Introduction to multi-messenger astrophysics Exercise sheet 1

1 Fermi acceleration with only head-on collisions

When we derived the spectrum of cosmic rays from first-order Fermi acceleration, we assumed a distribution of scattering angles that favored approximately head-on collisions, *i.e.*, $P(\theta) \propto \cos \theta$. With this, we computed the average relative energy loss,

$$
\left\langle \frac{\Delta E}{E} \right\rangle \approx \frac{\int_0^{\pi/2} \left(2v_{\text{shock}} v_{\text{CR}} + 2v_{\text{shock}}^2 \right) \cos \theta \sin \theta \ d\theta}{\int_0^{\pi/2} \cos \theta \sin \theta \ d\theta} \ . \tag{1}
$$

Now, repeat this calculation for a scenario in which every collision is head-on, $\cos \theta = 1$. What is the cosmic-ray spectrum that results in this case?

Source: Dan Hooper, Particle Cosmology and Astrophysics, 1st edition (2024)

2 Human-made and natural particle accelerators

Consider a test particle of energy E and charge Z in a region containing a magnetic field of intensity B. By equation its Larmor radius, $R_L = E/(ZB)$, to the size of the region in which it is contained, R, we can find the maximum energy to which the particle can be accelerated,

$$
E_{\text{max}} \approx 10^6 \text{ GeV} \cdot Z \left(\frac{B}{\mu \text{G}}\right) \left(\frac{u}{0.1 \text{ c}}\right) \left(\frac{R}{10 \text{ pc}}\right) \tag{2}
$$

Recall that $1 pc = 3.26156$ light-years.

- 1. What is the maximum energy, E_{max} to which the Large Hadron Collider (LHC) can accelerate protons? Is your result close to the actual maximum energy of the LHC, about 6.8 TeV? (Hint: For the LHC, $B_{LHC} \approx 8.3$ T (1 T = 10⁴ G) and $R_{LHC} \approx 4.3$ km. Set $u = c$.)
- 2. What radius would an LHC-like accelerator, with the same magnetic field intensity as the LHC, would need to have to reach energies comparable to those of ultra-high-energy cosmic rays, *e.g.*,, $E_{\text{max}} = 10^{10} \text{ GeV}$?
- 3. Conversely, keeping the radius of the accelerator fixed to that of the LHC, what would be the intensity of the magnetic field needed to accelerate protons to $E_{\text{max}} = 10^{10} \text{ GeV}$?

3 UHECR $p\gamma$ and pp interactions

1. Derive the expression for the center-of-momentum energy in a $p\gamma$ collision, *i.e.*,

$$
E_{\rm CM} \approx 45 \text{ GeV} \left(\frac{E_p}{\text{PeV}}\right)^{1/2} \left(\frac{\epsilon_\gamma}{\text{MeV}}\right)^{1/2} \left(1 - \cos\theta\right)^{1/2} ,\qquad (3)
$$

in the limit of $E_{\text{CM}} \gg m_p$. (*Hint:* Use the Lorentz invariance of the square of the fourmomentum of the particles.)

- 2. What is the threshold value of the product $E_{p\epsilon_{\gamma}}$ needed to produce a Δ resonance via $p+\gamma \to$ Δ . Consider a head-on collision. (*Hint*: Look at the previous question. Also, remember that $m_{\Delta} = 1232$ MeV.)
- 3. UHECR protons with energies in excess of 10^{11} GeV hit the atmosphere of the Earth regularly. What is the maximum mass of a particle that can be created in such a pp process? Consider that the target proton in the atmosphere is at rest.

4 "Lossless" propagation of high-energy cosmic particles

Consider the propagation of high-energy particles of cosmic origin that experience no energy losses other than those due to the adiabatic cosmological expansion. Their number density (number of particles per unit energy), Y , evolves with redshift as

$$
\partial_z Y(E, z) = -\frac{1}{H(z)(1+z)} \partial_E [EH(z)Y(E, z)], \qquad (4)
$$

where E is the particle energy and H is the Hubble parameter.

This is not a good description for the propagation of cosmic rays, but it can describe that of high-energy cosmic neutrinos.

1. Assume that particles are injected at a single redshift, z_1 . This is a rough approximation of the reality, where most purported cosmic accelerators are at $z \approx 1$. The injected particle spectrum $Y(E, z_1) = f(E, z_1)$. Show that, in this case, the particle density at $z \leq z_1$ is

$$
Y(E, z) = \left(\frac{1+z_1}{1+z}\right) f\left(\frac{1+z_1}{1+z}, z_1\right) . \tag{5}
$$

2. Now consider that the particle spectrum is a power law in energy, *i.e.*,

$$
f(E, z_1) = N_{\rm src}(z_1) F\left(\frac{E}{E^*}\right)^{-\gamma}, \qquad (6)
$$

where $N_{\text{src}}(z_1)$ is the number of particle-injecting sources at redshift z_1 , F is a normalization factor that represents the number density of particles with energy E^* injected by a single source, E^* is an arbitrary choice of energy (for high-energy neutrinos, this is typically

100 TeV), and γ is the spectral index of the power-law spectrum of the particles. (The value of γ is fixed by the particle-generation mechanism at the sources, but we will keep the derivation generic here.)

Plugging Eq. [\(6\)](#page-1-0) into the propagation equation, Eq. [\(4\)](#page-1-1), find the flux (number of particles per unit energy, area, time, and soldi angle), J, of particles that reaches the Earth (at $z = 0$). (Hint: Remember that the particle flux and density are connected by the factor $c/(4\pi)$.)

- 3. What units must the normalization factor, F in Eq. (6) , have?
- 4. What does the flux at Earth look like if particles are injected instead at two redshifts, z_1 and z_2 ? Assume that sources at the two redshifts inject spectra with the same shape as above, Eq. [\(6\)](#page-1-0), but that their abundance is different, *i.e.*, $N_{\rm src}(z_1)$ and $N_{\rm src}(z_2)$. (*Hint:* Ask yourself if you can treat each particle injection—and the ensuing propagation—independently of one another.)
- 5. What does the flux at Earth look like if particles are injected at a finite number, N_z , of different redshifts?
- 6. Let's make the problem more realistic by considering instead a population of sources injecting particles continuously from $z = 0$ to $z = z_{\text{max}}$. Assume each source in the population is identical to each other and injects particles with the same shape as before, Eq. [\(6\)](#page-1-0), but now the differential number density of sources, dN_{src}/dz , is a continuous function of redshift. Find the particle flux at Earth in this case.

5 Maximum shower depth of a proton-initiated air shower

Recall that the atmospheric depth $(g \text{ cm}^{-2})$ at which a photon-initiated air shower reaches its maximum size is

$$
X_{\text{max}}^{\gamma} = \lambda_{\Gamma} \ln(E_0^{\gamma}, E_C^e) , \qquad (7)
$$

where E_0^{γ} is the energy of the primary photon, λ_{Γ} is the photon interaction length, E_0^{γ} is the energy of the primary photon, and E_C^e is the energy that each particle in the shower has at shower maximum. Show that, for a proton-initiated air shower, the maximum shower depth is

$$
X_{\text{max}}^p = X_1 + \lambda_\Gamma \ln \left(\frac{E_0^p}{3N_{\text{ch}}E_{\text{C}}^e} \right) ,\qquad (8)
$$

where E_0^p is the energy of the primary proton, $X_1 = \lambda_I \ln 2$ is the depth of the first interaction (*i.e.*, where the primary proton interacts), and λ_I is the proton-air interaction length.

To do this, consider the following:

- When the primary proton interacts, $2/3$ of its energy go to the bulk of charged pions and $1/3$, to the bulk of neutral pions.
- The multiplicity of charged pions in a proton-air interaction (*i.e.*, the number of charged pions created in the interaction) is N_{ch} . The multiplicity of neutral pions is $N_{ch}/2$.
- Each neutral pion decays into two photons, $\pi^0 \to \gamma + \gamma$.
- Consider that each photon from a π^0 decay starts a shower with primary energy $(E_0^p/3)/N_{\text{ch}}$.
- Use the expression for the maximum shower depth of a photon-initiated shower, Eq. [\(7\)](#page-2-0), with $E_0^{\gamma} = (E_0^p/3)/N_{\text{ch}}.$

For more details, see J. Matthews, Astropart. Phys. 22, 387 (2005).