Technical exercises related to lectures on Thermal field theory / Mikko Laine / July 2024
Lecture 1: Basics on “fields” in cosmology

Exercise 1: Verify that
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the z-axis, and then use the residue theorem in two different ways, inwards or outwards.

Hint: you may consider the contour integral ¢ where the contour wraps around

Exercise 2: Consider the metric ds? = dt? — a?(t)dx?. We define local Minkowskian coordi-

nates as dy = a(t)dx, and write the action in this system as
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After going from y to x, derive the Euler-Lagrange equations, and show that
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where H = a/a is the Hubble rate (or “Hubble friction”).

Exercise 3: Consider the Langevin equation
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where X = (t,x). After solving the equation with a Green’s function, compute the equal-time

2-point correlator of ¢, and show that
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Lecture 2: Basics on “particles” in cosmology

Exercise 4: We consider
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where K = (w,,, k) and ip = szn fp, with p,, = 2anT, n € Z. The task is to carry out
the sum over p,, and then take the “cut”,
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Verify that the answer can be written in a Boltzmann-equation like form,

_ 92 1 45(4)
r = = {(2%)5 (K=P—-Q)[(1+n,)(1+mn,) —n,n,]

2w Jpq 4epeq

+ @m0 (K+P - Q) [ny(1 +n,) —n,(1+mn,)]
+@2m)* W (K - P+ Q) [ng(1 +n,) —n,(1+n,)] } , (0.8)

where n, = ny (ep) and e(q sorresponds to the previous €.
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Lecture 3: Resummation and effective field theories

Exercise 5: Spectral functions are defined as
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We assume the properties
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Verify the sum rule
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Lecture 4: Example: thermal production of gravitational waves

Exercise 6: Let K = (k,k) and Q = (¢, q) be lightlike 4-vectors, and P = (pg, p) be a general
4-vector. Show that the phase-space integral for a 2 — 1 process P 4+ Q — K can be written
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where f(true) = 1. Sketch the integration domain in the (py, p) plane and show that p? —p3 >
0, i.e. that P is spacelike. If we consider a large momentum k, and write p? — pg = pi, show
that the IR part of the measure can be written as
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