
Cosmology

Yvonne Y. Y. Wong, UNSW Sydney

Crosslinks of Early Universe Cosmology, MITP Summer School, 
July 15 – August 2, 2024



13.4 billion years ago
(at photon decoupling)Composition today

The concordance flat ΛCDM model...

The simplest model consistent with present observations.

Plus flat spatial geometry+initial conditions
from single-field inflation

2



3



The grand lecture plan…

• Lecture 1-2:  Cosmology 101 (on slides, since I expect you all know this 
at some level already; I’m just filling in gaps)

 1. Homogeneous and isotropic universe

 2. Hot universe

 3. Inflationary universe

• Lecture 3-7:  Inhomogeneous universe (mostly on the blackboard)
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Cosmology 101

Hot universe

Inflationary universe

Inhomogeneous universe
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Cosmology 101
1. Homogeneous and isotropic universe
2. Hot universe
3. Inflationary universe
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1. Homogeneous and isotropic 
universe...



FLRW universe…

Cosmological principle: our universe is spatially homogeneous and 
isotropic on sufficiently large length scales (i.e., we are not special).
• Homogeneous → same everywhere
• Isotropic → same in all directions
• Sufficiently large scales → > " 100 %&'

Isotropic but
not homogeneous

Homogeneous but
 not isotropic

Homogeneous
and isotropic
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FLRW universe…

Cosmological principle: our universe is spatially homogeneous and 
isotropic on sufficiently large length scales (i.e., we are not special).
• Homogeneous → same everywhere
• Isotropic → same in all directions
• Sufficiently large scales → > " 100 %&'

• 1	pc = 1	parsec = 3.0856×10!"	cm
• Distance from Sun to Galactic centre ~	10	kpc
• Distance to the Virgo cluster ~	20	Mpc
• Size of the visible universe ~	*(10	Gpc)
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Local galaxy distribution as measured by the 2Mass Redshift Survey

Evidence for large-scale homogeneity and isotropy:
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Evidence for large-scale homogeneity and isotropy:

2.73	K background

~10!"	temperature
fluctuations
(~7° resolution)

~0.2°	resolution

Cosmic microwave background (temperature)

(1978)

(2006)
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Temperature

Polarisation

State-of-the-art: Temperature and polarisation fluctuations in the cosmic 
microwave background as seen by Planck. (Latest results 2018)
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FLRW universe…

Homogeneity and isotropy imply maximally symmetric 3-spaces (3 
translational and 3 rotational symmetries).
• A spacetime geometry that satisfies these requirements is the Friedmann-

Lemaître-Robertson Walker (FLRW) geometry:

FLRW metric

-(/)	= scale factor Spatial geometry
1	 = 	−1	(hyperbolic), 0 (flat), +1	(spherical)

• ! "!
! ""

= factor by which a physical length scale increases between time "1 and "2. 
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#$# = −#"# + '# "
#(#

1 − *(#
+ (# #+# + sin#+#0#

* = 0

* = −1

* = +1

time
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→ The physical distance between two comoving observers increases with time, but 
the coordinate distance between them remains unchanged.

#$# = −#"# + '# "
#(#

1 − *(#
+ (# #+# + sin#+#0#

scale factor -

Comoving observers

An observer at rest with the FLRW spatial coordinates is a comoving observer.
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Geodesics…

In the absence of other forces, test particles move on the geodesics of 
a spacetime geometry, i.e., the “straight lines” of a curved spacetime.
● It's like flight paths, which follow (more or less) the geodesics on the surface 

of the Earth.
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Geodesics and cosmological redshift…

All test particles (massive or massless) moving on geodesics of an 
FLRW universe suffer cosmological redshift:

Momentum of a point
particle measured by
comoving observers

Momentum of a particle 
decreases with expanding space.

scale factor - 17

3⃗ ∝ '$%



Or in terms of wavelength:

redshift .
time /
scale factor 0

5 = Redshift
parameter

Wavelength measured
by comoving observer

Wavelength of particle
(usually photon) emitted
by comoving emitter

/0= today

5 ∝ ⁄1 3⃗

• A particle emitted at a very early time 7 when the scale factor 8 was very small 
would be observed today with a very large redshift 9 

→ There is a one-to-one correspondence between 7, 8, and 9: 

→ We use them interchangeably as a measure of time. 
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5&
5'
=
' "&
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Matter/energy content (stuff in the universe).

In GR, the stress-energy tensor !!"  encodes the matter/energy content.

!9: =

Space-space

Time-time Time-space

Space-time
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Matter/energy content (stuff in the universe).

In GR, the stress-energy tensor !!"  encodes the matter/energy content.

• Homogeneity and isotropy imply only one viable form:

;	 ) *
+ =

−<* " 0 0 0
0 =* " 0 0
0 0 =* " 0
0 0 0 =* "

6" = Energy density
(energy per unit volume)
of substance 7 in its
rest frame

8" = Pressure of
substance 7 in 
its rest frame

• ; 7  and < 7  can depend on time, but not on the spatial coordinates.
→ How do they evolve with time?
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Matter/energy content: conservation law…

Local conservation of energy-momentum in an FLRW universe implies:

Continuity equation

Energy
density Pressure

• There is one such continuity equation for each substance =.
• We need in addition to specify a relation between ;(7) and <(7), i.e., the 

equation of state of the substance @, which is a property of the substance.

• It’s common to use an equation of state parameter 1:

• Assuming a constant 1:

(from ∇#3 $
#% = 0)

How energy density evolves with 
the scale factor.
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#<*
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Matter/energy content: what’s there?

• Non-relativistic matter
• Atoms (or constituents thereof)
• Dark matter (does not emit light but 

feels gravity); GR people call it “dust”

• Ultra-relativistic radiation 
• Photons (main the CMB)
• Relic neutrinos
• Gravitational waves

• Other funny things
• Cosmological constant/vacuum energy
• ??

⇒ <, ∝ '$-

⇒ <. ∝ '$/

⇒ ρ0 ∝ constant

F. = ⁄1 3

F, ≃ 0F, ≃ 0

F1 = −1

<* " ∝ '$- %23#

Volume expansion

Volume expansion
+ momentum redshift

More space,
more energy
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Vacuum energy as the cosmological constant.

Heisenberg’s uncertainty principle permits the temporary appearance 
of virtual particles in otherwise empty space.

D. Leinweber,
U. Adelaide,
simulation of
the QCD vacuum

• Good candidate for the cosmological constant, but we will probably need a 
theory of quantum gravity to see if the numbers really work out. 
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Matter/energy content: what’s there?

• Non-relativistic matter
• Atoms (or constituents thereof)
• Dark matter (does not emit light but 

feels gravity); GR people call it “dust”

• Ultra-relativistic radiation 
• Photons (main the CMB)
• Relic neutrinos
• Gravitational waves

• Other funny things
• Cosmological constant/vacuum energy
• ??

⇒ <, ∝ '$-

⇒ <. ∝ '$/

⇒ <0 ∝ constant

F. = ⁄1 3

F, ≃ 0F, ≃ 0

F0 = −1

<̅. ≫ <̅, > <̅0

<̅0 ≫ <̅, > <̅.

As a → 0:

As a → ∞:
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log(7)
Radiation domination Matter domination Λ domination

Matter-radiation
equality

Matter-Λ
equality

redshift z
time t

<. ∝ '$/

<0 = const

<, ∝ '$-

log(0)
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log(7)
Radiation domination Matter domination Λ domination

Matter-radiation
equality

Matter-Λ
equality

Today

'& = 1
By convention

redshift z
time t

−3 0−9 −6

<. ∝ '$/

<0 = const

<, ∝ '$-

log(0)
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log(7)
Radiation domination Matter domination Λ domination

Matter-radiation
equality

Matter-Λ
equality

Today

'& = 1
By convention

Structure
formation

Last scattering
surface (CMB)

Big bang
nucleosynthesis

redshift z
time t

−3 0−9 −6

<. ∝ '$/

<0 = const

<, ∝ '$-

log(0)
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Different evolution for different forms of energy densities means that radiation 
dominated in the early universe, while dark energy was unimportant.

13.4 billion years ago
(at photon decoupling)Composition today
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Friedmann equation…

The Friedmann equation describes the evolution of the scale factor "($).

C(/)	= Hubble
parameter

D = Gravitational constant

Some over all forms 
of energy density

Spatial curvature: 
1	 = 	0, +1,−1

• The Friedman equation is itself derived from Einstein’s equation:

K+) −
1

2
M+)K = 8OP;+)

Stress-energy tensor

E = Ricci scalar and tensor
(nonlinear functions of the
2nd derivative of the
spacetime metric)
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Q# " ≡
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'

#
=
8OP
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R
*
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*
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Friedmann equation…

We may also have seen the Friedmann equation in this form:

• A flat universe means 

Ω$ =
7̅$ /+
7,-./ /+

, 	 7,-./ / ≡ 3D0 /
8FG , 	 Ω1 ≡ − H

D0 /+

Critical density

Ω, + Ω. + Ω0 ≃ Ω, + Ω0 = 1

Radiation energy density is negligibly small today:
Ω2 ∼ 10&3

From measuring
the CMB temperature a
and energy spectrum:

Present-day
reduced energy 
density
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Q# " = Q# "& Ω,'$- + Ω.'$/ + Ω0 + Ω4'$#

Ω4 = 0



Friedmann equation…

We may also have seen the Friedmann equation in this form:

• From current observations:

Ω$ =
7̅$ /+
7,-./ /+

, 	 7,-./ / ≡ 3D0 /
8FG , 	 Ω1 ≡ − H

D0 /+

Critical density

Present-day
reduced energy 
density

Ω, ∼ 0.3, 	 Ω0 ∼ 0.7, Ω4 < 0.01
Q& ≡ Q "& ∼ 70	kms$%Mpc$%

e.g., Aghanim et al.
[Planck collaboration]
(2019)
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Open, flat, 1 = 0
Matter-dominated

Closed, curved, 1 = +1
Matter-dominated

Scale
factor
0(/)

Time /

Our universe!
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Friedmann equation: accelerated expansion…

Yet another form of the Friedmann equation:

• Accelerated or decelerated expansion happens when:

C$ / ≡
-̇

-

$
=
8ID

3
J

%
6% −

1

-$

Compare withAcceleration of 
the scale factor

J
$

7$ + 36$ > 0

J
$

7$ + 36$ < 0Acceleration

Deceleration

1455 =
∑666
∑6ρ6

< −13

1455 =
∑666
∑6ρ6

> −13

Obtained by combining the usual
Friedmann equation for C(/) and the 
continuity equation.
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Distances, horizons, etc.



The FLRW metric written slightly differently…

Here’s the FLRW metric again:
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• Define:

#_# ≡
#(#

1 − *(#

_ = arcsinh (
_ = (

_ = arcsib (

* = −1
* = 0

* = +1

• Then, the FLRW metric can also be written as:

#$# = −#"# + '# "
#(#

1 − *(#
+ (##Ω

#$# = '# c −#c# + #_# +
sinh#_
_#

sin#_
#Ω

* = −1
* = 0

* = +1

#c ≡
#"

'
K = conformal time



Comoving distance…

Take a radial light ray emitted at &#  and observed at &$, i.e., today: 
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#$# = 0 = '# c [−#c# + #_#]

• The comoving distance is the coordinate distance covered by the light ray 
between AL and AM:

! "# ≡ $$ − $# = '
%7

%8 (	*+
, = '

&8'$

&7 *"
- "

Friedmann eqn

Emission redshift Hubble rate



Comoving distance…

The comoving distance ' is the coordinate distance travelled by a light 
ray between emission at (#  and observation at ($ = 0.

We are here

Big bang

redshift 5

Comoving distance N

_ 8' ≡ f

5$6&

5%
#8

Q 8
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Comoving distance…

The comoving distance ' is the coordinate distance travelled by a light 
ray between emission at (#  and observation at ($ = 0.

We are here

Big bang

redshift 5

Comoving distance N

_ 8' ≡ f

5$6&

5%
#8

Q 8

38

_ 8' → ∞

Comoving 
particle horizon



Comoving distance…

The comoving distance ' is the coordinate distance travelled by a light 
ray between emission at (#  and observation at ($ = 0.

We are here

Big bang

redshift 5

Comoving distance N

Mapping between 
N and 5 depends 
on C(5).

If we measure 
both P and ., 
then we also get 
an idea about 
D(.) between 
emission and 
observation. 
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_ 8' ≡ f

5$6&

5%
#8

Q 8



Measuring redshift…

Astronomical redshifts are most 
accurately measured using 
spectroscopy.
• Look for frequency shifts of 

absorption/emission lines of 
known atomic spectra from distant 
objects.

• Much less accurate is photometry, 
where redshift of an object is 
determined from the brightness of 
an object viewed through different 
colour filters.  
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Measuring distance…
Standard ruler: source of a known 
physical size i; we measure its 
angular size +

→ Angular diameter distance, Q9 = ⁄S T  

Q9 0 . ≡ 0
sinhP 0
P 0
sinP 0

In an FLRW universe: 1 = −1

1 = 0

1 = +1
Comoving distance
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Measuring distance…
Standard ruler: source of a known 
physical size i; we measure its 
angular size +

Standard candle: source of a known 
luminosity j; we measure its flux k.

→ Angular diameter distance, Q9 = ⁄S T  → Luminosity distance, Q: = ⁄Y (4F[)

Q9 0 . ≡ 0
sinhP 0
P 0
sinP 0

Q: 0 . ≡ 1
0

sinhP 0
P 0
sinP 0

In an FLRW universe: 1 = −1

1 = 0

1 = +1
Comoving distance
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Measuring distance…
Standard ruler: source of a known 
physical size i; we measure its 
angular size +

Standard candle: source of a known 
luminosity j; we measure its flux k.

Eisenstein et al., 2005

Baryon acoustic oscillation 
(BAO) peak at ; = 0.35 
measured by SDSS.

Acoustic oscillation in 
the CMB at ;	~	1100

Perlmutter et al., 1998

Type Ia 
supernovae
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Measuring distance: a newer idea…

Standard siren: 
• Use the frequency shift in the 

gravitational waves emitted during the 
in-spiral phase of a compact binary 
system to determine the chirp mass:
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ℳ =
(n% n# )-/8

(n% +n# )%/8

• Use the chirp mass to calculate the 
power of the GW emission.
• Power/flux gives luminosity distance.

It’s essentially like a standard 
candle, except that the luminosity 
is calculable.



Combining distance vs redshift…

Combining standard ruler (CMB, BAO) and 
standard candle (SNIa) measurements yields 
a best fit that corresponds to the flat ΛCDM 
model:

Ω, ∼ 0.3, Ω0 ∼ 0.7

Ω, + Ω0 ∼ 1

• In fact, combining any two will give this result.
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Hubble length…

Another length scale of interest in the comoving Hubble length, 
defined as

46

ℓp ≡ %ℋqr = % '( qr

• The Hubble time BO! is the time scale over which the universe expands by a 
factor of ~2.
• Roughly speaking, events at a time 7 separated by ≪ ℓ( in space can 

influence each other instantaneously at that time 7.
• We often call ℓ( the “Hubble horizon”.  But strictly speaking it is not a 

horizon.



Take-home message…

• Assumption of homogeneous and isotropic on large scales → FLRW 
universe
• + simple models of possible matter/energy content (radiation, non-

relativistic matter, vacuum energy)

→ Friedmann equation: BP 7 = BP 7M ΩQ8OR + ΩS8OT + ΩU + ΩV8OP

• Distance measurements enable us to reconstruct the energy density 
parameters of ,($), and hence to a large degree the energy content 
in the universe today.
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