Technical exercises related to lectures on Thermal field theory / Mikko Laine / July 2024

Lecture 1: Basics on "fields" in cosmology

Exercise 1: Verify that

$$
\begin{equation*}
\frac{1}{\epsilon_{k}}[\frac{1}{2}+\underbrace{\frac{1}{e^{\epsilon_{k} / T}-1}}_{\equiv n_{\mathrm{B}}\left(\epsilon_{k}\right)}]=T \sum_{\omega_{n}} \frac{1}{\omega_{n}^{2}+\epsilon_{k}^{2}}, \quad \omega_{n} \equiv 2 \pi n T, \quad n \in \mathbb{Z} . \tag{0.1}
\end{equation*}
$$

Hint: you may consider the contour integral $\oint \frac{\mathrm{d} \omega}{2 \pi i} \frac{i n_{\mathrm{B}}(i \omega)}{\omega^{2}+\epsilon_{k}^{2}}$, where the contour wraps around the x-axis, and then use the residue theorem in two different ways, inwards or outwards.

Exercise 2: Consider the metric $\mathrm{d} s^{2}=\mathrm{d} t^{2}-a^{2}(t) \mathrm{d} \mathbf{x}^{2}$. We define local Minkowskian coordinates as $\mathrm{d} \mathbf{y}=a(t) \mathrm{d} \mathbf{x}$, and write the action in this system as

$$
\begin{equation*}
\mathcal{S}=\int \mathrm{d} t \mathrm{~d}^{3} \mathbf{y}\left[\frac{1}{2} \dot{\phi}^{2}-\frac{1}{2}\left(\nabla_{\mathbf{y}} \phi\right)^{2}-V(\phi)\right] . \tag{0.2}
\end{equation*}
$$

After going from \mathbf{y} to \mathbf{x}, derive the Euler-Lagrange equations, and show that

$$
\begin{equation*}
\left(\partial_{t}^{2}+3 H \partial_{t}-\frac{\nabla_{\mathbf{x}}^{2}}{a^{2}}\right) \phi+V^{\prime}(\phi)=0 \tag{0.3}
\end{equation*}
$$

where $H \equiv \dot{a} / a$ is the Hubble rate (or "Hubble friction").
Exercise 3: Consider the Langevin equation

$$
\begin{equation*}
\left(\partial_{t}^{2}-\nabla^{2}+\Gamma \partial_{t}+m^{2}\right) \phi=\xi, \quad\langle\xi\rangle=0, \quad\langle\xi(\mathcal{X}) \xi(\mathcal{Y})\rangle=\Omega \delta^{(4)}(\mathcal{X}-\mathcal{Y}), \tag{0.4}
\end{equation*}
$$

where $\mathcal{X} \equiv(t, \mathbf{x})$. After solving the equation with a Green's function, compute the equal-time 2 -point correlator of ϕ, and show that

$$
\begin{equation*}
\langle\phi(t, \mathbf{x}) \phi(t, \mathbf{y})\rangle=\frac{\Omega}{2 \Gamma} \int_{\mathbf{k}} \frac{e^{i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})}}{\epsilon_{k}^{2}} . \tag{0.5}
\end{equation*}
$$

Lecture 2: Basics on "particles" in cosmology

Exercise 4: We consider

$$
\begin{equation*}
\Pi(K) \equiv g^{2} \mathcal{F}_{P} \frac{1}{\left[\left(\omega_{n}+p_{n}\right)^{2}+\epsilon_{k p}^{2}\right]\left[p_{n}^{2}+\epsilon_{p}^{2}\right]}, \quad \epsilon_{k p}^{2} \equiv(\mathbf{k}+\mathbf{p})^{2}+m_{1}^{2}, \quad \epsilon_{p}^{2} \equiv p^{2}+m_{2}^{2}, \tag{0.6}
\end{equation*}
$$

where $K \equiv\left(\omega_{n}, \mathbf{k}\right)$ and $\mathscr{\oiint}_{P} \equiv T \sum_{p_{n}} \int_{\mathbf{p}}$, with $p_{n} \equiv 2 \pi n T, n \in \mathbb{Z}$. The task is to carry out the sum over p_{n} and then take the "cut",

$$
\begin{equation*}
\left.\Gamma(\mathcal{K}) \equiv \frac{1}{\omega} \operatorname{Im} \Pi(K)\right|_{\omega_{n} \rightarrow-i\left[\omega+i 0^{+}\right]}, \quad \mathcal{K} \equiv(\omega, \mathbf{k}) \tag{0.7}
\end{equation*}
$$

Verify that the answer can be written in a Boltzmann-equation like form,

$$
\begin{align*}
\Gamma=\frac{g^{2}}{2 \omega} \int_{\mathbf{p}, \mathbf{q}} & \frac{1}{4 \epsilon_{p} \epsilon_{q}}\left\{(2 \pi)^{4} \delta^{(4)}(\mathcal{K}-\mathcal{P}-\mathcal{Q})\left[\left(1+n_{p}\right)\left(1+n_{q}\right)-n_{p} n_{q}\right]\right. \\
& +(2 \pi)^{4} \delta^{(4)}(\mathcal{K}+\mathcal{P}-\mathcal{Q})\left[n_{p}\left(1+n_{q}\right)-n_{q}\left(1+n_{p}\right)\right] \\
& \left.+(2 \pi)^{4} \delta^{(4)}(\mathcal{K}-\mathcal{P}+\mathcal{Q})\left[n_{q}\left(1+n_{p}\right)-n_{p}\left(1+n_{q}\right)\right]\right\} \tag{0.8}
\end{align*}
$$

where $n_{p} \equiv n_{\mathrm{B}}\left(\epsilon_{p}\right)$ and ϵ_{q} corresponds to the previous $\epsilon_{k p}$.
Hint: $T \sum_{p_{n}} \frac{e^{i p_{n} \tau}}{p_{n}^{2}+\epsilon_{p}^{2}}=\frac{n_{\mathrm{B}}\left(\epsilon_{p}\right)}{2 \epsilon_{p}}\left[e^{(\beta-\tau) \epsilon_{p}}+e^{\tau \epsilon_{p}}\right], \quad 0<\tau<\beta$.

Lecture 3: Resummation and effective field theories

Exercise 5: Spectral functions are defined as

$$
\begin{equation*}
\rho_{\mathcal{P}}^{\mathrm{T}, \mathrm{E}} \equiv \operatorname{Im}\left\{\frac{1}{p_{n}^{2}+p^{2}+\Pi_{P}^{\mathrm{T}, \mathrm{E}}}\right\}_{p_{n} \rightarrow-i\left[p_{0}+i 0^{+}\right]}, \quad \mathcal{P} \equiv\left(p_{0}, \mathbf{p}\right), \quad p \equiv|\mathbf{p}| \tag{0.9}
\end{equation*}
$$

We assume the properties

$$
\begin{equation*}
\Pi_{\left(-p_{n}, \mathbf{p}\right)}^{\mathrm{T}, \mathrm{E}}=\Pi_{\left(p_{n}, \mathbf{p}\right)}^{\mathrm{T}, \mathrm{E}}, \quad \Pi_{(0, \mathbf{p})}^{\mathrm{T}}=0, \quad \Pi_{(0, \mathbf{p})}^{\mathrm{E}}=m_{\mathrm{E}}^{2}, \quad \Pi_{\left(p_{n}, \mathbf{0}\right)}^{\mathrm{T}}=\Pi_{\left(p_{n}, \mathbf{0}\right)}^{\mathrm{E}}=\frac{m_{\mathrm{E}}^{2}}{3} \tag{0.10}
\end{equation*}
$$

Verify the sum rule

Lecture 4: Example: thermal production of gravitational waves

Exercise 6: Let $\mathcal{K}=(k, \mathbf{k})$ and $\mathcal{Q}=(q, \mathbf{q})$ be lightlike 4 -vectors, and $\mathcal{P}=\left(p_{0}, \mathbf{p}\right)$ be a general 4 -vector. Show that the phase-space integral for a $2 \rightarrow 1$ process $\mathcal{P}+\mathcal{Q} \rightarrow \mathcal{K}$ can be written as

$$
\begin{align*}
I[f(\mathcal{P})] & \equiv \int \frac{\mathrm{d} p_{0}}{2 \pi} \int_{\mathbf{p}, \mathbf{q}} \frac{(2 \pi)^{4} \delta^{(4)}(\mathcal{P}+\mathcal{Q}-\mathcal{K})}{2 q} f(\mathcal{P}) \\
& =\int_{-\infty}^{+\infty} \mathrm{d} p_{0} \int_{0}^{\infty} \mathrm{d} p p \frac{\theta\left(|p-k|<k-p_{0}<p+k\right)}{8 \pi^{2} k} f(\mathcal{P}) \tag{0.12}
\end{align*}
$$

where $\theta($ true $) \equiv 1$. Sketch the integration domain in the $\left(p_{0}, p\right)$ plane and show that $p^{2}-p_{0}^{2}>$ 0 , i.e. that \mathcal{P} is spacelike. If we consider a large momentum k, and write $p^{2}-p_{0}^{2} \equiv p_{\perp}^{2}$, show that the IR part of the measure can be written as

$$
\begin{equation*}
I[f(\mathcal{P})] \supset \int \mathrm{d} p_{0} \int_{0}^{(2 k)^{2}} \frac{\mathrm{~d} p_{\perp}^{2}}{16 \pi^{2} k} f(\mathcal{P}) \tag{0.13}
\end{equation*}
$$

