
1. Horizons

The particle horizon is the largest comoving distance from which light emitted in the past could
reach the observer at a given time. One could also define a cosmological event horizon in an
expanding Universe, which corresponds to the largest comoving distance from which light emitted
now can ever reach the observer in the future.

a) Assuming the scale factor obeys a(t) = (t/t0)n, which horizon exists?

b) And what if the scale factor is given by a(t) = exp(Ht)?

c) Are there FLRW metrics that exhibit neither horizon? Or both horizons?

2. Einstein’s static universe

The cosmological constant was originally introduced by Einstein to make the universe static, i.e.,
not expanding.

a) Consider a universe filled with a perfect fluid with ρ > 0 and P ≥ 0. Show that no static
solution to the Friedmann equations exists in this case.

b) Now consider a universe filled with pressureless matter (Pm = 0) and a cosmological constant
(PΛ = −ρΛ). Show that in this case it is possible to find a static solution and find the ratio
ξstatic ≡ ρm/ρΛ.

c) Now imagine there were small density fluctuations in the matter component of this universe.
Describe qualitatively what would happen for

(i) a small matter overdensity, ξ > ξstatic,

(ii) and a small matter underdensity, ξ < ξstatic.

3. Conformal time

Consider a flat FLRW universe. Define the conformal time η

dη ≡ dt

a
.

What is the functional dependence of the scale factor a on η during

a) matter domination?

b) radiation domination?

c) Λ domination?

4. Neutrinos

Standard model neutrinos decouple from cosmic plasma at temperatures of ∼ 1 MeV. Since labo-
ratory experiments have shown that neutrino masses are sub-eV, it is clear that these neutrinos
must be ultra-relativistic when decoupling happens. If the decoupling is instantaneous, the phase
space density of neutrinos at the time of decoupling takes the relativistic Fermi-Dirac form to a
very good approximation, i.e.,

f(p) =
1

exp(p/Tν) + 1
(1)

a) Argue why the phase space distribution f(p) must remain the same form, with Tν ∝ a−1,
even after the temperature Tν drops below the neutrino rest mass.
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b) Suppose one species of neutrinos has a mass of m, where m � Tν,0 ' 10−5 eV and Tν,0 '
1.95 K is the present-day neutrino temperature. Show that the present-day reduced energy
density of these neutrinos is given by

Ωνh
2 =

m

93 eV
. (2)

c) The present-day neutrino temperature is related to the present-day CMB temperature by

Tν,0 =

(
4

11

)1/3

Tγ,0, (3)

where Tγ,0 = 2.725. If the Fermi coupling constant GF were a factor of 100 smaller, at
what temperature would you expect the neutrinos to decouple? Would the relation given in
equation (3) still apply to the present-day neutrino temperature in this case?

5. Light thermal relics

Suppose we extend the standard model (SM) of particle physics with one extra massless scalar
particle φ. This particle interacts with the SM particles and was once in a state of thermodynamic
equilibrium in the early universe. At some temperature Tdec(φ), φ decouples from the rest of the
cosmic plasma.

a) Suppose φ decouples before neutrino decoupling, i.e., Tdec(φ) � O(1) MeV. Assuming as usual
instantaneous decoupling, show using entropy conservation arguments that the present-day
temperature of φ, Tφ,0, is related to the present-day neutrino temperature Tν,0 via

Tφ,0 =

[
43

4

1

g∗s(Tdec(φ))− 1

]1/3

Tν,0, (4)

where g∗s is the effective massless entropy degrees of freedom, and three generations of
neutrinos have been assumed. How does Tφ,0 relate to the present-day photon temperature
Tγ,0?

b) Now suppose φ decoupling happens after e+e− annihilation (T ∼ 0.5 MeV). How does Tφ,0
now relate to Tν,0 and to Tγ,0

c) Compared with the standard model, how does the presence of this hypothetical particle φ
affect the expansion rate and hence the neutrino decoupling temperature?

6. Boltzmann equation

The integrated Boltzmann equation for the physical number density of a particle species i is given
by

dn

dt
+ 3

ȧ

a
n =

g

(2π)3

∫
d3p

1

E
C[f ], (5)

where C[f ] is the collision integral. Assuming an interaction

i+ j ↔ k + l (6)

and CP invariance, verify that the r.h.s. of equation (5) evaluates to exactly zero when the
interaction (6) is in equilibrium.
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7. Scalar fields

Begin with the Lagrangian density for a real scalar field φ(xα),

Lφ = −1

2
gµν∂µφ∂νφ− V (φ). (7)

(metric convention: (−,+,+,+)).

a) Using

T µν = − 2√
−g

δ(
√
−gL)

δgµν
= gµνL − 2

δL
δgµν

, (8)

where g is the determinant of the metric, derive the stress-energy tensor Tµν for φ.

b) Suppose the field is homogeneous, i.e., φ = φ(t). Show that the energy density ρφ and the
pressure Pφ of φ(t) are given by

ρφ(t) =
1

2

(
dφ

dt

)2

+ V (φ),

Pφ(t) =
1

2

(
dφ

dt

)2

− V (φ).

(9)

c) Consider the scalar field φ described by equation (7), and suppose again it is homogeneous,
i.e., φ = φ(t). Show that in an FLRW universe, the time evolution of φ(t) is governed by
the Klein-Gordon equation:

φ̈+ 3
ȧ

a
φ̇+

∂V

∂φ
= 0. (10)

You can start the derivation from first principles, i.e., minimise the Lagrangian. But you
can also arrive at the same point via the continuity equation, dρ/dt+ 3H(ρ+ P ) = 0. You
should try both.
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