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Exercise: Derive the Gravitational Wave Equation of motion in a
FLRW background

To simplify the calculation, it is convenient to use a relation between the Ricci tensor

Rµν = ∂[λΓλµν] + Γα[αλΓλµν] ≡ ∂λΓλµν − ∂νΓλµλ + ΓααλΓλµν − ΓανλΓλµα , (1)

computed from a given metric gµν , and that from another metric ḡµν , related by a conformal factor

ḡµν = e2Ω(x)gµν . (2)

Note that here Γαµν = 1
2g
αβ [gβ(µ,ν) − gµν,β ] ≡ 1

2g
αβ [gµβ,ν + gνβ,µ − gµν,β ] are the Christoffel symbols.

Exercise 1: Derive the relation given in Eq. (3) (where ; = covariant derivatives)

R̄µν = Rµν + 2 {Ω,µ Ω,ν −Ω,µ;ν } − gµν {2Ω,α Ω,α + (Ω,α);α} . (3)

Let us now consider that ḡµν is the background metric where matter fields (potential sources of GWs) live.
It consists of two pieces: a homogeneous and isotropic spatially flat part (FLRW), plus a small perturbation on
top of it,

ds2 = ḡµν dx
µdxν = a2(η) gµν dx

µdxν = a2(η)(ηµν + hµν)dxµdxν , (4)

Here, we consider |hµν | � 1. Notice that we have introduced the conformal time dη = dt/a(t), since this way
we will be able to apply the previous relation (3). Identifying

a(η) = eΩ(x) , (5)

then Ω(x) = log a(η) only depends on time, and hence

Ω,i = 0, Ω′ = a′/a = H, Ω′′ = a′′/a−H2 , (6)

1



with ’ ≡ d
dη , H ≡ a′/a. This then leads to

ḡµν = e2Ωgµν ⇒ R̄µν = Rµν [ηµν + hµν(x)] + 2(Ω,µ Ω,ν −Ω,ν;µ)− gµν(2Ω,αΩ,α +Ω,α;α) (7)

where (2Ω,αΩ,α +Ω,α;α) = 2gαβΩ,αΩ,β +(gαβΩ,β);α) with gαβ ≡ ηαβ − hαβ , hµν ≡ ηµαηνβhαβ , and we have

Ω,µ = Ω′δµ0 ⇒ Ω,µ Ω,ν = Ω′2δµ0δν0 (8)

Ω,µ;ν = Ω,ν;µ = Ω,µν −ΓλµνΩλ = Ω′′δµ0δν0 − Γ0
µνΩ,0 (9)

(Ω,α);α = Ω,α,α + ΓααβΩ,β = Ω′′δµ0δν0 + Γααβg
β0Ω,0 . (10)

Expanding to first order in hµν ,

Γ0
µν =

1

2
η0α(hα(µ,ν) − hµν,α) =

1

2
(h′µν − h0(µ,ν)) +O(h2

∗∗) , (11)

gβ0Γααβ =
1

2
gαβgαβ,µg

µ0 =
1

2
ηαβhαβ,µη

µ0 = −1

2
ηαβh′αβ +O(h2

∗∗) , (12)

the rhs terms of (7) are

Ω,µ Ω,ν −Ω,ν;µ = (Ω′2 − Ω′′)δµ0δν0 +
1

2
(h′µν − h0(µ,ν))Ω

′ (13)

gµν(2Ω,αΩ,α +Ω,α;α) = (2Ω′2 + Ω′′)δα0δβ0(ηµνη
αβ + hµνη

αβ − ηµνhαβ)− 1

2
ηµνη

αβh′αβΩ′ .

(14)

Take now e.g. the Synchronous Gauge

hµν = h∗µν + ξ[µ;ν] , with h∗0µ = 0 , (15)

just to simplify the upcoming expressions. From now on we omit the ∗ mark, as we will consider a perturbation
in (4) such that h0µ = 0. Using this fact and putting together (8),(9),(11),(13) and (14), then

R̄µν = Rµν [ηµν + hµν ] + 2

(
2H2 − a′′

a

)
δµ0δν0 +Hh′µν + (ηµν + hµν)

(
H2 +

a′′

a

)
+

1

2
ηµνh

′H , (16)

where h = hii(= hµµ) is the trace of the perturbation, and Rµν the Ricci tensor of a perturbed Minkowski space
gµν = ηµν + hµν ,

Rµν [ηµν + hµν ] =
1

2
(h′αα(µ,ν) − h,µν −h

′α
µν,α) . (17)

Exercise 2: Derive Eq. (16)

Exercise 3: Derive Eq. (17)

The Einstein field eqs. for the total metric ḡµν = a2(η)gµν , are

R̄µν = 8πGS̄µν , with S̄µν = T̄µν −
1

2
T̄ ḡµν , (18)
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Let us split these equations into the background R
(0)
µν = 8πGS

(0)
µν and the perturbed δRµν = 8πGδSµν equations,

the latter computed to first order in hµν . Thus, we should decompose the (trace reversed) energy-momentum
tensor Sµν into background and perturbative parts,

S̄µν =
〈
SFLRW
µν

〉
+
〈
δSFLRW

µν

〉
+ Πµν , (19)

where
〈
SFLRW
µν

〉
should be understood as a spatial average, with the tensor SFLRW

µν computed in a FLRW
background. Alternatively, one can think of a H&I perfect-fluid with energy-momentum tensor Tµν = (ρ +
p)a2uµuν + pgµν , with 4-velocity uµ = (1, 0, 0, 0) and background energy and pressure densities ρ and p. From
there one can build up the (trace-reversed) tensor as SH&I

µν = (ρ + p)a2uµuν + 1
2 (ρ − p)gµν , and then identify

SH&I
µν =

〈
SFLRW
µν

〉
. On the other hand,

〈
δSFLRW

µν

〉
should be understood as the perturbation of SH&I

µν , due to
the perturbations of background densities, as well as of the metric, whereas Πµν should be understood as an
anisotropic stress representing an additional perturbation over the background energy-momentum tensor, but
unrelated to a perturbation of the metric or of the background densities. Thus, one obtains the identification〈
SFLRW

00

〉
= a2(ρ+3p)/2 and

〈∑
i S

FLRW
ii

〉
= 3a2(ρ−p)/2, and e.g.

〈
δSFLRW

ij

〉
= 1

2a
2(ρ−p)hij+ 1

2a
2(δρ−δp)δij .

We will drop from now on, for the shake of clarity, the label FLRW from the terms spatially averaged, though

one should bare in mind that the averages 〈...〉 will be always taken over S
(i)
µν tensors computed in a FLRW

background.
Using R̄µν (16) written in terms of hij and a(η), then the Einstein eqs., component by component, read

00 :
1

2
(−h′′ +Hh′) + 3(H2 − a′′

a
) = 8πG(〈S00〉+ 〈δS00〉+ Π00) (20)

0i : h′ki,k −
1

2
h,′i = 8πG(〈S0i〉+ 〈δS0i〉+ Π0i) (21)

ij :
1

2
(h′kk(i,j) − h,ij +h′′ij − hij,kk) +Hh′ij + (δij + hij)

(
H2 +

a′′

a

)
+

1

2
Hh′δij = 8πG(〈Sij〉+ 〈δSij〉+ Πij)

(22)

Exercise 4: Derive Eqs. (20)-(22)

Appealing to isotropy in the FLRW Universe, then

〈Sij〉 =
1

3
δij
∑
k

〈Skk〉 (23)

and hence S0i = 0. Thus, the background parts of (20)-(22), which describe the evolution of the flat FLRW
Universe, will be

00 : 3

(
H2 − a′′

a

)
= 8πG 〈S00〉 (24)

0i : 0 = 0 (25)

ij : (H2 +
a′′

a
) =

8πG

3

∑
k

〈Skk〉 , (26)

Exercise 5: Derive Eqs. (24)-(26)
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As said before, identifying the energy and pressure densities ρ and p of a H&I perfect-fluid as 〈S00〉 =
a2(ρ + 3p)/2 and

∑
k〈Skk〉 = 3a2(ρ − p)/2, it can be easily shown that eqs. (24),(26) are indeed equivalent to

linear combinations of the Friedmann Equations, expressed in conformal time.

On the other hand, the perturbed Einstein equations, which describe the evolution of the metric perturba-
tions, are

00 : −h′′ +Hh′ = 16πG(Π00 + 〈δS00〉) (27)

0i : 2h′ik,k − h′,i = 16πG(Π0i + 〈δS0i〉) (28)

ij : h′k(i,j),k − h,ij +h′′ij − hij,kk + 2Hh′ij + 2hij(H2 + a′′/a) +Hh′δij = 16πG(Πij + 〈δSij〉) (29)

In general, a (spatial-spatial) metric perturbation hij has six independent degrees of freedom, whose contri-
butions can be split into scalar, vector and tensor metric perturbations as

hij = ψ δij + E,ij + F(i,j) + hTTij , (30)

with ∂iFi = ∂ih
TT
ij = hTTii = 0. The two scalars (ψ and E) plus one transverse vector (Fi) plus a transverse-

traceless tensor (hTTij ), account for the required 1 + 1 + 2 + 2 = 6 dof , as it should. Let us introduce such

a decomposition into the equations (27),(28),(29), and keep only the Transverse-Traceless part hTTij of the
perturbations. Notice that in the 00- and 0i−equations (27),(28) there cannot be any TT part surviving, so
we can focus only in the ij-equations (29). Keeping only the TT perturbation in equations (29), leads to the
equation for the TT perturbations as

hTT
′′

ij (η,x) + 2HhTT
′

ij (η,x)− hTTij,kk(η,x) + 2hTTij

(
H2 +

a′′

a

)
= 16πG(Πij + 〈δSij〉)TT (η,x) . (31)

It is remarkable that only the TT metric components obey a wave-like operator (you can see this explicitly by
looking at the equations of scalar and vector parts of the perturbations, but we will skip that here). There-
fore, only the hTTij metric perturbations — the transverse-traceless dof — characterize the radiative dof in the
space-time. Those are the only dof carring energy in the form of GW.

Exercise 6: Derive Eq. (31) by keeping only TT dof in Eq.(29).

The tensor ΠTT
ij (η,x) is the TT part of the spatial-spatial components of the anisotropic stress-tensor Πij ,

and thus

∂iΠ
TT
ij = ΠTT

ii = 0. (32)

Therefore, in order to solve (31), we need to obtain Πij from the matter fields that generate the GWs, and then
take its TT part ΠTT

ij . At the same time, we also have

[〈δSij〉]TT ≡ 1

2
a2[(ρ− p)hij + (δρ− δp)δij ]TT =

1

2
(ρ− p)a2hTTij . (33)

Using the Friedman Equations (24),(26), we arrive finally at

hTT
′′

ij + 2HhTT
′

ij −∇2hTTij = 16πGΠTT
ij , (34)
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with Πij the anisotropic stress-tensor of some fields, and ΠTT
ij its TT-part sourcing GWs.

Exercise 7: Derive Eq. (34)

If you arrived here... Congratulations! You have derived the equation of motion for the propagation and
creation of GWs in a FLRW background!
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