Cosmology

Yvonne Y. Y. Wong, UNSW Sydney

Crosslinks of Early Universe Cosmology, MITP Summer School, July 15 – August 2, 2024

The concordance flat ΛCDM model...

The simplest model consistent with **present observations**.

Plus flat spatial geometry+initial conditions from single-field inflation

The grand lecture plan…

- **Lecture 1-2: Cosmology 101** (on slides, since I expect you all know this at some level already; I'm just filling in gaps)
	- 1. Homogeneous and isotropic universe
	- 2. Hot universe
	- 3. Inflationary universe

• **Lecture 3-7: Inhomogeneous universe** (mostly on the blackboard)

Cosmology 101

- 1. Homogeneous and isotropic universe
- 2. Hot universe
- 3. Inflationary universe

1. Homogeneous and isotropic universe...

FLRW universe…

Cosmological principle: our universe is spatially homogeneous and isotropic on sufficiently large length scales (i.e., we are not special).

- Homogeneous \rightarrow same everywhere
- Isotropic \rightarrow same in all directions
- Sufficiently large scales \rightarrow > $O(100)Mpc$

FLRW universe…

Cosmological principle: our universe is spatially homogeneous and isotropic on sufficiently large length scales (i.e., we are not special).

- Homogeneous \rightarrow same everywhere
- Isotropic \rightarrow same in all directions
- Sufficiently large scales \rightarrow $> O(100)Mpc$
- 1 pc = 1 parsec = 3.0856×10^{18} cm
	- Distance from Sun to Galactic centre ~ 10 kpc
	- Distance to the Virgo cluster \sim 20 Mpc
	- Size of the visible universe \sim $O(10$ Gpc)

Evidence for large-scale homogeneity and isotropy:

Local galaxy distribution as measured by the 2Mass Redshift Survey

Evidence for large-scale homogeneity and isotropy:

Cosmic microwave background (temperature)

State-of-the-art: Temperature and polarisation fluctuations in the **cosmic microwave background** as seen by Planck. (Latest results 2018)

LE FIGARO·

12

FLRW universe…

Homogeneity and isotropy imply maximally symmetric 3-spaces (3 translational and 3 rotational symmetries).

• A spacetime geometry that satisfies these requirements is the Friedmann-Lemaître-Robertson Walker (FLRW) geometry:

$$
ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - Kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2}) \right]
$$
 FLRW metric
3_{partial geometry}

$$
K = -1
$$
 (hyperbolic), 0 (flat), +1 (spherical)

 $\cdot \frac{a(t_2)}{a(t_1)}$ $\frac{u(t_2)}{u(t_1)}$ = factor by which a physical length scale increases between time t_1 and t_2 .

An observer at rest with the FLRW spatial coordinates is a **comoving observer**.

$$
ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - Kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]
$$

→ The **physical distance** between two comoving observers increases with time, but the coordinate distance between them remains unchanged.

Geodesics…

In the **absence of other forces**, test particles move on the geodesics of a spacetime geometry, i.e., the "straight lines" of a curved spacetime.

● It's like flight paths, which follow (more or less) the geodesics on the surface of the Earth.

Geodesics and cosmological redshift…

All test particles (massive or massless) moving on geodesics of an FLRW universe suffer cosmological redshift:

- A particle emitted at a very early time t when the scale factor a was very small would be observed today with a very large redshift z
- \rightarrow There is a one-to-one correspondence between t, a, and z:

 \rightarrow We use them interchangeably as a measure of time.

Matter/energy content (stuff in the universe).

In GR, the stress-energy tensor $T_{\mu\nu}$ encodes the matter/energy content.

Matter/energy content (stuff in the universe).

In GR, the stress-energy tensor $T_{\mu\nu}$ encodes the matter/energy content.

• Homogeneity and isotropy imply **only one viable form**:

• $\rho(t)$ and $P(t)$ can depend on time, but **not** on the spatial coordinates.

 \rightarrow How do they evolve with time?

Matter/energy content: conservation law…

Local conservation of energy-momentum in an FLRW universe implies:

- There is **one such continuity equation for each substance** α .
- We need in addition to specify a relation between $\rho(t)$ and $P(t)$, i.e., the **equation of state** of the substance α , which is a property of the substance.
	- It's common to use an equation of state parameter $w\colon\; w_\alpha(t)\equiv 1$ $P_\alpha(t)$ $\rho_\alpha(t$
	- Assuming a constant $w: \rho_{\alpha}(t) \propto a^{-3(1+w_{\alpha})}$ How energy density evolves with

the scale factor.

Matter/energy content: what's there?

• **Non-relativistic** matter

- Atoms (or constituents thereof)
- Dark matter (does not emit light but feels gravity); GR people call it "dust"
- **Ultra-relativistic** radiation
	- Photons (main the CMB)
	- Relic neutrinos
	- Gravitational waves
- **Other** funny things
	- Cosmological constant/vacuum energy
	- ??

$$
\rho_{\alpha}(t) \propto a^{-3(1+w_{\alpha})}
$$

Volume expansion

$$
w_r = 1/3
$$

$$
\Rightarrow \rho_r \propto a^{-4}
$$

 \Rightarrow $\rho_m \propto a^{-3}$

 $W_m \simeq 0$

Volume expansion + momentum redshift

$$
w_A = -1
$$

More space,

$$
\Rightarrow \rho_A \propto \text{constant}
$$

more energy

Vacuum energy as the cosmological constant.

Heisenberg's uncertainty principle permits the temporary appearance of virtual particles in otherwise empty space.

• Good candidate for the cosmological constant, but we will probably need a theory of quantum gravity to see if the numbers really work out.

Matter/energy content: what's there?

• **Non-relativistic** matter

- Atoms (or constituents thereof)
- Dark matter (does not emit light but feels gravity); GR people call it "dust"
- **Ultra-relativistic** radiation
	- Photons (main the CMB)
	- Relic neutrinos
	- Gravitational waves
- **Other** funny things
	- Cosmological constant/vacuum energy
	- ??

$$
w_m \approx 0
$$

\n
$$
\Rightarrow \rho_m \propto a^{-3}
$$

\n
$$
w_r = 1/3
$$

\n
$$
\Rightarrow \rho_r \propto a^{-4}
$$

\n
$$
\Rightarrow \rho_{\Lambda} \propto \text{constant}
$$

Different evolution for different forms of energy densities means that radiation dominated in the early universe, while dark energy was unimportant.

Friedmann equation…

The Friedmann equation describes the evolution of the scale factor $a(t)$.

• The Friedman equation is itself derived from Einstein's equation:

$$
R = \text{Ricci scalar and tensor}
$$
\n(nonlinear functions of the 2nd derivative of the 2nd derivative of the 3nd derivative of the 4nd derivative of the 5nd derivative of the 5nd derivative of the 6nd derivative of the 6nd derivative of the 7nd derivative of the 7

Friedmann equation…

We may also have seen the Friedmann equation in this form:

$$
H^{2}(t) = H^{2}(t_{0})[\Omega_{m}a^{-3} + \Omega_{r}a^{-4} + \Omega_{\Lambda} + \Omega_{K}a^{-2}]
$$

Present-day
\nreduced energy

\n
$$
\Omega_{\alpha} = \frac{\bar{\rho}_{\alpha}(t_0)}{\rho_{\text{crit}}(t_0)}, \qquad \rho_{\text{crit}}(t) \equiv \frac{3H^2(t)}{8\pi G}, \qquad \Omega_K \equiv -\frac{K}{H^2(t_0)}
$$
\nCritical density

• A **flat universe** means

$$
\Omega_K = 0
$$
\n2_m + \Omega_r + \Omega_\Lambda \simeq \Omega_m + \Omega_\Lambda = 1

\nRadiation energy density is negligibly small today:

From measuring the CMB temperature a and energy spectrum:

 $Ω_r ~ 10⁻⁵$

Friedmann equation…

We may also have seen the Friedmann equation in this form:

$$
H^{2}(t) = H^{2}(t_{0})[\Omega_{m}a^{-3} + \Omega_{r}a^{-4} + \Omega_{\Lambda} + \Omega_{K}a^{-2}]
$$

Present-day
\nreduced energy

\n
$$
\Omega_{\alpha} = \frac{\bar{\rho}_{\alpha}(t_0)}{\rho_{\text{crit}}(t_0)}, \qquad \rho_{\text{crit}}(t) \equiv \frac{3H^2(t)}{8\pi G}, \qquad \Omega_K \equiv -\frac{K}{H^2(t_0)}
$$
\nCritical density

• From **current observations**:

$$
\Omega_m \sim 0.3, \qquad \Omega_{\Lambda} \sim 0.7, \qquad |\Omega_K| < 0.01
$$
\n
$$
H_0 \equiv H(t_0) \sim 70 \, \text{km} \, \text{s}^{-1} \, \text{Mpc}^{-1}
$$

e.g., Aghanim et al. [Planck collaboration] (2019)

Friedmann equation: accelerated expansion…

Yet another form of the Friedmann equation:

Obtained by combining the usual Friedmann equation for $H(t)$ and the continuity equation.

Acceleration of
$$
\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \sum_{\alpha} (\rho_{\alpha} + 3P_{\alpha})
$$
 Compare with
the scale factor $H^2(t) \equiv \left(\frac{\dot{a}}{-}\right)$

$$
H^{2}(t) \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \sum_{\alpha} \rho_{\alpha} - \frac{K}{a^{2}}
$$

• **Accelerated or decelerated expansion** happens when:

Acceleration

\n
$$
\sum_{\alpha} (\rho_{\alpha} + 3P_{\alpha}) < 0
$$
\nVector

\n
$$
w_{\text{eff}} = \frac{\sum_{\alpha} P_{\alpha}}{\sum_{\alpha} \rho_{\alpha}} < -\frac{1}{3}
$$
\n
$$
w_{\text{eff}} = \frac{\sum_{\alpha} P_{\alpha}}{\sum_{\alpha} \rho_{\alpha}} > -\frac{1}{3}
$$

Distances, horizons, etc.

The FLRW metric written slightly differently…

Here's the FLRW metric again: $ds^2 = -dt^2 + a^2(t)$ dr^2 $\frac{dr}{1 - Kr^2} + r^2 d\Omega$

• Define:

$$
d\chi^{2} \equiv \frac{dr^{2}}{1 - Kr^{2}}
$$

\n
$$
d\eta \equiv \frac{dt}{a}
$$

\n
$$
\eta = \text{conformal time}
$$

\n
$$
\chi = \arcsin r
$$

\n
$$
\chi = 0
$$

\n
$$
\chi = \arcsin r
$$

\n
$$
K = -1
$$

\n
$$
\chi = 0
$$

\n
$$
\chi = \arcsin r
$$

\n
$$
K = +1
$$

• Then, the FLRW metric can also be written as:

$$
ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + d\chi^{2} + \left(\frac{\sinh^{2}\chi}{\chi^{2}} \right) d\Omega \right] \qquad K = -1
$$

$$
\sin^{2}\chi \qquad K = 0
$$

$$
K = +1
$$

Take a radial light ray emitted at η_e and observed at η_0 , i.e., today:

$$
ds^2 = 0 = a^2(\eta) [-d\eta^2 + d\chi^2]
$$

• The **comoving distance** is the coordinate distance covered by the light ray between η_e and η_0 :

Friedmann eqn

$$
\chi(z_e) \equiv \eta_0 - \eta_e = \int_{t_e}^{t_0} \frac{c \, dt}{a} = \int_{z_0=0}^{z_e} \frac{dz}{H(z)}
$$

Emission redshift

The **comoving distance** χ is the coordinate distance travelled by a light

The **comoving distance** χ is the coordinate distance travelled by a light

The **comoving distance** χ is the coordinate distance travelled by a light

Measuring redshift…

Astronomical redshifts are most accurately measured using spectroscopy .

- Look for **frequency shifts** of absorption/emission lines of known atomic spectra from distant objects.
- Much less accurate is photometry, where redshift of an object is determined from the brightness of an object viewed through different colour filters.

Measuring distance…

Standard ruler: source of a known physical size D ; we measure its angular size θ

 \rightarrow Angular diameter distance, $d_A = D/\theta$

 $d_A(a(z)) \equiv a$ $sinh\chi(a)$ $\chi (a$ $\sin\chi(a)$ In an FLRW universe: $\sinh \chi(a)$ $K = -1$ $K = 0$ $K = +1$ **Comoving distance** $\left\{\n \begin{array}{ccc}\n \cdot & \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot & \cdot\n \end{array}\n \right\}$

Measuring distance…

Standard ruler: source of a known physical size D ; we measure its angular size θ

In an FLRW universe:
\n
$$
d_A(a(z)) \equiv a \begin{pmatrix} \sinh \chi(a) \\ \chi(a) \end{pmatrix} \qquad\n\begin{aligned}\nK &= -1 \\
K &= 0 \\
K &= +1\n\end{aligned}\n\qquad\n\begin{aligned}\nd_L(a(z)) \equiv \frac{1}{a} \begin{pmatrix} \sinh \chi(a) \\ \chi(a) \end{pmatrix} \\
\sin \chi(a) \end{aligned}
$$
\nComoving distance

Standard candle: source of a known luminosity L ; we measure its **flux** F .

 \rightarrow Angular diameter distance, $d_A = D/\theta$ \rightarrow Luminosity distance, $d_L = \sqrt{L/(4\pi F)}$

 $\chi(a)$

 $\sin\chi(a)$

Measuring distance…

Standard ruler: source of a known physical size D ; we measure its angular size θ

Standard candle: source of a known luminosity L ; we measure its **flux** F .

Type Ia supernovae

 $(0,0)$ $(0,0)$ $(1,0)$ $0)$

 (a)

 (b)

 (c)

 1.0

 $(\Omega_{\rm M},\Omega_{\Lambda})$

 $(0,$ $(0.28,$ 0.72

 $0.5_{0.75}$ \check{a} . $\overline{0}$ $(2, 0)$ 6

J ë

Measuring distance: a newer idea…

Standard siren:

• Use the frequency shift in the gravitational waves emitted during the in-spiral phase of a compact binary system to determine the chirp mass:

$$
\mathcal{M} = \frac{(m_1 \ m_2 \)^{3/5}}{(m_1 + m_2 \)^{1/5}}
$$

- Use the chirp mass to calculate the power of the GW emission.
- Power/flux gives luminosity distance.

It's essentially like a standard candle, except that the luminosity is calculable.

Combining distance vs redshift…

Combining standard ruler (CMB, BAO) and standard candle (SNIa) measurements yields a best fit that corresponds to the flat ΛCDM model:

• In fact, combining any two will give this result.

Hubble length…

Another length scale of interest in the **comoving Hubble length**, defined as

$$
\ell_H \equiv c \mathcal{H}^{-1} = c (aH)^{-1}
$$

- The Hubble time H^{-1} is the time scale over which the universe expands by a factor of \sim 2.
- Roughly speaking, events at a time t separated by $\ll \ell_H$ in space can influence each other instantaneously at that time t .
- We often call ℓ_H the "Hubble horizon". But strictly speaking it is **not** a horizon.

Take-home message…

- Assumption of homogeneous and isotropic on large scales \rightarrow FLRW universe
- + simple models of possible matter/energy content (radiation, nonrelativistic matter, vacuum energy)

 \rightarrow Friedmann equation: $H^2(t) = H^2(t_0)[\Omega_m a^{-3} + \Omega_r a^{-4} + \Omega_\Lambda + \Omega_K a^{-2}]$

• Distance measurements enable us to reconstruct the energy density parameters of $H(t)$, and hence to a large degree the energy content in the universe today.