
Neutrino Physics (J. Kopp) MITP Summer School 2024

1. Charge conjugation and seesaw mechanism
Proof the following relations:

(a) (ψc)c = ψ ,

(b) ψc1ψ2 = ψc2ψ1 ,

(c) Show the following identify from the lecture:

−1

2
ncMn+ h.c. = −mDνLNR −

1

2
mM(NR)cNR + h.c. . (1)

Here, n = (νL, (NR)c)T and

M =

(
0 mD

mD mM

)
. (2)

(d) Compute the eigenvalues and eigenvectors of M approximately and use them
to prove that, indeed, an effective mass term of the form −1

2
mν(ν ′L)cν ′L, with

mν = m2
D/mM , is generated.

2. Majorana mass term
Why is a Majorana mass term for neutrinos, i.e. a term of the form

L ⊃ 1

2
m (νL)c νL + h.c. , (3)

forbidden in the Standard Model?

3. Neutrinoless double electron capture
Neutrinoless double electron capture has been proposed as an alternative to neutrino-
less double beta decay for measuring (Majorana) neutrino mass. (Sujkowski Wycech,
arXiv:hep-ph/0312040)

(a) Draw the Feynman diagram corresponding to neutrinoless double electron cap-
ture.

(b) What would be the experimental signature?

(c) Discuss how a coincidence trigger can help to reduce backgrounds.

4. Neutrino Brain Teasers

(a) Imagine a world in which neutrinos are massive, but charged leptons are mass-
less. Will neutrinos oscillate in such a world?

(b) Do neutrinos produced in the decay Z0 → ν̄ν oscillate? If so, describe a
gedankenexperiment in which these oscillations could be observed.

5. Neutrino oscillations in matter

(a) Diagonalize the 2-flavor neutrino Hamiltonian in matter,

Ĥeff = −
(

cos θ sin θ
− sin θ cos θ

)(
−∆m2

4p
0

0 ∆m2

4p

)(
cos θ − sin θ
sin θ cos θ

)
−
(√

2GFne 0
0 0

)
,

(4)
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to show that the effective mass squared difference and mixing angle in matter
are given by

∆m2
eff

2E
=

√(√
2GFne −

∆m2

2p
cos 2θ

)2

+
(∆m2

2p

)2

sin2 2θ (5)

sin 2θeff =
sin 2θ ∆m2

2p√(√
2GFne − ∆m2

2p
cos 2θ

)2
+
(

∆m2

2p

)2
sin2 2θ

(6)

(Note that, in Ĥ, we have subtracted a term ∆m2/(4p) × 12×2, which makes
the calculation a bit simpler. We can always do this as flavor-universal terms
do not affect oscillations.

(b) Consider now neutrino oscillations in spatially inhomogeneous matter of density
ne = ne(x). This is relevant for instance for solar neutrinos propagating out
of the core of the Sun. Neutrino evolution is described by the Schrödinger-like
equation

−i d
dx

(
νe
νµ

)
=

(
cos θeff sin θeff

− sin θeff cos θeff

)(
−∆m2

eff

4o
0

0
∆m2

eff

4p

)(
cos θeff − sin θeff

sin θeff cos θeff

)(
νe
νµ

)
(7)

Rewrite this equation in the basis of matter eigenstates, i.e. states of definite
energy and momentum in matter: (νA, νB) = U †eff(x) (νe, νµ), where Ueff is the
effective mixing matrix in matter. You should find

−i d
dx

(
νA
νB

)
=

(
pA i dθ

dx

−i dθ
dx

pB

)(
νA
νB

)
, (8)

where pA, pB are the momentum eigenvalues in matter.

(c) For slowly varying matter density, dθ/dx� |pA− pB|, the off-diagonal terms on
the right hand side of eq. (8) are negligible. Solve the equation to show that the
survival probability of solar neutrinos P (νe → νe) is given by

P (νe → νe) =
1

2

(
1 + cos 2θi cos 2θf + sin 2θi sin 2θf cos

[ ∫ xf

xi

dx
∆m2

eff(x)

2p

])
.

(9)

Here θi and θf are the effective mixing angles corresponding to the center of the
Sun and its exterior, respectively. The integral in the last term runs along the
neutrino trajectory from its production point xi to its detection point xf .

(d) What is the maximum conversion probability in the case of small vacuum mixing
angle θ � 1? Consider the case that the matter density at the center of the Sun
lies well above the MSW resonance, whereas the density outside the Sun is far
below.


