
2. Hot universe...
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The hot universe…

The early universe was a very hot and 
dense place.
• Particle interactions (e.g., scattering) 

can happen very frequently.
• What interactions are available depends 

on the particle physics theory.
• But if an interaction rate (per particle) 

far exceeds the Hubble expansion rate,

the interaction can be taken to be in a 
state of equilibrium.

Γ)*+ ≫ -
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Classic example: weak interaction…

Say you have a gas of ultra-relativistic particles with temperature !.
• The Weak interaction rate per particle is estimated to be

Γ)*+ = 2 σ4 ∼ 6,-7.

Number density 
of scattering 
centres W~X3

Relative velocity Y~1

Cross-section Z~D&$X$

Fermi constant

Planck mass

Γ9:;
Q

∼ n<=>:?@PA
#;- ∼

;

1	MeV

-

GC ∼ 10&3	GeV&0
^DE ∼ 10(F	GeV
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• The Hubble expansion rate is

Q =
8OP

3
R
*
<* ∼

;#

n<=>:?@
Weak interactions are in 
equilibrium at v ≫ w	xyz.
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Weak interaction 
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Equilibrium thermodynamics…

In the ideal gas limit, when an interaction is in equilibrium, all 
participating particles have phase space distributions described by one 
of the equilibrium forms: 

+ Fermi-Dirac
−  Bose-Einstein[(\) = Phase space

distribution

X = Temperature] = Chemical potential

• All particles participating in that interaction have the same temperature G.
• Their chemical potentials satisfy ∑^_^`^abIc = ∑d^_abIe.

53

{BC 3 =
1

exp ⁄} 3 − ~ ; ± 1



Equilibrium thermodynamics…

The chemical potentials of all particles participating in an interaction in 
equilibrium satisfy: 

• Trivial condition for elastic scattering, e.g., J + K → J + K
• For inelastic processes, e.g, J + K → M + N, you can also call it a chemical 

equilibrium.
• If a chain of interactions like OPP ↔ ⋯ ↔ SS is all in equilibrium, then
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R
9:9;9>=

~D = R
E9:>=

~F

~G + ~HG = ⋯ = 2~I = 0

Because the number of photons in the 
universe at 5 ≳ 10' is not conserved.

~HG = −~G

ParticleAntiparticle



Equilibrium thermodynamics…

When -/0 = −-0  is satisfied, the particle-antiparticle asymmetry is 
related to the chemical potential via:

• In standard cosmology (i.e., standard model of particle physics in FLRW 
universe), any such asymmetry should be of the same order of magnitude as 
the matter-antimatter asymmetry ~10O!M.

→ Thus, unless your goal is to compute the particle-antiparticle asymmetry, it 
suffices for most applications to set I = 0.
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20 − 2/0 ∝ '*1 9 :0 9 − :/0 9
Particle number density – 
antiparticle number density ∝ ;07 for +&J ≪ 1



Equilibrium thermodynamics…

Given its phase space distribution /(0), it is straightforward to find a 
particle species’ bulk properties:

_$ =
`$
2F 'aQ' b	c$ b⃗

6$ =
`$
2F 'aQ' b

b⃗ 0

3e c$ b⃗

Number density:

Energy density:

Pressure:

Internal d.o.f. ~3G

~^ ^3 ⁄' 0f ⁄&I J

Ultra-relativistic X ≫ h

Non-relativistic 
X ≪ h

The energy density of a non-relativistic 
particle species is highly suppressed!

D0 / = 8FG
3 J

$
7$ ≡

8FG
3

F0
30`∗ 3L 3L

G• We can therefore express the 
Hubble expansion rate in the 
early universe as: j∗ is a temperature-dependent function, dominated by 

relativistic species, specific to a particle physics theory. 

Photon 
temperature
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7$ =
`$
2F 'aQ' b	ec$ b⃗



Electroweak
phase transition

Quark-hadron
phase transition

Weak interaction
goes out of
equilibrium

Nucleosynthesis
starts

Photon temperature
Time

Baryogenesis??

(WIMP) dark 
matter
production??

j∗ X What's left?
Mainly
● Photons
● Neutrinos

Small amounts* of
● Electrons
● Nucleons
● Nuclei

* Small means < 10!)W*

T∗ of the standard model of particle physics:
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Comoving entropy density & conservation…

Where expansion is quasi-static so that equilibrium is maintained, the 
comoving entropy density 1 is approximately conserved.

Comoving entropy density

scale factor - 58

1 = "12 ≡ "14
2

52 + 72
!2

$

$

$



Comoving entropy and evolution of !)…

As for the energy density, we can define the entropy degrees of 
freedom, 8∗4, via 
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$;K;>= = '-R
D

<D + =D
;D

≡ '-
2O#
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M∗M ;I ;I-

j∗+  is a temperature-dependent function, dominated by relativistic 
species, specific to a particle physics theory.  In general, j∗+ ≠ j∗, 
except when X, = X- for all particle species	n.

• Comoving entropy conservation, 1+5+67 = const., implies 

'-M∗M ;I ;I- = const. ;I ∝ M∗M
$%/-'$%



"-to-# temperature ratio from entropy…
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Out of equilibrium…

An interaction goes out of equilibrium when the interaction rate per 
particle drops significantly below the expansion rate with time, i.e., 

• When this happens, the interaction can no longer change the 
energy density and/or the number density of the participating 
particles.
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Γghi ≪ #
Interaction rate per particle

Hubble expansion rate



Out of equilibrium…

You may also have heard of these terms:

• Decoupling: a particle species decouples when all its interactions 
with other particle species are out of equilibrium.

• Freeze-out: when all number-changing interactions of a particle 
species (e.g., annihilation/pair production) go out of equilibrium.
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Out of equilibrium…

In some BSM models, an interaction may never even reach 
equilibrium, i.e., Γ)*+ ≫ , is never satisfied.

• Freeze-in of a particle species is when there are just sufficient 
interactions to make the particles in some abundance, but the 
interaction does not reach equilibrium rates.
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Tracking out-of-equilibrium processes…

The effect of an out-of-equilibrium interaction on particle species 1 can 
be tracked using the Boltzmann equation:

Collision term
(Lorentz-invariant);
“short range” 
interactions
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?> @:;@A> − Γ>?
2 ?>?? @:;@?2 = B :;

Gravity goes in here;
“long range” interactions

• U!(Vp, <c) is the 1-particle phase density defined such that the number of 
particles 1 in a phase space volume WV!WVPWVRW<!W<PW<R is

#Ñ = {%(Ö* , =D)#Ö%#Ö##Ö-#=%#=##=-



Tracking out-of-equilibrium processes…

The effect of an out-of-equilibrium interaction on particle species 1 can 
be tracked using the Boltzmann equation:

Collision term
(Lorentz-invariant);
“short range” 
interactions
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?> @:;@A> − Γ>?
2 ?>?? @:;@?2 = B :;

Gravity goes in here;
“long range” interactions

• In a homogeneous and isotropic FLRW universe, gravity causes only expansion.

Ü{%
Ü"

− Q3
Ü{%
Ü3

=
1

}%
á {%

q\

q/
= C\ i.e., redshifting momentum

{%(Ö* , =D)→ {%(", 3)

Physical momentum measured 
by a comoving observer



Tracking out-of-equilibrium processes…

The effect of an out-of-equilibrium interaction on particle species 1 can 
be tracked using the Boltzmann equation:

Collision term
(Lorentz-invariant);
“short range” 
interactions
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?> @:;@A> − Γ>?
2 ?>?? @:;@?2 = B :;

9D phase space integral
Energy-momentum
conservation

Matrix
element

Quantum 
statistical factors

• The collision term for e.g., 1 + 2 → 3 + 4
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1

2
fà

D6#

/
#-3D
2O -2}D
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How phase space density evolves when C[f]=0.

When there are no collisions, then the only thing about a particle that 
can change is its physical momentum due to redshift.
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Ü{%
Ü"

= 0

• It is thus useful to define a non-redshifting momentum that is constant in time.

9 ∝ ,@;

C ≡ ,9

• Then, U!(7, &)→U!(7, Y), and Boltzmann equation becomes: 

The phase space density {%(", ã) 
remains constant in time when 
there are no collisions.



Full-momentum or not?

Depending on the problem at hand, you may or may not need to solve 
the full momentum-dependent Boltzmann equation in its full glory.
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• Problems that require it include:
• Precision neutrino decoupling/Ñeff (density matrix)
• Light sterile neutrino thermalisation (density matrix)
• Freeze-in.

• Problems for which it is perhaps not really necessary include:
• WIMP freeze-out
• Recombination and photon decoupling
• Standard thermal leptogenesis
• …



Momentum-integrated Boltzmann equation…

Where full-momentum dependence is unnecessary, we can integrate 
the Boltzmann equation in momentum to form an equation of motion 
for the number density:
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Still very ugly



Simplifications…

We can often make several simplifying assumptions to make the 
collision integral easier to compute.
• Ignore quantum statistics factors and assume Maxwell-Boltzmann statistics, 

i.e., assume the equilibrium distribution takes the form:
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:AB = I@
CP
D

• Assume a common temperature	G	for the participating species (justified by 
elastic scattering processes being in equilibrium). 

• Assume a phase space density of the form:

:2 =
22
22
AB I@

CP
D



Simplifications…

Here’s the simplified collision integral:
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Thermally-averaged cross section

• Its advantage is that the thermally-averaged cross section is now just a 
function of temperature, rather than a function time.

• It can be pre-computed.



Application 1: WIMP freeze-out…

WIMP = weakly-interacting massive particle, a generic cold dark 
matter candidate.
• Generic production process: Z OZ → [ O[
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WIMPStandard model 
particles

• Standard model particles Z can be assumed to be in thermal equilibrium.
• Some equilibirum elastic scattering, e.g., [Z → [Z, is also likely present.
• The integrated Boltzmann equation:

*2EF
*+ + 3-2EF = − J4 (2EF- − 2AB- )



Application 1: WIMP freeze-out…

Solution of the integrated 
Boltzmann equation for the 
comoving WIMP number density:
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ΩPQ~0.2
&.S
T

# -×%&'!(	?V)W'"
XY  

• For 10 GeV to 1 TeV mass WIMPs, 
the solution translates roughly to:

h/X	= WIMP mass/bath temperature

LEF ≡ ,12EF



Application 2: Recombination…

At ! > G 1 	eV, Compton scattering *+q → *+q keeps photons and 
free electrons (i.e., not in an atom) in equilibrium.
→ At these times, the universe is opaque to photons.
•   But the free electron density \L is governed by:
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#b'
#"

+ 3Qb' = −b'
BCbZ

BC åç
b'bZ
b'
BCbZ

BC −
b[
b[
BC

I + 9 ↔ - + N
Neutral hydrogen

Recombination

Boltzmann equation for W/  

• When \L is so low that the photon scattering rate drops below the Hubble 
rate, the universe becomes transparent to photons → Cosmic microwave 
background



Take-home message…

In the early universe, an interaction is:
• In equilibrium when the interaction rate per particle far exceeds the 

expansion rate:

• Totally out of equilibrium when the opposite condition ensues:

• We use the Boltzmann equation to determine how interactions that may 
not be in equilibrium at all times affect the abundances (i.e., number 
densities) of the participating particle species.

Γêëí ≫ (

Γêëí ≪ (
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3. Inflationary universe...



Inflationary universe

Cosmology 101
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Motivation…

Standard hot big bang (what we’ve discussed so far) is consistent with 
observational data.
   
• Nonetheless, three (arguably philosophical) puzzles motivate the 

introduction of inflation in cosmology:

• The horizon problem

• The flatness problem

• The relic problem
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Motivation 1: the horizon problem…

Why is the CMB so uniform even though it is made up of many causally 
disconnected patches?

Horizon today

We are here

Horizon at the last 
scattering surface

Big bang
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Motivation 2: the flatness problem…

The universe appears to have a flat spatial geometry today; ΩG <
0.01 from observations.

• But in order to appear 
flat today, the amount 
of fine-tuning required 
at Planck time (i.e., at 
G~%sba_tu; 7~10OTT	s) 
is one part in 10vM. 

→ How did that 
happen?

One part in 1024 fine-tuning already at 1 ns post BB....
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Motivation 3: the relic problem…

Sometimes called the monopole problem: many BSM theories (GUTs 
in particular) predict topological defects from symmetry breaking 
(monopoles, strings, domain walls, etc.)

“Hole”

Breaking of
global w(1)

The minimum energy state
(the rim of the Mexican hat)
has a “hole” when you go
around 0 → 2I: a string

• We generally expect one such defect per causally-connected region at the 
time of symmetry breaking → must be many of such defects in the visible 
universe today.

• The problem: Why haven’t we seen these defects?
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Inflation is the solution…

Introduce a phase of accelerated expansion before radiation domination.
log(7)

log(0)

7̅2 ∝ 0&G

7̅Q = const

7̅I ∝ 0&'

Radiation domination Matter domination Λ domination

Matter-radiation
equality

Matter-Λ
equality

A phase dominated
by some form of
energy density that
leads to accelerated
expansion such that  

' "B:\
' "W;>];

> é^&

Inflation
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Inflation is the solution…

• The flatness problem is 
solved because exponential 
expansion stretches the 
radius of curvature of any 
initial non-flat geometry, so 
that locally space looks flat.

• The relic problem is solved, 
because the exponential 
expansion of space dilutes 
the abundance of defects, 
provided inflation occurs 
after their production
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• The horizon problem is solved because the horizon can be made arbitrarily 
large, so that the part of the last scattering we observer was in some distant 
past in causal contact.

Standard
big bang Last scattering surface

Horizon today

We are here

Horizon at the last 
scattering surface
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Implementing inflation using a scalar field…

How do you implement inflation?  We can’t use vacuum energy, 
because once N dominates, you cannot ever get back to 
radiation/matter domination.
• Whatever drive inflation must be dynamical: a scalar field works.
• A spatially homogeneous real scalar field 0 has energy density and pressure 

given by:

!R =
1
2
%&
%'

0
+ ) & *R =

1
2
%&
%'

0
− ) & S$% = − 2

−U
V( −Uℒ)
VU$%

From 

• If the potential exceeds the kinetic term, i.e., ](P) ≫ ( ⁄`P `7)P, then

,R =
*R
!R

≃ −1
The scalar field will drive a phase of 
exponential expansion if its energy density 
dominates over everything else.

Equation of state 
parameter for the 
scalar field.
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The basic picture of slow-roll inflation…

Scalar field

Inflating
(exponential
expansion)

(inflation ends)

) & ≫ %&
%'

0
Slow-roll phase

Oscillating field:
slow-roll ends

) & ≪ %&
%'

0

Potential
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After inflation: reheating…

Not well-understood, but the idea is to have the scalar field decay and 
convert its energy into relativistic (standard model) particles.

log(7)

log(0)

7̅2 ∝ 0&G

7̅Q = const

7̅I ∝ 0&'

Radiation domination Matter domination Λ domination

Matter-radiation
equality

Matter-Λ
equality

A phase dominated
by some form of
energy density that
leads to accelerated
expansion such that  

' "B:\
' "W;>];

> é^&

Reheating

Inflation
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Take-home message…

• Inflation solves a number of problems by postulating a phase of 
exponential expansion before radiation domination.

• The simplest way to implement this idea is to use a scalar field 
“slowly rolling” down its potential.

• Inflation ends when the scalar field reaches the bottom of the potential well 
and starts to oscillate.

• When all of the energy in the scalar field has been converted into relativistic 
(standard model) particles somehow (via the process of reheating), radiation 
domination can begin.
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