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Solutions1 to exercise sheets

Problem 1: The Liouville operator

a) The effect of curvature only enters in the 1st Friedmann equation, according to
which the total energy density is proportional to (1 + κ/ȧ2); since ȧ is monotonically
decreasing with time, a non-vanishing curvature (κ ̸= 0) thus necessarily had a smaller
effect on the evolution of the early universe than it has today. Measurements ‘today’
(since CMB times) are consistent with a flat universe, so we can set κ = 0 for
all epochs in standard ΛCDM cosmology. Expressing the line element in Cartesian
coordinates, rather than spherical (or polar) coordinates, then gives

ds2 = −dt2 + a2(t)δijdx
idxj . (1)

In these coordinates, we thus have ∂ρgµν = 0 for ρ ̸= 0, and hence

Γ0
ρσ =

1

2
g0ν (gρν,σ + gνσ,ρ − gρσ,ν) = −1

2
(gρ0,σ + g0σ,ρ − ∂tgρσ) =

1

2
∂tgρσ , (2)

Γiρσ =
1

2
giν (gρν,σ + gνσ,ρ − gρσ,ν) =

1

2
a−2 (gρi,σ + giσ,ρ) . (3)

Here we further used ∂ρg0ν = 0 and that the metric is diagonal (gµν = 0 for µ ̸= ν).
The first term is only non-vanishing for ρ = σ = i, giving Γ0

ij = a2Hδij, where
H = ȧ/a. For the second term non-vanishing contributions can only appear when one
of the indices ρ, σ equals i (because the metric is diagonal) and the other one equals
0 (because all other derivatives give zero); this gives Γij0 = Γi0j = Hδij, i.e. u(a) = H.

b) From the line element in free-fall coordinates, we can deduce the line element in
arbitrary coordinates as

ds2 = ηµνdξ
µdξν = ηµν

∂ξµ

∂xρ

∂ξν

∂xσ
dxρdxσ ≡ gρσdx

ρdxσ . (4)

This gives

gµνdx
µdxν = −

(
∂ξ0

∂x0

)2

dt2 + δij
∂ξi

∂xµ
∂ξj

∂xν
dxµdxν (5)

Direct comparison to gµνdx
µdxν = −dt2 + a2δijdx

idxj thus gives ∂ξ0/∂x0 = 1 as well
as ∂ξi/∂xj = aδij. In other words, we have v(a) = 1 and w(a) = a. pµ is a 4-vector,
so it transforms as pi = (∂ξi/∂xµ)pµ = w(a)pi and p0 = (∂ξ0/∂xµ)pµ = v(a)p0. Or,
more compactly, pµ = (p0, ap).

1A huge thanks to Frederik Depta for LATEX solutions to older versions of some of these problems!
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c) We follow the hint and first expand, then change variables:

L[f ] =
df(ξµ, pi)

dτ
=
dξµ

dτ

∂f

∂ξµ
+
dpi

dτ

∂f

∂pi
(6)

=
1

m
p0
∂x0

∂ξ0
∂f

∂t
+

1

m
pi
∂f

∂ξi
+
dt

dτ

∂[w(a)pi])

∂t

∂f

∂pi
(7)

=
p0

m
ḟ +

w

m
pi
∂f

∂ξi
+

(
w
dpi

dτ
+
p0

m
piw′ȧ

)
∂f

∂pi
, (8)

where ˙ (′) denotes a derivative with respect to t (a). Note that the transformations
leading to the second line hold because of the relations in b); in particular, there
is a unique relation between ξ0, x0 = t and a. Due to the homogeneity of the
FRW spacetime, f cannot depend on ξi, so the second term vanishes. For the time-
derivative of p, we can use the geodesic equation (following the second hint) since the
Liouville operator describes the way particles evolve in time in the absence of any
interactions:

dpi

dτ
= − 1

m
Γiµνp

µpν
a)
= − 2

m
upip0 . (9)

In total, we thus find

L[f ] =
p0

m
ḟ +

p0

m
pi (−2wu+ w′ȧ)

∂f

∂pi
(10)

= v−1p
0

m

(
ḟ +

w′

w
ȧpi

∂f

∂pi
− 2upi

∂f

∂pi

)
(11)

=
p0

m

(
∂

∂t
−Hpi

∂

∂pi

)
f . (12)

Problem 2: The free Boltzmann equation

a) Simply plugging in immediately gives

∂f(t, p)

∂p
= p a(t)

dg(p a(t))

d(p a(t))
, (13)

∂f(t, p)

∂t
= p ȧ(t)

dg(p a(t))

d(p a(t))
= pH(t)

∂f(t, p)

∂p
. (14)

b) The Fermi-Dirac (-) and Bose-Einstein (+) distribution function are given by

f(t, p) =
1

exp([E − µ]/T )± 1
, (15)

where neither µ nor T are functions of p and may only be functions of t. As we
have just seen, these functions only solve the free Boltzmann equation if there exists
a function g such that f(t, p) = g(p a(t)). This is equivalent to the existence of a
function h such that

h(p a(t)) =
E − µ

T
. (16)
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1. Ultra-relativistic limit:

E ≃ p⇒ p

T
− µ

T
= h(p a(t)) . (17)

This can only be fulfilled if

T ∝ 1/a(t) and µ ∝ T ∝ 1/a(t) . (18)

Taking into account the next order in the expansion of E we find

E ≃ p+
m2

2p
⇒ p

T
+

m2

2pT
− µ

T
= h(p a(t)) . (19)

Here, it is not possible to find a t-dependence of T and µ such that the first two
terms only depend on p a(t) and otherwise have no p- or t-dependence.

2. Non-relativistic limit:

E ≃ m+
p2

2m
⇒ p2

2mT
+
m− µ

T
= h(p a(t)) (20)

This can only be fulfilled if

T ∝ 1/a2(t) and m− µ ∝ T ∝ 1/a2(t) . (21)

Taking into account the next order in the expansion of E we find

E ≃ m+
p2

2m
− p4

8m3
⇒ p2

2mT
− p4

8m3T
+
m− µ

T
= h(p a(t)) (22)

Again, it is not possible to find a t-dependence of T and µ such that the first
two terms only depend on p a(t) and otherwise have no p- or t-dependence.

In other words, the Fermi-Dirac and Bose-Einstein distributions are only solutions of
the free Boltzmann equation in the fully ultra- or non-relativistic limit.

Problem 3: Collision operator for the number density

a) The matrix element in the case of elastic scatterings is equal for the reaction and
inverse reaction by crossing symmetry. The contribution of elastic scatterings to the
collision operator for the number density can therefore be written as (with p1 and p2
referring to DM, k1 and k2 referring to heat bath particles)

Cn[fχ] =

∫
d3p1

(2π)32E1

d3p2
(2π)32E2

d3k1
(2π)32ω1

d3k2
(2π)32ω2

(2π)4δ(4)(p1 + k1 − p2 − k2) (23)

× |M|2
{
fχ(p1)fψ(k1) [1± fχ(p2)] [1± fψ(k2)]− fχ,2fψ,2(1± fχ,1)(1± fψ1)

}
.

This evaluates to zero as the two terms in the curly brackets are equal in magnitude
but opposite in sign after integration (where I used a convenient short-hand notation
for the second term).

b) Following the hints step by step,

3



1. This expression for Cn adopts the same short-hand notation as introduced in
3a), so the only potential issue is the factor Sψ. It results from realizing that
the ‘

∫
d3p/[(2π)32E]’ prescription is supposed to sum over all physically distinct

configurations. In the c.o.m. system, e.g., it is easy to see that there are only
∆Ω = 2π independent directions in which p1 can point – as opposed to the entire
∆Ω = 4π over which we integrate – because the DM particles are identical. In
other words, we are ‘over-counting’ by a factor of 2 when integrating p1 and p2
over the entire R3, and another factor of 2 if ψ1 = ψ2 (when integrating over
k1 and k2). On the other hand, we always need to multiply by a total factor
factor of 2 since every reaction changes the number of DM particle by two units.
Taken together, this results in the stated value of Sψ.

2. As long as detailed balance of the annihilations holds, one has µχ = 0 since ψ1

and ψ2 have vanishing chemical potential. Since we assume that this is true for
T ≳ mχ, i.e. annihilations only fall out of equilibrium for T ≪ mχ, it is clear
that (mχ − µχ)/T ≫ 1. Inserting into the BE/FD distributions gives

fχ =
1

exp[(Eχ − µχ)/T )]± 1
≃ exp[−(Eχ − µχ)/T ] . (24)

Note that this directly also implies fχ ≪ 1. The number density is given by

nχ = gχ

∫
d3pχ
(2π)3

fχ ≃ eµχ/T
gχ
2π2

m2
χTK2(mχ/T ) , (25)

with K2 the modified Bessel function of second type and second order. The
number density for zero chemical potential is thus simply related to this expres-
sion as nχ,eq = exp(−µχ/T )nχ, allowing us to write

fχ ≃ nχ
nχ,eq

e−Eχ/T . (26)

3. Energy conservation implies ω1+ω2 = E1+E2 ≥ 2mχ ≫ T . In the phase-space
integral, furthermore, the dominant contribution of energies satisfying ω1+ω2 >
2mχ must come from the integration region with ω1 ∼ ω2 ∼ mχ, with respect
to which fψ(ω1,2 ≫ mχ) is exponentially suppressed. With µψ1 = µψ2 = 0, one
therefore has

fψ1,2 =
1

exp(ω1,2/T )± 1
≃ exp(−ω1,2/T ) ≪ 1 (27)

inside the integral for Cn for all heat bath energies that are kinematically rele-
vant. This gives

fψ1fψ2 ≃ exp(−[ω1 + ω2]/T ) = e−(E1+E2)/T , (28)

we directly arrive at the expression quoted in the problem.

4. (With the stated steps, this is relatively straight-forward algebra).
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5. We can choose coordinates with p1 = (0, 0, p1), p2 = (sin θ, 0, cos θ)p2, such that∫
d3p1
(2π)3

d3p2
(2π)3

e−(E1+E2)/T σv =
1

8π4

∫ ∞

0

dp1

∫ ∞

0

dp2

∫ 1

−1

d cos θ p21p
2
2 e

−(E1+E2)/T σv

=
1

8π4

∫ ∞

mχ

dE1

∫ ∞

mχ

dE2

∫ 1

−1

d cos θ E1p1E2p2 e
−(E1+E2)/Tσv . (29)

We now change integration variables to E± ≡ Eχ,1±E2 and s ≡ 2m2
χ+2E1E2−

2p1p2 cos θ. The integration measure then transforms as (the “−” sign switches
integration direction such that s is increasing)

dE1 dE2 d cos θ = − 1

4p1p2
dE+ dE− ds , (30)

and the integration regions become s ≥ 4m2
χ, |E−| ≤

√
1− 4m2

χ/s
√
E2

+ − s ≡
E−,max and E+ ≥

√
s. In summary,∫

d3p1
(2π)3

d3p1
(2π)3

e−(E1+E2)/T σv

=
1

32π4

∫ ∞

4m2
χ

ds

∫ ∞

√
s

dE+

∫ E−,max

E−,max

dE−E1E2 e
−E+/T σv . (31)

By the definition of the Møller velocity, we have vE1E2 =
√
(p1 · p2)2 −m4

χ =
1
2

√
s2 − 4sm2

χ.
2 With this, the integration over E− becomes trivial:∫

d3p1
(2π)3

d3p1
(2π)3

e−(E1+E2)/T σv =
1

32π4

∫ ∞

4m2
χ

ds(s−4m2
χ)σ

∫ ∞

√
s

dE+

√
E2

+ − s e−
E+
T .

(32)

The integral over E+ can be expressed by the modified Bessel function K1 of
second kind and first order (note that σ is only a function of s):∫ ∞

√
s

dE+

√
E2

+ − s e−
E+
T = T

√
sK1(

√
s/T ) . (33)

Inserting the expression for nχ,eq from just below Eq. (25) we find

⟨σv⟩ =≡
g2χ
n2
χ,eq

∫
d3p1
(2π)3

d3p2
(2π)3

e−
E1+E2

T σv (34)

=
1

8m4
χTK2(mχ/T )2

∫ ∞

4m2
χ

ds(s− 4m2
χ)
√
sK1(

√
s/T )σ (35)

=
4x

K2
2(x)

∫ ∞

1

ds̃ (s̃− 1)
√
s̃K1(2

√
s̃x)σ . (36)

2Don’t get confused – here, p1,2 denote 4-momenta, while in the rest of this answer they are just
numbers (namely the absolute values of the 3-momenta).
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c) As explained above in b.1), in the case with χ = χ̄ there is a DM symmetry factor
1/2 which is cancelled by the fact that in every process 2 DM particles are created
or annihilated. With χ ̸= χ̄, both these factors become unity, with no net effect. In
other words, the same calculation as above applies3 and one finds

ṅχ + 3Hnχ ≃ ⟨σχ̄χ→ψ1ψ2v⟩(nχ,eqnχ̄,eq − nχnχ̄) . (37)

Assuming that there is no primordial asymmetry, we have nχ = nχ̄. In that case the
total DM number density is nχ,tot = nχ+nχ̄ = 2nχ, and the Boltzmann equation can
be re-written as

ṅχ,tot + 3Hnχ,tot =
⟨σv⟩
2

(n2
χ,eq,tot − n2

χ,tot) . (38)

In this form we can directly see that the value of ⟨σv⟩ needed to obtain the observed
dark matter relic density for a non-self-conjugate particle (χ̄ ̸= χ) is around twice as
large as the corresponding value for a self-conjugate particle (χ̄ = χ), as expected from
the scaling Ωχ ∝ 1/⟨σv⟩. Note that this factor is not exact as there is a logarithmic
dependence of the freeze-out temperature on ⟨σv⟩ and this also enters into Ωχ (see
2007.03696 for more details and precise numerical computations).

Problems 4 – 6: DarkSUSY applications

Note that the slides from the DarkSUSY tutorial are available at the school homepage
– including solutions to the various tasks brought up during the tutorial. These are
very good starting points for exploring the code. On demand I can provide (partially)
typed solutions to the more specific problem 5. The final problem, 6, is more an
encouragement to start using DarkSUSY for any type of relic density calculation that
you may encounter in your own work. Do let me know if you gave it a try and ran
into any issues that you need help with!

3As long as there is no extremely large asymmetry such that µχ ≫ µχ̄, or vice versa, such that
the approximation of Maxwell-Boltzmann distributions is not valid anymore.
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