
Technical exercises related to lectures on Thermal field theory / Mikko Laine / July 2024

Lecture 1: Basics on “fields” in cosmology

Exercise 1: Verify that
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Hint: you may consider the contour integral
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B
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, where the contour wraps around

the x-axis, and then use the residue theorem in two different ways, inwards or outwards.

Exercise 2: Consider the metric ds2 = dt2 − a2(t)dx2. We define local Minkowskian coordi-

nates as dy = a(t)dx, and write the action in this system as
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After going from y to x, derive the Euler-Lagrange equations, and show that
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φ+ V ′(φ) = 0 , (0.3)

where H ≡ ȧ/a is the Hubble rate (or “Hubble friction”).

Exercise 3: Consider the Langevin equation

(
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)
φ = ξ , 〈ξ〉 = 0 , 〈 ξ(X )ξ(Y) 〉 = Ω δ(4)(X − Y) , (0.4)

where X ≡ (t,x). After solving the equation with a Green’s function, compute the equal-time

2-point correlator of φ, and show that
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Lecture 2: Basics on “particles” in cosmology

Exercise 4: We consider
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where K ≡ (ωn,k) and Σ
∫
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, with pn ≡ 2πnT , n ∈ Z. The task is to carry out

the sum over pn and then take the “cut”,
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Verify that the answer can be written in a Boltzmann-equation like form,
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where np ≡ n
B
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Lecture 3: Resummation and effective field theories

Exercise 5: Spectral functions are defined as
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Verify the sum rule
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Lecture 4: Example: thermal production of gravitational waves

Exercise 6: Let K = (k,k) and Q = (q,q) be lightlike 4-vectors, and P = (p0,p) be a general

4-vector. Show that the phase-space integral for a 2 → 1 process P +Q → K can be written

as
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where θ(true) ≡ 1. Sketch the integration domain in the (p0, p) plane and show that p2−p20 >

0, i.e. that P is spacelike. If we consider a large momentum k, and write p2 − p20 ≡ p2
⊥
, show

that the IR part of the measure can be written as
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