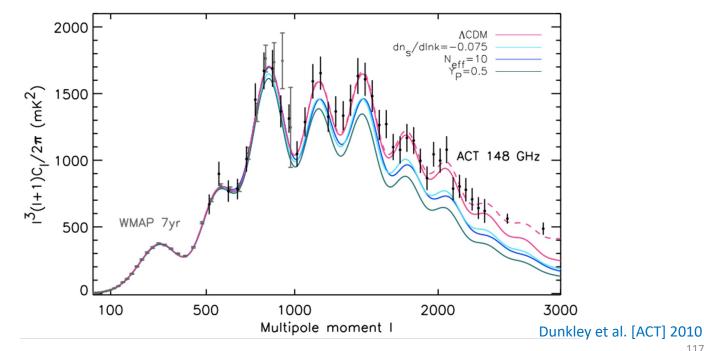


Same effect if we keep the geometry flat but vary the Hubble parameter h.

- This means it is not possible to pin down both h and  $\Omega_K$  at the same time using  $\theta_s$  alone (parameter degeneracy).
- However, h and  $\Omega_K$  have very different late ISW effects, and so can be distinguished using CMB temperature data.

# Angular damping scale...

First measured by ACT and SPT; now also measured by Planck and ground-based successors to ACT/SPT.



## Angular damping scale...

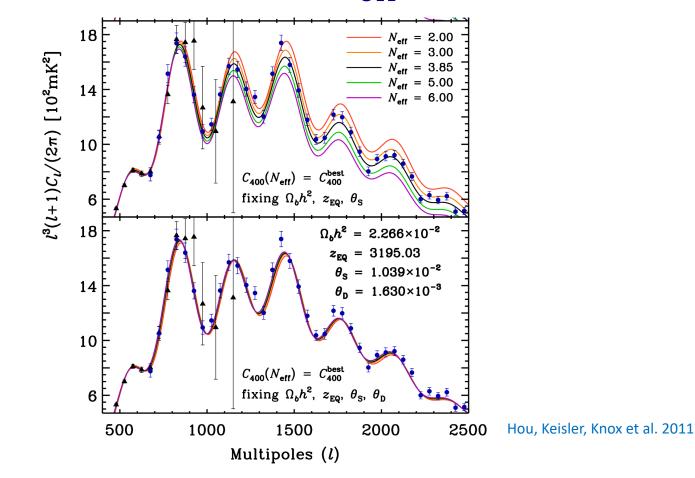
Like the angular sound horizon, for **fixed**  $\Omega_b h^2$  (from odd-even peak ratios) and  $z_{eq}$  (from early ISW), the main parameter dependence of  $\theta_d$  is:

$$\theta_d = \frac{a(\eta_*)r_d(\eta_*)}{d_A(\eta_*)} \propto \frac{(\Omega_m h^2)^{-1/4}}{\int_0^{Z_*} \frac{dz}{\sqrt{\Omega_m h^2 a^{-3} + \Omega_K h^2 a^{-2} + (h^2 - \Omega_m h^2 - \Omega_K h^2)}}}$$
$$\propto (\Omega_m h^2)^{1/4} \theta_s \quad \leftarrow \text{Angular sound horizon}$$

→ The **ratio** of  $\theta_d$  and  $\theta_s$  measures  $\Omega_m h^2$  independently of dark energy, spatial curvature, Hubble rate, etc.

• If  $\Omega_m h^2$  is **not** already known from early ISW, (because  $N_{eff}$  is **not** known), this  $\theta_d/\theta_s$  measurement also allows us to measure the effective number of neutrinos  $N_{eff}$ !

#### Irreducible signature of $N_{\rm eff}$ ...



# Take-home message...

Uniformity is good, but fluctuations are even better.

- Statistical properties of the CMB fluctuations are strongly dependent on
  - The redshift of matter-radiation equality (1<sup>st</sup> to 3<sup>rd</sup> peak heights)
  - The baryon-to-photon ratio (odd-to-even peak heights)
  - The sound horizon at decoupling (peak positions)
  - The distance to the last scattering surface (peak positions)
  - The **damping scale** at decoupling (damping tail)
  - The late ISW effect (low-ℓ multipoles)
- Understanding how various cosmological parameters affect these physical quantities enables us to constrain them.