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Problem 1: The Liouville operator

In a Friedman-Robertson-Waker spacetime, the line element can be written as

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdϕ2

]
. (1)

a) Assume for simplicity that κ = 0 (why is this ok?) and transform to Cartesian
coordinates. Show that the only non-vanishing Christoffel symbols are given by
Γ0
ij = a2f(a)δij and Γij0 = Γi0j = u(a)δij, stating the function u(a) explicitly !

b) Locally, one can always choose coordinates ξµ such that the line element is
that of flat space, i.e. ds2 = ηµνdξ

µdξν in Cartesian coordinates. Show that
the coordinate transformation relating the free-fall coordinates to the flat FRW
metric is of the form ∂ξ0/∂x0 = v(a), ∂ξj/∂xi = w(a)δij and state v(a) and
w(a) explicitly. How does thus the ‘physical momentum’ pi ≡ mdξi/dτ of some
particle with mass m, as measured by a freely-falling observer, relate to the
‘coordinate momentum’ p̄i ≡ mdxi/dτ observed in the cosmic rest frame ?

c) The phase-space distribution f(ξµ, pi) of some particle species is typically stated
in terms of local (free-fall) coordinates and the conjugate momenta. The Li-
ouville operator L[f ] that appears on the l.h.s. of the Boltzmann equation in
general takes the form L[f ] = df/dτ . Evaluate it for the case of a flat FRW
spacetime!
[Hint: Start by expanding the total derivative, then change variables from p to
p̄ (while still treating f as an explicit function of t and pi). For the next step
you will find the result from b) useful. Finally, convert everything back to pi.

Problem 2: The free Boltzmann equation

a) Show that the free Boltzmann equation ∂f/∂t − Hp∂f/∂p = 0 is solved by
f(t, p) = g(p a(t)), where a is the scale factor and g is an arbitrary function.

b) In which cases is the Fermi-Dirac or Bose-Einstein distribution function a solu-
tion of the free Boltzmann equation?
[Hint: For these functions to be a solution, there must exist a function h such
that (E − µ)/T = h(p a(t)), where µ and T are functions of t, but not of p.
Consider the ultra-relativistic and the non-relativistic limits with the first order
including p. What happens when you include higher-order terms?]



Problem 3: Collision operator for the number density

The Boltzmann equation for a particle χ with momentum p and energy E =
√
p2 +m2

χ

is given by L[f(p)] = C[f(p)]. You derived the form of the Liouville operator L in
problem 1. The collision operator C is the sum of all terms describing processes that
contain a particle χ in the initial or final state.1 The Boltzmann equation for the
number density is then obtained by integration over all momenta and reads

ṅχ + 3Hnχ = gχ

∫
d3p

(2π)3
C[fχ]

E
≡ Cn[fχ] , (4)

a) Show that elastic scatterings of the form χ+ψ → ψ+χ for some other particle
ψ do not contribute to Cn[fχ].

b) Assume that χ is self-conjugate and there are annihilation reactions χχ↔ ψ1ψ2

with |Mχχ→ψ1ψ2 |2 = |Mψ1ψ2→χχ|2 = |M|2 into particles ψ1 and ψ2, which are
part of a heat bath with temperature T and vanishing chemical potential. Fur-
ther assume that for all relevant times, elastic scatterings efficiently enforce
kinetic equilibrium, i.e. fχ = [(E − µχ)/T ± 1]−1. Derive the Boltzmann equa-
tion for the number density for mχ ≫ T !

[Hint: Step by step, you want to

1. Convince yourself that the starting point is

Cn = Sψ

∫
d3p1

(2π)32E1

d3p2
(2π)32E2

d3k1
(2π)32ω1

d3k2
(2π)32ω2

(2π)4δ(4)(p1 + p2 − k1 − k2)

× |M|2(fψ1fψ2(1± fχ,1)(1± fχ,2)− fχ,1fχ,2(1± fψ1)(1± fψ2)) , (5)

where the symmetry factor Sψ takes into account whether ψ1 and ψ2 are
identical particles (Sψ = 1/2) or not (Sψ = 1), and all integrations are
over the entire R3.

2. Convince yourself that (mχ−µχ)/T ≫ 1, implying that χ follows a Maxwell-
Boltzmann distribution with fχ ≃ nχ/nχ,eq exp(−Eχ/T ) and fχ ≪ 1, where
nχ,eq is the number density of χ for µχ = 0.

1For a single χ initial state, for example, the contribution from 2 → 2 interactions is given by

Cχ1→23 =−
∫

d3k1
(2π)32ω1

d3k2
(2π)32ω2

d3k3
(2π)32ω3

(2π)4δ(4)(p+ k1 − k2 − k3) |M|2fχf1(1± f2)(1± f3)

(2)

where ka = (ωa,ka) denotes the momenta of some particles ψa ̸= χ (with a = 1, 2, 3); |M|2 is the
squared amplitude summed over both initial and final states, and the + (−) signs in the second line
apply for boson (fermion) final states. For a single χ final state, we have (note the overall sign!)

Cχ1→23 =

∫
d3k1

(2π)32ω1

d3k2
(2π)32ω2

d3k3
(2π)32ω3

(2π)4δ(4)(p+ k1 − k2 − k3) |M|2f2f3(1± fχ)(1± f1) .

(3)



3. Why can you also approximate fψ,1/2 ≃ exp(−ω1,2/T )? Show that

fψ1fψ2(1± fχ,1)(1± fχ,2)− fχ,1fχ,2(1± fψ1)(1± fψ2) ≃
n2
χ,eq − n2

χ

n2
χ,eq

e−
E1+E2

T .

(6)

4. Use the definition of the cross-section for χχ→ ψ1ψ2,

σv ≡
4g2χ
E1E2

∫
d3k1

(2π)32ω1

d3k2
(2π)32ω2

(2π)4δ(4)(p1 + p2 − k1 − k2)|M|2 (7)

with the Møller velocity v ≡
√

(p1 · p2)2 −m4
χ/(E1E2), to arrive at

ṅχ + 3Hnχ ≃ ⟨σv⟩(n2
χ,eq − n2

χ) . (8)

Here, the thermal average is defined as

⟨σv⟩ ≡
g2χ
n2
χ,eq

∫
d3p1
(2π)3

d3p2
(2π)3

e−
E1+E2

T σv . (9)

5. Perform 5 of the 6 phase-space integrals to simplify the thermal average
definition to

⟨σv⟩ = 4x

K2
2(x)

∫ ∞

1

ds̃ (s̃− 1)
√
s̃K1(2

√
s̃x)σ , (10)

where Ki is the modified Bessel function of second kind and order i, s̃ ≡
/(4m2

χ) and x ≡ mχ/T .
[Further hints: First choose a coordinate system such that the integrals in Eq. (??)

are over E1, E2, and cos θ, where θ = ∠(p1,p2). In the next step, transform to E± ≡
E1±E2 and s = 2m2

χ+2E1E2−2p1p2 cos θ; the integration region then becomes s ≥ 4m2
χ,

E+ ≥
√
s and |E−| ≤

√
1− 4m2

χ/s
√
E2

+ − s.]

]

c) What changes in the last exercise if χ is not self-conjugate, but instead annihi-
lates with a particle χ̄ in a reaction χ̄χ↔ ψ1ψ2?
[Hint: Why does the symmetry factor in Eq. (??) miss a factor 1/2 from χ
being self-conjugate?]

Problem 4: Preparing to use DarkSUSY

DarkSUSY is a widely used numerical package to calculate all kinds of dark matter
observables, and during the next exercise session we want to explore some of its
functionalities for relic density calculations. For this to work in practice, I need you
to come prepared – so please do the following before Wednesday:



1. Go to https://www.darksusy.org, download the most recent version (6.4.0)
and follow the instructions on the webpage to install it.

2. Go to /examples/aux, and compile and run the example program oh2 generic wimp.
Plot the output in the ⟨σv⟩ vs mDM plane, and interpret it. Try to identify the
DarkSUSY functions that i) initialize a model with a given set of model param-
eters and ii) calculate the relic density for this parameter point.

3. Do the same with the example program oh2 ScalarSinglet.

4. If time allows, also take a glance at the tutorial at https://darksusy.hepforge.
org/tutorials/TOOLS_2021/DarkSUSY_getting_started.pdf in order to fa-
miliarize yourself with some of the key principles of how the code is organized.

If you encounter problems at any of the steps above, please let me know ASAP for
support – either by email or directly on site. Note that for the purpose of the numerical
exercises discussed here, it will be sufficient to install the ‘light’ version of the code.


